Can Threshold Foraging Responses of Basking Sharks Be Used to Estimate Their Metabolic Rate?

Total Page:16

File Type:pdf, Size:1020Kb

Can Threshold Foraging Responses of Basking Sharks Be Used to Estimate Their Metabolic Rate? MARINE ECOLOGY PROGRESS SERIES Vol. 200: 289-296,2000 Published July 14 Mar Ecol Prog Ser ~ NOTE Can threshold foraging responses of basking sharks be used to estimate their metabolic rate? David W. Sims* Department of Zoology, University of Aberdeen. Tillydrone Avenue. Aberdeen AB24 2TZ. United Kingdom ABSTRACT: Empirical and theoretical determinations of There are 3 species of filter-feeding shark, the whale minimum threshold prey densities for filter-feeding basking shark ~hi~~~d~~typus of warm-temperate and tropical sharks Cetorhinus maximus were used to test the idea that threshold foraging behaviour could provide a means for esti- seas worldwide, the basking shark Cetorhinus max- mating oxygen consumption (a proxy for metabolic rate). The im~~that inhabits warm-temperate to boreal waters threshold feeding levelrepres&nts the prey density at which circumglobally, and the megamouth shark Mega- there will be no net energy gain (energy intake equals expen- chasms pelagjos occurs in the Pacific and At- diture). Basking sharks were observed to cease feeding at lantic, primarily in deep water (Compagno 1984, Yano their theoretical threshold; thus, the assumption underpin- ning the concept presented here was that over the narrow et They are the largest marine verte- range of zooplankton prey densities that induce 'switching' brates attaining body lengths of up to 14, 10 and 6 m re- between feeding and non-feeding in basking sharks, the spectively. Comparatively little is known about the bi- energetic value of the minimum threshold prey density is ology of planktivorous sharks despite the fact that they equivalent to the shark's instantaneous level of energy expen- diture. Four independent estimates of the lower threshold are unique within the shark group in that they consume prey density obtained for C. maximus in the English Channel zooplankton directly, which results in them being at the were converted to equivalent rates of oxygen consumption. apex of a relatively short food chain with the potential Best estimates ranged from 62.5to 91.1 mg 0, kg-' h-' (mean, to influence the density and diversity of plankton com- 80.7 mg 0, kg-' h-', & 20.1 [95% confidence interval, CI]) for munities. Although the foraging behaviour of whale a shark of 5 m total body length (LT)weighing 1000 kg. Sensi- tivity analysis using 'low' and 'high' possible values in the sharks (Clark & Nelson 1997) and basking sharks (e.g. model for mouth gape area, proportion of prey filtered, buccal Sims & Quayle 1998) has begun to be studied in detail flow velocity, prey energy content and energy absorption, recently, there have been no determinations of the yielded low and high rates of 23.2 and 192.1 mg 0, kg-' h-', magnitude or rates of vertical energy flux attributable respectively. Varying estimated body mass of 1000 kg in the model by r 200 kg gave an oxygen consumption range of 67.2 to these species. In this context, measurements of en- to 100.8 mg O2kg-' h-'; a range within the 95 % C1 of the best ergy expenditure in plankton feeding sharks at differ- estimate mean. For comparison, a new routine oxygen con- ent levels of activity would provide important infor- sumption- body mass relationship was determined for sharks mation on the level of zooplankton (energy) intake (body mass range, 0.35 to 140 kg) and was described by the required by these animals to meet active metabolism, equation V02= 0.30~~,~~,where V02 is oxygen consumption in mg O2 h-' and M is mass in grams. When corrected for and, set against the calorific value of prey densities likely energy costs associated with filter-feeding, this rela- utilised by them, would enable calculation of the quan- tionship and 2 other metabolic rate scaling relationships in tity of energy potentially available for growth. How- the literature gave expected rates between 52.0 and 99.2 mg ever, measurement of energy expenditure in planktivo- Oz kg-' h-' for a fish of 1000 kg body mass. The threshold- converted and expected oxygen consumption values al- rous sharks is yet to be attempted. though derived from different methods show good agree- Numerous investigations have measured meta- ment, an observation that warrants further investigation. To bolic rates in a variety of shark species using the in- verify the concept it will be necessary to obtain threshold- direct, oxycalorific method (e.g. Pritchard et al. 1958, converted rates of oxygen consumption from a wide size Hughes & Umezawa 1968, Brett & Blackburn 1978, range of basking sharks (1.5 to 10.0 m LT) to determine whether rates scale predictably with body mass as does actual Bushnell et al. 1989, Sims 1996). The oxygen con- metabolism. sumption rates of large species (> 1 m in length), how- KEY WORDS: Feeding . Energetics . Swimming speed . Zooplankton . Scaling 'E-mail: [email protected] O Inter-Research 2000 Resale of full article not permitted 290 Mar Ecol Prog Ser ever, cannot be measured using conventional meth- tinued to feed in areas with low prey density for ods because the size of most water-tunnel respiro- extended periods of time the energy that could be meters limits experiments to small specimens or juve- gained from filtered prey would not be sufficient to niles (Graham et al. 1990). The logistical problems cover the costs of its collection. The density of zoo- associated with capturing large pelagic sharks, keep- plankton at which energy intake equals expenditure is ing them in a respirometer and maintaining them termed the threshold prey density, and below this level alive for long enough such that near-normal rates of net energy gain cannot be achieved. metabolism can be determined have meant only a Theory predicts that filter-feeding swimming speed small number of sub-adult individuals of large, active will be lower in higher densities of zooplankton, but species have been examined (e.g.lemon shark Nega- will increase as prey becomes sparse in order that opti- prion brevirostns and shortfin mako Isurus oxynn- mum rates of prey capture are maintained (Ware 1978, chus; Graham et al. 1990). Priede 1985).A recent study on basking sharks demon- Most commonly the routine oxygen consumption- strated empirically that individual sharks increase body mass relationship derived from small to medium- swimming speed in low prey densities and cease feed- sized fish species has been used to estimate metabolic ing at their theoretical threshold prey density deter- rates of large sharks indirectly by simple extrapolation mined from energy intake-output calculations (Sims (e.g. Stillwell & Kohler 1982). This approach provides 1999). Below the threshold level, feeding stopped in only an estimate of routine oxygen consumption and preference to lower cost (low drag) cruise swimming does not take into account species-specific differences with the mouth closed. In this paper I suggest a poten- in physiology and behaviour, such as the regional het- tial method for estimating oxygen consumption rate in erothermy in certain predatory shark species (e.g. the basking shark using determinations of their thres- white shark Carcharodon carcharias) and its effects on hold foraging responses. In the light of the abovemen- heat conservation, metabolic rate and activity levels. tioned study, I reason that, at the threshold prey den- Hence, whilst it is generally accepted that extrapola- sity which induces 'switching' between feeding and tion of routine oxygen consumption-body mass rela- non-feeding in basking sharks, the energy value of the tionships (to obtain estimates of active metabolism in minimum threshold prey density should (after taking large sharks) will not provide accurate estimates on a into account additional factors) be equivalent to the species-by-species basis, there have been no sugges- shark's instantaneous level of energy expenditure at tions of other indirect methods that could indicate the onset of filter-feeding (i.e. an active metabolic metabolism in species too large to be kept in the rate). In this study I use the concept of this energetic laboratory. Therefore, in the absence of very large tun- balance point together with previously published nel respirometers for measuring oxygen consumption threshold response data (Sims 1999) to estimate oxy- directly or comprehensive oxygen consumption- body gen consumption rate in a basking shark of 5 m total mass relationships that include large-bodied shark body length (LT).Comparisons are made between this species, it seems the energy expenditure of filter-feed- threshold-converted oxygen consumption rate and ing sharks must be estimated in other ways. those derived from 2 new routine oxygen consump- Whale sharks and megamouth sharks primarily tion- body mass relationships for sharks, and 2 general utilise suction or gulp feeding to obtain sufficient par- fish relationships. ticulate prey (Compagno 1990, Colman 1997), where Methods. Threshold foraging behaviour determina- the controlled increase in volume of the shark's bucco- tion~:The minimum threshold prey densities for bask- pharyngeal cavity results in an internal pressure ing sharks that were used in this study to calculate oxy- reduction which, when the mouth opens, acts to draw gen consumption were determined from behavioural water (containing prey) into the mouth. In contrast, studies carried out in a 350 km2 study area in the Eng- basking sharks feed by swimming forwards with the lish Channel off Plymouth, UK (for map see Sims & mouth open to overtake zooplankton prey that are fil- Merrett 1997, their Fig. 1). Detailed descriptions of the tered from the passive water flow across the gills by methodologies used to determine threshold foraging comb-like rakers attached to the gill arches; a strategy responses are given in Sims (1999).In the latter study 4 known as ram filter-feeding. Basking sharks are independent field methods that related observations of dependent therefore on forward swimming speed to shark behaviour to variations in zooplankton prey den- regulate rates of prey capture (energy intake).
Recommended publications
  • Lamna Nasus) Inferred from a Data Mining in the Spanish Longline Fishery Targeting Swordfish (Xiphias Gladius) in the Atlantic for the 1987-2017 Period
    SCRS/2020/073 Collect. Vol. Sci. Pap. ICCAT, 77(6): 89-117 (2020) SIZE AND AREA DISTRIBUTION OF PORBEAGLE (LAMNA NASUS) INFERRED FROM A DATA MINING IN THE SPANISH LONGLINE FISHERY TARGETING SWORDFISH (XIPHIAS GLADIUS) IN THE ATLANTIC FOR THE 1987-2017 PERIOD J. Mejuto1, A. Ramos-Cartelle1, B. García-Cortés1 and J. Fernández-Costa1 SUMMARY A total of 5,136 size observations of porbeagle were recovered for the period 1987-2017. The GLM results explained very moderately the variability of the sizes considering three main factors, suggesting minor but significant differences in some cases especially for the year factor and non-significant differences in other factors depending on the analysis. The greatest differences in the standardized mean length between some zones were caused by some large fish of unidentified sex. The standardized mean length data for the northern zones showed stability throughout the time series, very stable range of mean values and very few differences between sexes. The size distribution for northern areas indicated an FL-overall mean of 158 cm. The size showed a normal distribution confirming that a small fraction of individuals of this stock/s is available in the oceanic areas where the North Atlantic fleet is regularly fishing and the fishes are not fully recruited to those areas and / or this fishing gear up to 160 cm. The data suggests that some individuals could sporadically reach some intertropical areas of the eastern Atlantic. RÉSUMÉ Un total de 5.136 observations de taille de requins-taupes communs ont été récupérées pour la période 1987-2017. Les résultats du GLM expliquent très modérément la variabilité des tailles en tenant compte de trois facteurs principaux, ce qui suggère des différences mineures mais significatives dans certains cas, notamment pour le facteur année et des différences non significatives pour d'autres facteurs selon le type d’analyse.
    [Show full text]
  • Electrosensory Pore Distribution and Feeding in the Basking Shark Cetorhinus Maximus (Lamniformes: Cetorhinidae)
    Vol. 12: 33–36, 2011 AQUATIC BIOLOGY Published online March 3 doi: 10.3354/ab00328 Aquat Biol NOTE Electrosensory pore distribution and feeding in the basking shark Cetorhinus maximus (Lamniformes: Cetorhinidae) Ryan M. Kempster*, Shaun P. Collin The UWA Oceans Institute and the School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia ABSTRACT: The basking shark Cetorhinus maximus is the second largest fish in the world, attaining lengths of up to 10 m. Very little is known of its sensory biology, particularly in relation to its feeding behaviour. We describe the abundance and distribution of ampullary pores over the head and pro- pose that both the spacing and orientation of electrosensory pores enables C. maximus to use passive electroreception to track the diel vertical migrations of zooplankton that enable the shark to meet the energetic costs of ram filter feeding. KEY WORDS: Ampullae of Lorenzini · Electroreception · Filter feeding · Basking shark Resale or republication not permitted without written consent of the publisher INTRODUCTION shark Rhincodon typus and the megamouth shark Megachasma pelagios, which can attain lengths of up Electroreception is an ancient sensory modality that to 14 and 6 m, respectively (Compagno 1984). These 3 has evolved independently across the animal kingdom filter-feeding sharks are among the largest living in multiple groups (Scheich et al. 1986, Collin & White- marine vertebrates (Compagno 1984) and yet they are head 2004). Repeated independent evolution of elec- all able to meet their energetic costs through the con- troreception emphasises the importance of this sense sumption of tiny zooplankton.
    [Show full text]
  • Order LAMNIFORMES ODONTASPIDIDAE Sand Tiger Sharks Iagnostic Characters: Large Sharks
    click for previous page Lamniformes: Odontaspididae 419 Order LAMNIFORMES ODONTASPIDIDAE Sand tiger sharks iagnostic characters: Large sharks. Head with 5 medium-sized gill slits, all in front of pectoral-fin bases, Dtheir upper ends not extending onto dorsal surface of head; eyes small or moderately large, with- out nictitating eyelids; no nasal barbels or nasoral grooves; snout conical or moderately depressed, not blade-like;mouth very long and angular, extending well behind eyes when jaws are not protruded;lower labial furrows present at mouth corners; anterior teeth enlarged, with long, narrow, sharp-edged but unserrated cusps and small basal cusplets (absent in young of at least 1 species), the upper anteriors separated from the laterals by a gap and tiny intermediate teeth; gill arches without rakers; spiracles present but very small. Two moderately large high dorsal fins, the first dorsal fin originating well in advance of the pelvic fins, the second dorsal fin as large as or somewhat smaller than the first dorsal fin;anal fin as large as second dorsal fin or slightly smaller; caudal fin short, asymmetrical, with a strong subterminal notch and a short but well marked ventral lobe. Caudal peduncle not depressed, without keels; a deep upper precaudal pit present but no lower pit. Intestinal valve of ring type, with turns closely packed like a stack of washers. Colour: grey or grey-brown to blackish above, blackish to light grey or white, with round or oval dark spots and blotches vari- ably present on 2 species. high dorsal fins upper precaudal eyes without pit present nictitating eyelids intestinal valve of ring type Habitat, biology, and fisheries: Wide-ranging, tropical to cool-temperate sharks, found inshore and down to moderate depths on the edge of the continental shelves and around some oceanic islands, and in the open ocean.
    [Show full text]
  • Population Structure and Biology of Shortfin Mako, Isurus Oxyrinchus, in the South-West Indian Ocean
    CSIRO PUBLISHING Marine and Freshwater Research http://dx.doi.org/10.1071/MF13341 Population structure and biology of shortfin mako, Isurus oxyrinchus, in the south-west Indian Ocean J. C. GroeneveldA,E, G. Cliff B, S. F. J. DudleyC, A. J. FoulisA, J. SantosD and S. P. WintnerB AOceanographic Research Institute, PO Box 10712, Marine Parade 4056, Durban, South Africa. BKwaZulu-Natal Sharks Board, Private Bag 2, Umhlanga Rocks 4320, South Africa. CFisheries Management, Department of Agriculture, Forestry and Fisheries, Private Bag X2, Rogge Bay 8012, South Africa. DNorwegian College of Fishery Science, University of Tromsø, NO-9037, Tromsø, Norway. ECorresponding author. Email: [email protected] Abstract. The population structure, reproductive biology, age and growth, and diet of shortfin makos caught by pelagic longliners (2005–10) and bather protection nets (1978–2010) in the south-west Indian Ocean were investigated. The mean fork length (FL) of makos measured by observers on longliners targeting tuna, swordfish and sharks was similar, and decreased from east to west, with the smallest individuals occurring near the Agulhas Bank edge, June to November. Nearly all makos caught by longliners were immature, with equal sex ratio. Makos caught by bather protection nets were significantly larger, males were more frequent, and 93% of males and 55% of females were mature. Age was assessed from band counts of sectioned vertebrae, and a von Bertalanffy growth model fitted to sex-pooled length-at-age data predicted a À1 birth size (L0) of 90 cm, maximum FL (LN) of 285 cm and growth coefficient (k) of 0.113 y .
    [Show full text]
  • Can Sharks Be Saved? a Global Plan of Action for Shark Conservation in the Regime of the Convention on Migratory Species
    Seattle Journal of Environmental Law Volume 5 Issue 1 Article 15 5-31-2015 Can Sharks be Saved? A Global Plan of Action for Shark Conservation in the Regime of the Convention on Migratory Species James Kraska Leo Chan Gaskins Follow this and additional works at: https://digitalcommons.law.seattleu.edu/sjel Part of the Education Commons, Environmental Law Commons, Intellectual Property Law Commons, Internet Law Commons, Land Use Law Commons, Natural Resources Law Commons, Science and Technology Law Commons, and the Water Law Commons Recommended Citation Kraska, James and Gaskins, Leo Chan (2015) "Can Sharks be Saved? A Global Plan of Action for Shark Conservation in the Regime of the Convention on Migratory Species," Seattle Journal of Environmental Law: Vol. 5 : Iss. 1 , Article 15. Available at: https://digitalcommons.law.seattleu.edu/sjel/vol5/iss1/15 This Article is brought to you for free and open access by the Student Publications and Programs at Seattle University School of Law Digital Commons. It has been accepted for inclusion in Seattle Journal of Environmental Law by an authorized editor of Seattle University School of Law Digital Commons. Can Sharks be Saved? A Global Plan of Action for Shark Conservation in the Regime of the Convention on Migratory Species James Kraska† and Leo Chan Gaskins‡ Shark populations throughout the world are at grave risk; some spe- cies have declined by 95 percent. The most recent IUCN (Interna- tional Union for the Conservation of Nature) assessment by the Shark Specialist Group (SSG) found that one-fourth of shark and ray spe- cies face the prospect of extinction.
    [Show full text]
  • Ore Bin / Oregon Geology Magazine / Journal
    State of Oregon The ORE BIN· Department of Geology Volume 34,no. 10 and Mineral Industries 1069 State Office BI dg. October 1972 Portland Oregon 97201 FOSSil SHARKS IN OREGON Bruce J. Welton* Approximately 21 species of sharks, skates, and rays are either indigenous to or occasionally visit the Oregon coast. The Blue Shark Prionace glauca, Soup-fin Shark Galeorhinus zyopterus, and the Dog-fish Shark Squalus acanthias commonly inhabit our coastal waters. These 21 species are represented by 16 genera, of which 10 genera are known from the fossi I record in Oregon. The most common genus encountered is the Dog-fish Shark Squalus. The sharks, skates, and rays, (all members of the Elasmobranchii) have a fossil record extending back into the Devonian period, but many major groups became extinct before or during the Mesozoic. A rapid expansion in the number of new forms before the close of the Mesozoic gave rise to practically all the Holocene families living today. Paleozoic shark remains are not known from Oregon, but teeth of the Cretaceous genus Scapanorhyn­ chus have been collected from the Hudspeth Formation near Mitchell, Oregon. Recent work has shown that elasmobranch teeth occur in abundance west of the Cascades in marine Tertiary strata ranging in age from late Eocene to middle Miocene (Figures 1 and 2). All members of the EIasmobranchii possess a cartilaginous endoskeleton which deteriorates rapidly upon death and is only rarely preserved in the fossil record. Only under exceptional conditions of preservation, usually in a highly reducing environment, will cranial or postcranial elements be fossilized.
    [Show full text]
  • FAU Institutional Repository This
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1983 American Society of Ichthyologists and Herpetologists. This manuscript is an author version with the final publication available and may be cited as: Gilmore, R. G. (1983). Observations on the embryos of the longfin mako, Isurus paucus, and the bigeye thresher, Alopias superciliosus. Copeia 2, 375-382. /<""\ \ Copria, 1983(2), pp. 375-382 Observations on the Embryos of the Longfin Mako, Jsurus paucus, and the Bigeye Thresher, Alopias superciliosus R. GRANT GILMORE Four embryos of Alopias superciliosus and one of lsurus paucus were dissected and examined along with the reproductive organs of adults captured in the Florida Current off the east-central coast of Florida between latitude 26°30'N and 28°30'N. The embryos were found to contain yolk, demonstrating prenatal nutrition through intrauterine oophagy. Various proportions of embryo anatomy considered diagnostic for these species resemble those of adults. The general gonad morphology and presence of egg capsules containing multiple ova resem­ ble the described development stages of other lamnids, alopiids and Odontaspis taurus (Odontaspidae). This is the first documented observation of oophagy in these species. OPHAGOUS embryos have been record­ As these species are rarely caught and examined O ed in three elasmobranch families, Odon­ by biologists, there are no documented obser­ taspidae (Odontaspis taurus, Springer, 1948; Bass vations of oophagy in Alopias superciliosus and eta!., 1975; Pseudocarcharias kamoharai, Fujita, lsurus paucus. For this reason I present the fol­ 1 981 ), Lamnidae (Lamna nasus, Lohberger, lowing embryonic description of Isurus paucus 191 0; Shann, 1911, 1923; Bigelow and Schroe­ and Alopias superciliosus with evidence of oo­ der, 1948) and Alopiidae (Alopias vulpinus, Gub­ phagy in these species.
    [Show full text]
  • Biodiversity Series Background Document for Basking Shark
    Background Document for Basking shark Cetorhinus maximus Biodiversity Series 2009 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This report has been prepared by the Association pour l'Etude et la Conservation des Sélaciens (APECS) and Ms Amelia Curd (France). Thanks are also due for contributions provided by Colin Speedie, Sarah Fowler, David Sims, Jean-Luc Solandt Photo acknowledgement: Cover page: Basking shark, wikipedia Contents Background Document
    [Show full text]
  • Body Length Estimation of Neogene Macrophagous Lamniform Sharks (Carcharodon and Otodus) Derived from Associated Fossil Dentitions
    Palaeontologia Electronica palaeo-electronica.org Body length estimation of Neogene macrophagous lamniform sharks (Carcharodon and Otodus) derived from associated fossil dentitions Victor J. Perez, Ronny M. Leder, and Teddy Badaut ABSTRACT The megatooth shark, Otodus megalodon, is widely accepted as the largest mac- rophagous shark that ever lived; and yet, despite over a century of research, its size is still debated. The great white shark, Carcharodon carcharias, is regarded as the best living ecological analog to the extinct megatooth shark and has been the basis for all body length estimates to date. The most widely accepted and applied method for esti- mating body size of O. megalodon was based upon a linear relationship between tooth crown height and total body length in C. carcharias. However, when applying this method to an associated dentition of O. megalodon (UF-VP-311000), the estimates for this single individual ranged from 11.4 to 41.1 m. These widely variable estimates showed a distinct pattern, in which anterior teeth resulted in lower estimates than pos- terior teeth. Consequently, previous paleoecological analyses based on body size esti- mates of O. megalodon may be subject to misinterpretation. Herein, we describe a novel method based on the summed crown width of associated fossil dentitions, which mitigates the variability associated with different tooth positions. The method assumes direct proportionality between the ratio of summed crown width to body length in eco- logically and taxonomically related fossil and modern species. Total body lengths were estimated from 11 individuals, representing five lamniform species: Otodus megal- odon, Otodus chubutensis, Carcharodon carcharias, Carcharodon hubbelli, and Carcharodon hastalis.
    [Show full text]
  • A Review of the Biology, Ecology and Conservation Status of the Plankton-Feeding Basking Shark Cetorhinus Maximus
    Author's personal copy CHAPTER THREE Sieving a Living: A Review of the Biology, Ecology and Conservation Status of the Plankton-Feeding Basking Shark Cetorhinus Maximus David W. Sim, † s* Contents 1. Introduction 172 2. Description of the Species 174 2.1. Taxonomy 174 2.2. Morphology and structure 175 3. Distribution and Habitat 179 3.1. Total area 179 3.2. Habitat associations 179 3.3. Differential distribution 182 3.4. Climate-driven changes 183 4. Bionomics and Life History 183 4.1. Reproduction 183 4.2. Growth and maturity 184 4.3. Food and feeding 186 4.4. Behaviour 189 5. Population 203 5.1. Structure 203 5.2. Abundance and density 207 5.3. Recruitment 208 5.4. Mortality 209 6. Exploitation 209 6.1. Fishing gear and boats 209 6.2. Fishing areas and seasons 209 6.3. Fishing results 209 6.4. Decline in numbers 210 * Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom { Marine Biology and Ecology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom Advances in Marine Biology, Volume 54 # 2008 Elsevier Ltd. ISSN 0065-2881, DOI: 10.1016/S0065-2881(08)00003-5 All rights reserved. 171 Author's personal copy 172 David W. Sims 7. Management and Protection 211 7.1. Management 211 7.2. Protection 212 8. Future Directions 213 Acknowledgements 214 References 214 Abstract The basking shark Cetorhinus maximus is the world’s second largest fish reach- ing lengths up to 12 m and weighing up to 4 tonnes.
    [Show full text]
  • Shortfin Mako (Isurus Oxyrinchus) Is One of Two Species in the Genus Isurus
    COSEWIC Assessment and Status Report on the Shortfin Mako Isurus oxyrinchus Atlantic population in Canada THREATENED 2006 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2006. COSEWIC assessment and status report on the shortfin mako Isurus oxyrinchus (Atlantic population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 24 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Scott Wallace, Steven Campana, Gordon (Sandy) McFarlane and Jacquelynne King for writing the status report on the shortfin mako (Atlantic population) Isurus oxyrinchus in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Mart Gross and Howard Powles (co-chairs, Marine Fishes Specialist Subcommittee) and Robin Waples (member, Marine Fishes Specialist Subcommittee). For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur le requin - taupe bleu (Isurus oxyrinchus) population de l’Atlantique, au Canada. Cover illustration: Shortfin
    [Show full text]
  • Mako Shark.Pdf
    Memorandum of Understanding on the Conservation of Migratory Sharks MAKO SHARK TAUPE BLEU & TAUPE PETIT MARRAJO DIENTUSO & MARRAJO CARITE Fact Sheet Shortfin Mako Longfin Mako Isurus oxyrinchus Isurus paucus MAKO SHARK Class: Chondrichthyes Order: Lamniformes Family: Lamnidae Species: Isurus oxyrinchus - Shortfin Mako Isurus paucus - Longfin Mako Illustration: © Marc Dando Sharks MOU Species Fact Sheet Sharks MOU Species Fact Sheet MAKO SHARK MAKO SHARK © Shark MOU Advisory Committee This fact sheet was produced by the Advisory Committee of the Memorandum of Understanding on the Conservation of Migratory Sharks (Sharks MOU). For further information contact: John Carlson, Ph.D. Research Fish Biologist, NOAA Fisheries Service-Southeast Fisheries Science Center Panama City, [email protected] 1 Please email John Carlson for enquiries. Sharks MOU Species Fact Sheet MAKO SHARK 1. Biology The Shortfin Mako Shark (Isurus oxyrinchus) and the Longfin Mako Shark (Isurus paucus) occupy epipelagic habitats in tropical and warm-temperate seas. As a long-lived species (at least 30 years) with low fecundity (11 young every 3 years) and late age at maturity (18 - 19 years for females), population recovery times for Shortfin Mako are slow (Smith et al 2008). While there is little information on the biology of Longfin Mako, it is assumed Longfin Mako would have similar life history traits. 2. Distribution Shortfin Mako prefer temperate to tropical waters with temperatures between 17-22°C. They occur from the surface to 500 m depths and typically in oceanic waters but have occasionally been observed in shelf seas (Vaudo et al. 2016). Records on Longfin Mako Sharks are sporadic and their complete geographic range is not well known (Reardon et al.
    [Show full text]