FAU Institutional Repository This

Total Page:16

File Type:pdf, Size:1020Kb

FAU Institutional Repository This FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1983 American Society of Ichthyologists and Herpetologists. This manuscript is an author version with the final publication available and may be cited as: Gilmore, R. G. (1983). Observations on the embryos of the longfin mako, Isurus paucus, and the bigeye thresher, Alopias superciliosus. Copeia 2, 375-382. /<""\ \ Copria, 1983(2), pp. 375-382 Observations on the Embryos of the Longfin Mako, Jsurus paucus, and the Bigeye Thresher, Alopias superciliosus R. GRANT GILMORE Four embryos of Alopias superciliosus and one of lsurus paucus were dissected and examined along with the reproductive organs of adults captured in the Florida Current off the east-central coast of Florida between latitude 26°30'N and 28°30'N. The embryos were found to contain yolk, demonstrating prenatal nutrition through intrauterine oophagy. Various proportions of embryo anatomy considered diagnostic for these species resemble those of adults. The general gonad morphology and presence of egg capsules containing multiple ova resem­ ble the described development stages of other lamnids, alopiids and Odontaspis taurus (Odontaspidae). This is the first documented observation of oophagy in these species. OPHAGOUS embryos have been record­ As these species are rarely caught and examined O ed in three elasmobranch families, Odon­ by biologists, there are no documented obser­ taspidae (Odontaspis taurus, Springer, 1948; Bass vations of oophagy in Alopias superciliosus and eta!., 1975; Pseudocarcharias kamoharai, Fujita, lsurus paucus. For this reason I present the fol­ 1 981 ), Lamnidae (Lamna nasus, Lohberger, lowing embryonic description of Isurus paucus 191 0; Shann, 1911, 1923; Bigelow and Schroe­ and Alopias superciliosus with evidence of oo­ der, 1948) and Alopiidae (Alopias vulpinus, Gub­ phagy in these species. anov, 1972;A. pelagicus, Otake and Mizue, 1981). Although there has been much conjecture on METHODS the possibility of, and the nature of, oophagy in Isurus spp., few definitive observations have All specimens were collected on drift-set been published. Bass et a!. (1975) stated that swordfish longlines floating with the Florida the observations of Vaillant (1889) on the great­ Current in the upper 60-100 m between lati­ ly distended embryonic cardiac stomach con­ tude 26.30'N and 28•30'N and longitude taining yolk in Isurus oxyrinchus " . .. almost cer­ 79•30'W and 80•00'W. All captures were made tainly refers to a case of oviphagy rather than between 1400 hr and 1700 hr on a variety of to one gigantic ovum, and we can class Isurus tuna hooks baited with mackerel, Scomber scom­ with Lamna, Alopias and Odontaspis as far as em­ ber, or squid. A general description of longline bryonic nutrition is concerned." Guitart Man­ capture methodology is given by Stillwell and day (1975) illustrated a 650 mm TL I. oxyrinchus Casey (1976). embryo which has a distended abdomen greatly Both fresh and preserved reproductive or­ resembling the abdominal contour in oopha­ gans and embryos were examined and photo­ gous embryos of Lamna nasus (Shann, 1923) and graphed during and after dissection from the Odontaspis taurus (Gilmore eta!., in press) which adult. Numerical estimates of ovarian ova were have ingested large amounts of maternal yolk. made by weighing the ovary and a subsample Except for Nakamura's (1935) excellent illus­ in which the ova were counted. The weight of tration of a 43.5 em SL (96.5 em TL) embryo the known number of ova in the subsample was of the bigeye thresher, Alopias superciliosus then considered directly proportional to the (Lowe), descriptions of embryonic development number in the total weighed ovary. in this species are limited to the brief accounts All measurements of adults and embryos were of Springer (1943), Cadenat (1956), Bigelow and made while the shark was lying horizontally on Schroeder (1948) and Gruber and Compagno a flat surface. Terminology and measurements (1982). follow Basset al. (1975: Fig. 3). Standard length Present embryonic descriptions of the longfin (SL) was taken from the tip of the snout to the mako, Isurus paucus Cui tart Manday are limited center of the precaudal pit. All weights were to the single account of Guitart Manday ( 197 5). taken on a spring scale calibrated in pounds and © 1983 by the American Society of Ichthyologists and Herpetologists 376 COPEIA, I 983, NO. 2 Fig. I. A) 97 em SL lsurus paucus embryo. Note long pectoral fins, folded 1st dorsal and damaged upper caudal lobe. B) Highly folded and vascularized inner uterine membrane at opening lO isthmus. The snout of the embryo was wedged into this portion of the uterus. C) Ventral surface of embryo showing lack of ventral pigmentation which is diagnostic in the adult. D) Opened abdominal cavity showing greatly enlarged liver extending from the transverse septum and pericardia! cavity (right) lO the cloaca (left). Note light color (actually orange) along the central portion of liver lobes. RL =right lobe; M = median lobe; LL = left lobe. converted to kg or on a scale balance calibrated Six of these were females, one of which con­ to 0.1 g. tained a single female embryo 77.0 em SL (97 Specimens were fixed in 10% formalin for a em TL; 5.2 kg) (Fig. 1). The pregnant female period of one to six months before being washed (303.5 em SL) was fortuitously caught (entan­ and preserved permanently in 70% ethanol. Ek­ gled) on a 16 km swordfish longline on 3 Dec. tachrome and Kodachrome transparencies were 1980. The embryo was found in the right uterus made of both fresh and preserved specimens. facing anteriorly with its tail protruding from the cloaca. The greatly expanded and vascular­ fSURUS PAUCUS ized left uterus indicated that a second embryo had been present but was apparently aborted The longfin mako, lsurus paucus, is a circum­ shortly before or during the process of capture. tropical pelagic species recorded from the In­ The head of the embryo was nuzzled into the dian, Pacific and western north Atlantic oceans highly convoluted and vascularized anterior (Guitart Manday, 1966; Garrick, 1967). In the portion of the uterus (where the isthmus ends, western Atlantic the species is most common off Fig. I B). Examination of the mouth, throat and the coast of Cuba, where it was first described, gut contents of the embryo revealed .08 g of and in the straits of Florida (Dodrill and Gil­ yolk on the gill arches and 28 g of yolk in the more, 1979) but may range as far north as Cape cardiac stomach. This was a relatively small Hatteras (Casey et al., 1980). quantity of yolk compared to descriptions of the From 1975 to 1980 13 Isurus paucus speci­ distended yolk-filled cardiac stomachs in Lamna mens (167.5 to 303.5 em SL) were examined. nasus and I. oxyrinchus. The right and left lobes GILMORE-SHARK EMBRYOS 377 of the liver extended back to the cloaca and TABLE I. COMPARISON OF BOD\' PROPORTIONS OF both were 300 mm in length (39% of SL). The THE EMBRYO AND PARENT IN Jsuru s paucus. central portion of the liver lobes contain ed a bright orange pigment but were otherwise the F.mbr)'O 9 Part'nf 9 typical dark brown color obse1:ved in adult spec­ Total length 97.0 em 372.8 em imens. The small amount of yolk in the digestive (both had damaged tract and the enlarged liver indicates that al­ upper caudal lobes) though nutritive material was not abundant in Fork length 86.2 336.6 the digestive tract at the time of examination, Standard length 77.0 303.5 it apparently had been but was presently stored Top of snout to: %. SL % SL in liver tissue. Ant. margin of eye 7 6 It was evident from small bits of unencapsu­ Front of mouth 6 jaw removed lated yolk present in the oviduct that maternal Nasal aperture 5 5 yolk supplies were declining and not playing a 1st gill opening 21 19 prominent role in embryonic nutrition during P, origin 26 24 this stage in pregnancy. No eggs, yolk or en­ D, origin 37 38 capsulated ova were present in the uterus. The P2 origin 54 52 ovary was not noticeably enlarged (300 X I50 Height of l st gill opening 8 8 mm, 1.6 kg) and contained approximately 5,200 Height of 5th gill opening 7 8 ova ranging in size from 3 to 5 mm. Most ova Horizontal eye diameter 2 were less than 4 mm in diameter. These obser­ Mouth width 8 jaw removed vations indicate that ovulation had ceased. P, base length 6 7 If the phases of gestation in/. paucus are anal­ P, free inner margin 5 5 ogous to those in 0. taurus (Gilmore et al., in P, anterior margin 24 23 press) then the 97 em embryo was in the ter­ D, base length 9 9 minal phase of gestation just prior to parturi­ D, free inner margin 3 2 tion. An enlarged ovary (to 8.5 kg, containing D, anterior margin 12 14 13,000 to 24,000 ova, many from 6 to I 0 mm D, height 7 II in diameter) in 0. taurus, characterizes the phase Upper caudal pit to tip in pregnancy when embryos are actively feeding of upper caudal lobe 21 22 on maternal yolk and yolk capsules. However, Lower caudal pit to tip prior to parturition, the maternal ovary and of lower caudal lobe 13 16 greatly distended yolk-filled stomach of the em­ Weight 5.2 kg 351 kg bryo decline in size (Gilmore et al., in press).
Recommended publications
  • Diurnal Patterns in Gulf of Mexico Epipelagic Predator Interactions with Pelagic Longline Gear: Implications for Target Species Catch Rates and Bycatch Mitigation
    Bull Mar Sci. 93(2):573–589. 2017 research paper https://doi.org/10.5343/bms.2016.1008 Diurnal patterns in Gulf of Mexico epipelagic predator interactions with pelagic longline gear: implications for target species catch rates and bycatch mitigation 1 National Marine Fisheries Eric S Orbesen 1 * Service, Southeast Fisheries 1 Science Center, 75 Virginia Beach Derke Snodgrass 2 Drive, Miami, Florida 33149. Geoffrey S Shideler 1 2 University of Miami, Rosenstiel Craig A Brown School of Marine & Atmospheric John F Walter 1 Science, 4600 Rickenbacker Causeway, Miami, Florida 33149. * Corresponding author email: <[email protected]>. ABSTRACT.—Bycatch in pelagic longline fisheries is of substantial international concern, and the mitigation of bycatch in the Gulf of Mexico has been considered as an option to help restore lost biomass following the 2010 Deepwater Horizon oil spill. The most effective bycatch mitigation measures operate upon a differential response between target and bycatch species, ideally maintaining target catch while minimizing bycatch. We investigated whether bycatch vs target catch rates varied between day and night sets for the United States pelagic longline fishery in the Gulf of Mexico by comparing the influence of diel time period and moon illumination on catch rates of 18 commonly caught species/species groups. A generalized linear model approach was used to account for operational and environmental covariates, including: year, season, water temperature, hook type, bait, and maximum hook depth. Time of day or moon
    [Show full text]
  • Can Threshold Foraging Responses of Basking Sharks Be Used to Estimate Their Metabolic Rate?
    MARINE ECOLOGY PROGRESS SERIES Vol. 200: 289-296,2000 Published July 14 Mar Ecol Prog Ser ~ NOTE Can threshold foraging responses of basking sharks be used to estimate their metabolic rate? David W. Sims* Department of Zoology, University of Aberdeen. Tillydrone Avenue. Aberdeen AB24 2TZ. United Kingdom ABSTRACT: Empirical and theoretical determinations of There are 3 species of filter-feeding shark, the whale minimum threshold prey densities for filter-feeding basking shark ~hi~~~d~~typus of warm-temperate and tropical sharks Cetorhinus maximus were used to test the idea that threshold foraging behaviour could provide a means for esti- seas worldwide, the basking shark Cetorhinus max- mating oxygen consumption (a proxy for metabolic rate). The im~~that inhabits warm-temperate to boreal waters threshold feeding levelrepres&nts the prey density at which circumglobally, and the megamouth shark Mega- there will be no net energy gain (energy intake equals expen- chasms pelagjos occurs in the Pacific and At- diture). Basking sharks were observed to cease feeding at lantic, primarily in deep water (Compagno 1984, Yano their theoretical threshold; thus, the assumption underpin- ning the concept presented here was that over the narrow et They are the largest marine verte- range of zooplankton prey densities that induce 'switching' brates attaining body lengths of up to 14, 10 and 6 m re- between feeding and non-feeding in basking sharks, the spectively. Comparatively little is known about the bi- energetic value of the minimum threshold prey density is ology of planktivorous sharks despite the fact that they equivalent to the shark's instantaneous level of energy expen- diture.
    [Show full text]
  • Lamna Nasus) Inferred from a Data Mining in the Spanish Longline Fishery Targeting Swordfish (Xiphias Gladius) in the Atlantic for the 1987-2017 Period
    SCRS/2020/073 Collect. Vol. Sci. Pap. ICCAT, 77(6): 89-117 (2020) SIZE AND AREA DISTRIBUTION OF PORBEAGLE (LAMNA NASUS) INFERRED FROM A DATA MINING IN THE SPANISH LONGLINE FISHERY TARGETING SWORDFISH (XIPHIAS GLADIUS) IN THE ATLANTIC FOR THE 1987-2017 PERIOD J. Mejuto1, A. Ramos-Cartelle1, B. García-Cortés1 and J. Fernández-Costa1 SUMMARY A total of 5,136 size observations of porbeagle were recovered for the period 1987-2017. The GLM results explained very moderately the variability of the sizes considering three main factors, suggesting minor but significant differences in some cases especially for the year factor and non-significant differences in other factors depending on the analysis. The greatest differences in the standardized mean length between some zones were caused by some large fish of unidentified sex. The standardized mean length data for the northern zones showed stability throughout the time series, very stable range of mean values and very few differences between sexes. The size distribution for northern areas indicated an FL-overall mean of 158 cm. The size showed a normal distribution confirming that a small fraction of individuals of this stock/s is available in the oceanic areas where the North Atlantic fleet is regularly fishing and the fishes are not fully recruited to those areas and / or this fishing gear up to 160 cm. The data suggests that some individuals could sporadically reach some intertropical areas of the eastern Atlantic. RÉSUMÉ Un total de 5.136 observations de taille de requins-taupes communs ont été récupérées pour la période 1987-2017. Les résultats du GLM expliquent très modérément la variabilité des tailles en tenant compte de trois facteurs principaux, ce qui suggère des différences mineures mais significatives dans certains cas, notamment pour le facteur année et des différences non significatives pour d'autres facteurs selon le type d’analyse.
    [Show full text]
  • Electrosensory Pore Distribution and Feeding in the Basking Shark Cetorhinus Maximus (Lamniformes: Cetorhinidae)
    Vol. 12: 33–36, 2011 AQUATIC BIOLOGY Published online March 3 doi: 10.3354/ab00328 Aquat Biol NOTE Electrosensory pore distribution and feeding in the basking shark Cetorhinus maximus (Lamniformes: Cetorhinidae) Ryan M. Kempster*, Shaun P. Collin The UWA Oceans Institute and the School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia ABSTRACT: The basking shark Cetorhinus maximus is the second largest fish in the world, attaining lengths of up to 10 m. Very little is known of its sensory biology, particularly in relation to its feeding behaviour. We describe the abundance and distribution of ampullary pores over the head and pro- pose that both the spacing and orientation of electrosensory pores enables C. maximus to use passive electroreception to track the diel vertical migrations of zooplankton that enable the shark to meet the energetic costs of ram filter feeding. KEY WORDS: Ampullae of Lorenzini · Electroreception · Filter feeding · Basking shark Resale or republication not permitted without written consent of the publisher INTRODUCTION shark Rhincodon typus and the megamouth shark Megachasma pelagios, which can attain lengths of up Electroreception is an ancient sensory modality that to 14 and 6 m, respectively (Compagno 1984). These 3 has evolved independently across the animal kingdom filter-feeding sharks are among the largest living in multiple groups (Scheich et al. 1986, Collin & White- marine vertebrates (Compagno 1984) and yet they are head 2004). Repeated independent evolution of elec- all able to meet their energetic costs through the con- troreception emphasises the importance of this sense sumption of tiny zooplankton.
    [Show full text]
  • Order LAMNIFORMES ODONTASPIDIDAE Sand Tiger Sharks Iagnostic Characters: Large Sharks
    click for previous page Lamniformes: Odontaspididae 419 Order LAMNIFORMES ODONTASPIDIDAE Sand tiger sharks iagnostic characters: Large sharks. Head with 5 medium-sized gill slits, all in front of pectoral-fin bases, Dtheir upper ends not extending onto dorsal surface of head; eyes small or moderately large, with- out nictitating eyelids; no nasal barbels or nasoral grooves; snout conical or moderately depressed, not blade-like;mouth very long and angular, extending well behind eyes when jaws are not protruded;lower labial furrows present at mouth corners; anterior teeth enlarged, with long, narrow, sharp-edged but unserrated cusps and small basal cusplets (absent in young of at least 1 species), the upper anteriors separated from the laterals by a gap and tiny intermediate teeth; gill arches without rakers; spiracles present but very small. Two moderately large high dorsal fins, the first dorsal fin originating well in advance of the pelvic fins, the second dorsal fin as large as or somewhat smaller than the first dorsal fin;anal fin as large as second dorsal fin or slightly smaller; caudal fin short, asymmetrical, with a strong subterminal notch and a short but well marked ventral lobe. Caudal peduncle not depressed, without keels; a deep upper precaudal pit present but no lower pit. Intestinal valve of ring type, with turns closely packed like a stack of washers. Colour: grey or grey-brown to blackish above, blackish to light grey or white, with round or oval dark spots and blotches vari- ably present on 2 species. high dorsal fins upper precaudal eyes without pit present nictitating eyelids intestinal valve of ring type Habitat, biology, and fisheries: Wide-ranging, tropical to cool-temperate sharks, found inshore and down to moderate depths on the edge of the continental shelves and around some oceanic islands, and in the open ocean.
    [Show full text]
  • Gill Morphometrics of the Thresher Sharks (Genus Alopias): Correlation of Gill Dimensions with Aerobic Demand and Environmental Oxygen
    JOURNAL OF MORPHOLOGY :1–12 (2015) Gill Morphometrics of the Thresher Sharks (Genus Alopias): Correlation of Gill Dimensions with Aerobic Demand and Environmental Oxygen Thomas P. Wootton,1 Chugey A. Sepulveda,2 and Nicholas C. Wegner1,3* 1Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093 2Pfleger Institute of Environmental Research, Oceanside, CA 92054 3Fisheries Resource Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037 ABSTRACT Gill morphometrics of the three thresher related species that inhabit similar environments shark species (genus Alopias) were determined to or have comparable metabolic requirements. As examine how metabolism and habitat correlate with such, in reviews of gill morphology (e.g., Gray, respiratory specialization for increased gas exchange. 1954; Hughes, 1984a; Wegner, 2011), fishes are Thresher sharks have large gill surface areas, short often categorized into morphological ecotypes water–blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament based on the respiratory dimensions of the gills, lengths and large lamellae, a morphometric configura- namely gill surface area and the thickness of the tion documented for other active elasmobranchs (i.e., gill epithelium (the water–blood barrier distance), lamnid sharks, Lamnidae) that augments respiratory which both reflect a species’ capacity for oxygen surface area while
    [Show full text]
  • The Denticle Surface of Thresher Shark Tails: Three-Dimensional Structure and Comparison to Other Pelagic Species
    Received: 3 April 2020 Revised: 14 May 2020 Accepted: 21 May 2020 DOI: 10.1002/jmor.21222 RESEARCH ARTICLE The denticle surface of thresher shark tails: Three-dimensional structure and comparison to other pelagic species Meagan Popp1 | Connor F. White1 | Diego Bernal2 | Dylan K. Wainwright1 | George V. Lauder1 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Abstract Massachusetts Shark skin denticles (scales) are diverse in morphology both among species and 2 Department of Biology, University of across the body of single individuals, although the function of this diversity is poorly Massachusetts Dartmouth, Dartmouth, Massachusetts understood. The extremely elongate and highly flexible tail of thresher sharks pro- vides an opportunity to characterize gradients in denticle surface characteristics Correspondence George V. Lauder, Museum of Comparative along the length of the tail and assess correlations between denticle morphology and Zoology, 26 Oxford Street, Cambridge, MA tail kinematics. We measured denticle morphology on the caudal fin of three mature 02138. Email: [email protected] and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species. Using surface Funding information National Oceanic and Atmospheric profilometry, we quantified 3D-denticle patterning and texture along the tail of Administration, Grant/Award Number: threshers (27 regions in adults, and 16 regions in embryos). We report that tails of NA16NMF4270231; National Science Foundation, Grant/Award Numbers: IOS- thresher embryos have a membrane that covers the denticles and reduces surface 1354593, GRF DGE-1144152; Office of Naval roughness. In mature thresher tails, surfaces have an average roughness of 5.6 μm Research, Grant/Award Numbers: N00014-09-1-0352, N000141410533 which is smoother than some other pelagic shark species, but similar in roughness to blacktip, porbeagle, and bonnethead shark tails.
    [Show full text]
  • Population Structure and Biology of Shortfin Mako, Isurus Oxyrinchus, in the South-West Indian Ocean
    CSIRO PUBLISHING Marine and Freshwater Research http://dx.doi.org/10.1071/MF13341 Population structure and biology of shortfin mako, Isurus oxyrinchus, in the south-west Indian Ocean J. C. GroeneveldA,E, G. Cliff B, S. F. J. DudleyC, A. J. FoulisA, J. SantosD and S. P. WintnerB AOceanographic Research Institute, PO Box 10712, Marine Parade 4056, Durban, South Africa. BKwaZulu-Natal Sharks Board, Private Bag 2, Umhlanga Rocks 4320, South Africa. CFisheries Management, Department of Agriculture, Forestry and Fisheries, Private Bag X2, Rogge Bay 8012, South Africa. DNorwegian College of Fishery Science, University of Tromsø, NO-9037, Tromsø, Norway. ECorresponding author. Email: [email protected] Abstract. The population structure, reproductive biology, age and growth, and diet of shortfin makos caught by pelagic longliners (2005–10) and bather protection nets (1978–2010) in the south-west Indian Ocean were investigated. The mean fork length (FL) of makos measured by observers on longliners targeting tuna, swordfish and sharks was similar, and decreased from east to west, with the smallest individuals occurring near the Agulhas Bank edge, June to November. Nearly all makos caught by longliners were immature, with equal sex ratio. Makos caught by bather protection nets were significantly larger, males were more frequent, and 93% of males and 55% of females were mature. Age was assessed from band counts of sectioned vertebrae, and a von Bertalanffy growth model fitted to sex-pooled length-at-age data predicted a À1 birth size (L0) of 90 cm, maximum FL (LN) of 285 cm and growth coefficient (k) of 0.113 y .
    [Show full text]
  • Porbeagle Shark Lamna Nasus
    Porbeagle Shark Lamna nasus Lateral View (♀) Ventral View (♀) COMMON NAMES APPEARANCE Porbeagle Shark, Atlantic Mackerel Shark, Blue Dog, Bottle-nosed • Heavily built but streamlined mackerel shark. Shark, Beaumaris Shark, Requin-Taupe Commun (Fr), Marrajo • Moderately long conical snout with a relatively large eyes. Sardinero (Es), Tiburón Sardinero (Es), Tintorera (Es). • Large first dorsal fin with a conspicuous white free rear tip. SYNONYMS • Second dorsal fin and anal fin equal-sized and set together. Squalus glaucus (Gunnerus, 1758), Squalus cornubicus (Gmelin, 1789), • Lunate caudal fin with strong keel and small secondary keel. Squalus pennanti (Walbaum, 1792), Lamna pennanti (Desvaux, 1851), Squalus monensis (Shaw, 1804), Squalus cornubiensis (Pennant, 1812), • Dorsally dark blue to grey with no patterning. Squalus selanonus (Walker, 1818), Selanonius walkeri (Fleming, 1828), • Ventrally white. Lamna punctata (Storer, 1839), Oxyrhina daekyi (Gill, 1862), Lamna • Maximum length of 365cm, though rarely to this size. NE MED ATL philippi (Perez Canto, 1886), Lamna whitleyi (Phillipps, 1935). DISTRIBUTION The Porbeagle Shark is a large, streamlined mackerel shark with a In the northern conical snout and powerful body. The first dorsal fin is large and hemisphere, the originates above or slightly behind the pectoral fins. It has a free rear Porbeagle Shark tip which is white. The second dorsal fin is tiny and is set above the occurs only in the anal fin, to which it is comparable in size. The caudal fin is strong and North Atlantic and lunate with a small terminal notch. The caudal keel is strong and, Mediterranean, uniquely for the northeast Atlantic, a smaller secondary caudal keel is whilst in the present.
    [Show full text]
  • Thresher Sharks (Alopias Spp.) in Subareas 10 and 12, Divisions 7.C–K and 8.D–E, and in Subdivisions 5.B.1, 9.B.1, and 14.B.1 (Northeast Atlantic)
    ICES Advice on fishing opportunities, catch, and effort Oceanic Northeast Atlantic ecoregion Published 4 October 2019 Thresher sharks (Alopias spp.) in subareas 10 and 12, divisions 7.c–k and 8.d–e, and in subdivisions 5.b.1, 9.b.1, and 14.b.1 (Northeast Atlantic) ICES advice on fishing opportunities ICES advises that when the precautionary approach is applied, there should be zero catch in each of the years 2020–2023. Stock development over time No information is available to inform on the current stock status of either common thresher shark (Alopias vulpinus) or bigeye thresher shark (A. superciliosus). Landings data for the entire stock area are uncertain for both species. Stock and exploitation status ICES cannot assess the stock and exploitation status relative to maximum sustainable yield (MSY) and precautionary approach (PA) reference points, because the reference points are undefined. Thresher sharks (Alopias spp.) in the Northeast Atlantic. State of the stocks and fishery relative to reference points. Table 1 Catch scenarios The ICES framework for category 6 stocks (ICES, 2012) was applied. For stocks without information on abundance or exploitation, ICES considers that a precautionary reduction of catches should be implemented unless there is ancillary information clearly indicating that the current level of exploitation is appropriate for the stock. Discarding is known to take place, but ICES cannot quantify the corresponding catch. Discard survival, which may occur, has also not been fully estimated. Table 2 Thresher sharks (Alopias spp.) in the Northeast Atlantic. Basis for the catch scenario. Recent advised catch 0 Discard rate Unknown Precautionary buffer Not applied - Catch advice 0 % Advice change * 0% * Advice value for 2020–2023 relative to the advice for 2016–2019 issued in 2015.
    [Show full text]
  • Ore Bin / Oregon Geology Magazine / Journal
    State of Oregon The ORE BIN· Department of Geology Volume 34,no. 10 and Mineral Industries 1069 State Office BI dg. October 1972 Portland Oregon 97201 FOSSil SHARKS IN OREGON Bruce J. Welton* Approximately 21 species of sharks, skates, and rays are either indigenous to or occasionally visit the Oregon coast. The Blue Shark Prionace glauca, Soup-fin Shark Galeorhinus zyopterus, and the Dog-fish Shark Squalus acanthias commonly inhabit our coastal waters. These 21 species are represented by 16 genera, of which 10 genera are known from the fossi I record in Oregon. The most common genus encountered is the Dog-fish Shark Squalus. The sharks, skates, and rays, (all members of the Elasmobranchii) have a fossil record extending back into the Devonian period, but many major groups became extinct before or during the Mesozoic. A rapid expansion in the number of new forms before the close of the Mesozoic gave rise to practically all the Holocene families living today. Paleozoic shark remains are not known from Oregon, but teeth of the Cretaceous genus Scapanorhyn­ chus have been collected from the Hudspeth Formation near Mitchell, Oregon. Recent work has shown that elasmobranch teeth occur in abundance west of the Cascades in marine Tertiary strata ranging in age from late Eocene to middle Miocene (Figures 1 and 2). All members of the EIasmobranchii possess a cartilaginous endoskeleton which deteriorates rapidly upon death and is only rarely preserved in the fossil record. Only under exceptional conditions of preservation, usually in a highly reducing environment, will cranial or postcranial elements be fossilized.
    [Show full text]
  • Coelho Phd Lantern S
    UNIVERSIDADEdo ALGARVE FaculdadedeCiênciasdoMaredo Ambiente Biology,populationdynamics,managementandconservation ofdeepwaterlanternsharks,Etmopterusspinax and Etmopteruspusillus (Chondrichthyes:Etmopteridae)insouthernPortugal(northeastAtlantic). (DoutoramentoemCiênciaseTecnologiasdasPescas,especialidadedeBiologiaPesqueira) (ThesisforthedegreeinDoctorofPhilosophyinFisheriesSciencesandTechnologies,specialtyinFisheriesBiology) RUIPEDROANDRADECOELHO Faro (2007) UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS DO MAR E DO AMBIENTE Biology, population dynamics, management and conservation of deep water lantern sharks, Etmopterus spinax and Etmopterus pusillus (Chondrichthyes: Etmopteridae) in southern Portugal (northeast Atlantic). (Doutoramento em Ciências e Tecnologias das Pescas, especialidade de Biologia Pesqueira) (Thesis for the degree in Doctor of Philosophy in Fisheries Sciences and Technologies, specialty in Fisheries Biology) RUI PEDRO ANDRADE COELHO Orientador / Supervisor: Prof. Doutor Karim Erzini Júri / Jury: - Prof. Doutor José Pedro Andrade, Professor Catedrático da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Karim Erzini, Professor Associado com Agregação da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Leonel Paulo Sul de Serrano Gordo, Professor Auxiliar com Agregação da Faculdade de Ciências, Universidade de Lisboa; - Prof. Doutor Manuel Seixas Afonso Dias, Professor Auxiliar da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve;
    [Show full text]