Grinding Machines

Total Page:16

File Type:pdf, Size:1020Kb

Grinding Machines GRINDING MACHINES www.fermatmachinetool.com CYLINDRICAL GRINDING MACHINES FERMAT FAST FACTS CONTENT FERMAT MACHINE TOOL LTD CYLINDRICAL GRINDING MACHINES 650 Number of employees TOP SIEMENS Seller COMPANY INFORMATION .................................... 4 About the company FERMAT CYLINDRICAL GRINDING MACHINES ...................... 8 BHC / BHC HD CYLINDRICAL GRINDING MACHINES ...................... 12 BHCR / BHCR HD mill. NEW MODELS € 1901 CYLINDRICAL GRINDING MACHINES ...................... 16 78 Oldest member of FERMAT Group BHM / BHMR Annual sales in 2016 BASIC DESIGN ELEMENTS OF THE MACHINE .................. 23 Beds and Tables, Grinding Wheel Head, Work Head, Tailstock, Ball screws, Other Components, 8 Electric Equipment, Control Systems and Drives Branches in Czech Republic 100+ ACCESSORIES AND POSSIBLE OPTIONS....................... 28 Annual production/sold machines COMPONENTS ............................................... 34 ...................... CYLINDRICAL GRINDING MACHINES 36 BUC E BESTSELLERS CYLINDRICAL GRINDING MACHINES ...................... 38 5 BUB E Football playgrounds would 1 fit in floor space OTHER PRODUCTS ........................................... 40 of FERMAT Production facilities Table Type Horizontal Boring Mills, Micron (1 µm) has the most Floor Type Horizontal Boring Mills accurate production machine from our machining shop REFERENCES ................................................ 44 - - 2 3 - - ABOUT THE COMPANY ABOUT THE COMPANY FERMAT MACHINE TOOL LTD FERMAT MACHINE TOOL LTD Prague The FERMAT Group is a traditional Czech care. As a result, the FERMAT Group be- Manufacturing, servicing, upgrading lopment, design and construction with- manufacturer of machine tools. The prod- longs to the top machine tool manufactur- or complete overhauling of grinding in the strong FERMAT Group led to ex- uct portfolio consists primarily of grinding ers around the globe. machines are the key activities of the traordinary quality of our modern CNC machines as well as horizontal boring and FERMAT Machine Tool Ltd. In 2006, grinding machines. Some of the key Brno After a successful growth in Europe, milling machines. FERMAT is led by its dynamically growing operations con- parts for our grinders are sourced with- FERMAT continues to increase its global owners, which allows us to be a stable and cerning grinders were united under in our Group, which implies reliable footprint. The FERMAT operations current- long-term partner for our clients. a common roof of FERMAT Machine Tool planning and shorter manufacturing ly reach from USA over numerous locations Ltd., a company based in the heart of cycles. Components of grinders made The history of the oldest FERMAT Group and partners in Europe to growing markets Europe, in Prague. by FERMAT are produced by thoroughly member goes back to 1901. We are very in Asia. During the last major crisis 2008 selected top companies in their respec- proud of this tradition, which also creates a to 2009, FERMAT not only held its leading After the fall of the Iron Curtain, one of tive fields, for instance Siemens, ABB, or strong commitment to deliver the highest position, but even acquired several tradi- the leading European grinder manufac- Schneider Electric. quality of products as well as services in tional manufacturing companies, proving turers of the communist era, TOS Hosti- the future. Besides the numerous years of its long-term focus along with a strong vař, went out of business. FERMAT Ma- Today, FERMAT Machine Tool serves cus- Brno experience with machine tools, the success financial position. chine Tool offered unemployed workers tomers around the world: from USA and of FERMAT is based on principles such as jobs and thus, the vast majority of these Canada, over European countries such Today, our experienced engineers and comprehensive solutions according to experts joined FERMAT. Therefore, we as Germany, Switzerland, Holland, Rus- technicians produce over 100 machines an- customer’s needs, innovation, prompt are able to upgrade and overhaul grind- sia and Scandinavian markets, to India, nually. FERMAT also has broad experience reacting time and delivery, flexibility and ers from TOS Hostivař. Building on a China and Australia. Our production fa- with upgrading of grinders and horizontal continuous improvement of our products long-term and fruitful cooperation with cilities cover an area of 5300 m2. boring and milling machines. You can find and processes. Last but not least, we offer the company ZeVo Praha Ltd Co., FER- us at the leading international machinery Please, do not hesitate to visit our stand excellent customer support, both pre-sales MAT Machine Tool decided to acquire fairs around the world. at leading international fairs or contact (for example logistic and financial support this traditional company focused on us via phone, email, Facebook or Linke- services) as well as after-sales customer supply and upgrading of grinders since Liberec dIn. We look forward to know you better 1992. and find out, how we can help you and As a result, FERMAT Machine Tool gained possibly start a mutually beneficial long- exceptional know-how over the past term business relationship. decades. Together with in-house deve- Lipník FERMAT NUMBER OF EMPLOYEES: FERMAT PRODUCTION PLANTS CZECH REPUBLIC 680 2 640 FERMAT occupies 33 200 m (357 362 sq ft) As the FERMAT’s sales continue to grow, 600 of production and assembly halls. FERMAT was able to acquire several tra- 560 The most important centers are lo- ditional manufacturers. Thus, our pro- 520 cated in Prague and Brno (Prague duction facilities in Prague and Brno 480 2 2 440 5 300 m / 57 049 sq ft, Brno 4 800 m were expanded, adding for instance / 51 667 sq ft + 3 600 m2 / 38 750 sq ft Pressl in Pilsen and Strojtos in Lipnik to 400 Rokycany 360 + 3 700 m2 / 39 826 sq ft). the FERMAT global network. 320 280 240 200 PRAGUE BRNO 2h PRAGUE LIBEREC 1h 160 1h 1h 120 BRNO LIPNIK PRAGUE ROKYCANY 80 20 BRNO VIENNA 2h AIRPORT PRAGUE min 40 0 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 - - 4 5 - - INDUSTRIAL APPLICABILITY FOR MORE INFORMATION, SEE OUR WEBSITE - - 6 www.fermatmachinetool.com 7 - - BHC / BHC HD BHC IS A FULLY CNC CONTROLLED CYLINDRICAL GRINDING MACHINE DESIGNED FOR LONGITUDINAL AND PLUNGE-CUT GRINDING OF CYLINDRICAL AND CONICAL EXTERNAL SURFACES, OR WITH INTERNAL GRINDING ATTACHMENT FOR GRINDING OF CYLINDRICAL BHC / BHC HD AND CONICAL INTERNAL SURFACES. MACHINE DESIGN: Grinding of face surfaces can by performed Grinding machine series BHC can be used by the side of grinding wheel or its circum- particularly in single-part and series pro- 3 highly stable bed with reinforcement, 3 equipped with fully covering and automatic ferential surface with using work head duction for grinding of workpieces up controlled doors, 3 excellent friction characteristics of Teflon, swivel. to 4000 kg (optionally 5000 kg - HD). 3 telescopic covers, The machine is produced with high- 3 according to the CE standard, er accuracy to enable grinding of single 3 cooling with filtration and pneumatic system, diameters in the tolerance of IT 4 and high- 3 CNC control systems (SIEMENS, B&R), er. The standard version of the machine 3 robust and rigid duo table. 3 digital AC servomotors, is equipped with a Siemens 840D sl or The machines are additionally equipped and de- Siemens 828D sl control system. The stand- 3 controlled axis X (grinding wheelhead in-feed), signed according to specific needs of the customer ard machine meets CE standards and is Z (table feed), and taking into account the materials to be ground supplied with essential accessories and or the selected machining technology. See BHC video a guarantee of 1 year. 3 hand-wheels for axis X and Z setting, - - 8 9 - - BHC / BHC HD CYLINDRICAL GRINDING MACHINES TYPE PARAMETERS Units Design version Working range Swing diameter mm (in) 630 (24,8) / 850 (33,5) / 1000 (39,4) 2000 (78,7) / 3000 (118,1) / 4000 (157,5) Distance between centers mm (in) / 5000 (196,9) / 6000 (236,2) Max. weight of workpiece - between centers kg (lb) 4000 (8800) Max. weight of workpiece - between centers - heavy kg (lb) 5000 (11000) duty machine Max. weight of workpiece-with live spindle (incl. clamp) kg (lb) 300 (660) / HD: 400 (880) Grinding unit – Axis X Minimum programmable feed mm (in) 0,0005 (0,00002) Maximum speed m.min-1 (in/min) 10 (393,7) Table – Axis Z Minimum programmable table feed mm (in) 0,001 (0,00004) Maximum speed m.min-1 (in/min) 10 (393,7) Grinding Wheel head Grinding wheel dimensions (dia. x width x bore) mm (in) Ø 750 x 100 x Ø 305 (Ø 29,5 x 3,9 x Ø 12) Diameter of worn-out wheel mm (in) Ø 570 (Ø 22,4) Maximum grinding wheel width mm (in) 125 (4,92) Grinding wheel peripheral speed m/s 10 - 50 Wheel head swivel ° +30/–30 Wheel head motor power kW (hp) 18,5 (24,8) Work head Work head swivel ° 0 - 90 Work head swivel – heavy duty ° 0 Work head spindle taper bore - Morse 6 ISO 296-1991 Work head spindle nose - A 2-6 ISO 702-1-1992 Tailstock Tailstock barrel taper bore - Morse 6 ISO 296-1991 Tailstock barrel stroke mm (in) 70 (2,8) Cross motion of tailstock center mm (in) ±0,8 (0,031) – cylindrical correction Tailstock clamping force N 300-20000 Other specifications 8500 (335) / 10600 (417) / 13000 (512) Length of machine mm (in) / 15500 (610) / 18000 (709) Width of machine mm (in) 4400 (173) Height of machine mm (in) 2550 (100) 17000 (37400) / 20000 (44000) / 23700 (52140) Weight of machine kg (lb) / 26000 (57200) / 28000 (61600)
Recommended publications
  • Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions
    Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions MASAKAZU NABEKURA*1 MICHIAKI HASHITANI*1 YUKIHISA NISHIMURA*1 MASAKATSU FUJITA*1 YOSHIKOTO YANASE*1 MASANOBU MISAKI*1 It is a never-ending theme for motorcycle and automobile manufacturers, for whom the Machine Tool Division of Mitsubishi Heavy Industries, Ltd. (MHI) manufactures and delivers gear cutting machines, gear grinding machines and precision cutting tools, to strive for high precision, low cost transmission gears. This paper reports the recent trends in the automobile industry while describing how MHI has been dealing with their needs as a manufacturer of the machines and cutting tools for gear production. process before heat treatment. A gear shaping machine, 1. Gear production process however, processes workpieces such as stepped gears and Figure 1 shows a cut-away example of an automobile internal gears that a gear hobbing machine is unable to transmission. Figure 2 is a schematic of the conven- process. Since they employ a generating process by a tional, general production processes for transmission specific number of cutting edges, several tens of microns gears. The diagram does not show processes such as of tool marks remain on the gear flanks, which in turn machining keyways and oil holes and press-fitting bushes causes vibration and noise. To cope with this issue, a that are not directly relevant to gear processing. Nor- gear shaving process improves the gear flank roughness mally, a gear hobbing machine is responsible for the and finishes the gear tooth profile to a precision of mi- crons while anticipating how the heat treatment will strain the tooth profile and tooth trace.
    [Show full text]
  • Precision Guidance Needed for Metalworking Machinery That
    Precision guidance needed for metalworking machinery that automatically grinds 40,000 sinks every year https://www.hepcomotion.com/case-studies/precision-guidance-needed-for-metalworking-machinery-that- automatically-grinds-40000-sinks-every-year/ INDUSTRY PRODUCT COUNTRY PROCESS GV3 - V Linear Manufacturing Germany Grinding Guide System Peitzmeier Maschinenbau machine builders based in Germany specialise in the construction of grinding machines. Their latest invention, the Omni-Grind Twin 3100 AC, enables automated grinding and polishing of workpieces in the metalworking industry. The machine builder relies on HepcoMotion’s GV3 guidance to prevent damage to the steel during processing; the linear guide system enables precise alignment of the grinding tool in the range of hundredths of a millimetre. The challenge: A major customer wants to precision grind 40,000 stainless steel sinks per year Among the users of Peitzmeier’s grinding machines is a Dutch manufacturer, who processes stainless steel sinks for a Swiss company. The design of the grinding machine had some challenging requirements, as Ulrich Peitzmeier, Managing Director of Peitzmeier explains: “The three-ton plant needed to be capable of grinding 40,000 sinks per year with extra care – the sinks are made from sheet metal just one millimetre thick. If a tool takes too long grinding material in one place, it can very quickly damage the workpiece.” Peitzmeier had to adapt their grinding machine to meet these requirements. The heavy grinding tool, usually mounted on a double-stranded U-rail, had to be replaced in favour of a lighter tool that could be aligned more precisely on just a single guide rail.
    [Show full text]
  • Grinding and Abrasives This Year
    Gear Grinding4/26/043:54PMPage38 Ph t t f Gl C Gear Grinding 4/22/04 1:49 PM Page 39 Grinding Abrasivesand Flexibility and pro- Flexibility is seen in many of the newest model gear grind- ing machines. Several machine tool manufacturers (Kapp, ductivity are the key- Liebherr & Samputensili) now offer dedicated gear grinding machines that are capable of either generating grinding or words in today’s form grinding on the same machine, and the machines can use either dressable wheels or electroplated CBN wheels. On- grinding operations. machine dressing and inspection have become the norm. Automation is another buzzword in grinding and abrasives this year. Gear manufacturers are reducing their costs per Machines are becom- piece by adding automation and robotics to their grinding and deburring operations. ing more flexible as Productivity is being further enhanced by the latest grind- ing wheels and abrasive technology. Tools are lasting longer manufacturers look and removing more stock due to improvements in engineering and material technology. All of this adds up to a variety of possible solutions for the for ways to produce modern gear manufacturer. If your manufacturing operation includes grinding, honing, deburring, tool more parts at a sharpening or any number of other abrasive machining operations, today’s technology lower cost. What offers the promise of increased productivi- ty, lower costs and greater quality than ever before. used to take two By William R. Stott machines or more now takes just one. Photo courtesy of Gleason Corp. www.powertransmission.com • www.geartechnology.com • GEAR TECHNOLOGY • MAY/JUNE 2004 39 Gear Grinding 4/22/04 1:49 PM Page 40 ROTARY TRANSFER GRINDER other ground parts.
    [Show full text]
  • Equipment Grinders and Mills
    Equipment Grinders and Mills Matt Ross PE Penhall Company National Concrete Consortium April 26-28, 2011 Indianapolis, Indiana making life a little smoother Grinders & Groovers What is Diamond Grinding? • Removal of thin surface layer of hardened PCC using closely spaced diamond saw blades • Results in smooth, level pavement surface • Longitudinal texture with desirable friction and low noise characteristics • Frequently performed in conjunction with other CPR techniques, such as full-depth repair, dowel bar retrofit, and joint resealing • Comprehensive part of any PCC Pavement Preservation program Benefits of Diamond Grinding • Costs considerably less than a HMA overlay or thin- lift AC treatment • Diamond ground PCC surfaces can provide increased fuel economy • Increases friction and reduces hydroplaning • Can be constructed with short lane closures without encroaching into adjacent lanes • Grinding of one lane does not require grinding of the adjacent lane • Does not affect overhead clearances underneath bridges and signs – requires no side slope or guard rail modifications • Provides a low noise surface texture! Pavement Problems Addressed • Faulting at joints and cracks • Built-in or construction roughness • Polished concrete surface • Wheel-path rutting • Permanent upward slab warping and curling • Inadequate transverse slope • Unacceptable noise level Safety, Surface Texture and Friction • Increased macrotexture of diamond ground pavement surface provides for improved drainage of water at tire- pavement interface • Longitudinal
    [Show full text]
  • Grinding Machine Construction Types of Grinders
    Grinding machine A grinding machine is a machine tool used for producing very fine finishes or making very light cuts, using an abrasive wheel as the cutting device. This wheel can be made up of various sizes and types of stones, diamonds or of inorganic materials. For machines used to reduce particle size in materials processing see grinding. Construction The grinding machine consists of a power driven grinding wheel spinning at the required speed (which is determined by the wheel’s diameter and manufacturer’s rating, usually by a formula) and a bed with a fixture to guide and hold the work-piece. The grinding head can be controlled to travel across a fixed work piece or the workpiece can be moved whilst the grind head stays in a fixed position. Very fine control of the grinding head or tables position is possible using a vernier calibrated hand wheel, or using the features of NC or CNC controls. Grinding machines remove material from the workpiece by abrasion, which can generate substantial amounts of heat; they therefore incorporate a coolant to cool the workpiece so that it does not overheat and go outside its tolerance. The coolant also benefits the machinist as the heat generated may cause burns in some cases. In very high-precision grinding machines (most cylindrical and surface grinders) the final grinding stages are usually set up so that they remove about 2/10000mm (less than 1/100000 in) per pass - this generates so little heat that even with no coolant, the temperature rise is negligible. Types of grinders These machines include the Belt grinder, which is usually used as a machining method to process metals and other materials, with the aid of coated abrasives.
    [Show full text]
  • Manufacturing Processes
    Module 7 Screw threads and Gear Manufacturing Methods Version 2 ME, IIT Kharagpur Lesson 31 Production of screw threads by Machining, Rolling and Grinding Version 2 ME, IIT Kharagpur Instructional objectives At the end of this lesson, the students will be able to; (i) Identify the general applications of various objects having screw threads (ii) Classify the different types of screw threads (iii) State the possible methods of producing screw threads and their characteristics. (iv) Visualise and describe various methods of producing screw threads by; (a) Machining (b) Rolling (c) Grinding (i) General Applications Of Screw Threads The general applications of various objects having screw threads are : • fastening : screws, nut-bolts and studs having screw threads are used for temporarily fixing one part on to another part • joining : e.g., co-axial joining of rods, tubes etc. by external and internal screw threads at their ends or separate adapters • clamping : strongly holding an object by a threaded rod, e.g., in c-clamps, vices, tailstock on lathe bed etc. • controlled linear movement : e.g., travel of slides (tailstock barrel, compound slide, cross slide etc.) and work tables in milling machine, shaping machine, cnc machine tools and so on. • transmission of motion and power : e.g., lead screws of machine tools • converting rotary motion to translation : rotation of the screw causing linear travel of the nut, which have wide use in machine tool kinematic systems • position control in instruments : e.g., screws enabling precision movement of the work table in microscopes etc. • precision measurement of length : e.g., the threaded spindle of micrometers and so on.
    [Show full text]
  • VOLLMER Vgrind 360
    SEPTEMBER 2018 A NEW GENERATION OF PRODUCTIVITY: VOLLMER VGrind 360 More effi cient production of carbide tools. Multi-level machining with optimal kinematics, 5 CNC axes in perfect interpolation, innovative operating concept: The VGrind 360 sets standards. Discover them now! www.vollmer-group.com/vgrind New ShapeSmart®NP3+ New GrindSmart®630XW New LaserSmart®501@ AMB 2018 New HSK63 clamping and handing system Profi le cutting, ablation for chip breaker in one single setup for cylindrical tools and inserts as well The 6th axis provides a high degree of fl exibility and freedom of grinding movements New generation of GrindSmart® series allows superior surface Integrated 6-position fi nish with linear motors wheel changer In-process tool measuring system for unattended production New 15'' control panel with integrated PC Please visit our booth at Halle 5, Stand D72, AMB Messe Stuttgart www.rollomaticsa.com [email protected] www.advancedgrindingsolutions.co.uk SEPTEMBER 2018 COVER STORY 3 VOLUME 16 | No.4 ISSN 1740 - 1100 Shaping success together At the AMB 2018 exhibition in Stuttgart, VOLLMER will present its new portfolio under the motto ‘Shaping Success Together’. In addition to its grinding and eroding machines, VOLLMER will also present its digitalisation initiative, which enables the digital exchange of data between machines and opens the door to the www.grindsurf.com world of Industry 4.0. Trade fair visitors will be able to see the VGrind 360 carbide tool AMB 2018 PREVIEW 4 grinding machine in action, alongside the VPulse 500 wire erosion machine, the QXD 250 disk erosion machine as well as various SPECIAL REPORT - AZ SPA 30 automation solutions.
    [Show full text]
  • Design and Fabrication of Internal Grainding Attachment in Lathe
    Vol-6 Issue-1 2020 IJARIIE-ISSN(O)-2395-4396 DESIGN AND FABRICATION OF INTERNAL GRAINDING ATTACHMENT IN LATHE PRESENTED BY AGASH.P ME (CAD) LECTURER DEPARTMENT OF MECHANICAL ENGINEERING (TOOL&DIE) A.K.T MEMORIAL POLYTECHNIC COLLEGE, KALLAKURICHI ABSTRACT Everyone knows a tool post grinder is one mighty handy item to have as an addition to a lathe, however, if you ever priced one, you know they run in to some serious amounts of money. So, with this in mind, I set off to build my own. Pictured below is the outcome of that project. I have to say the tool post grinder works extremely well. By varying the pulley sizes I can get a high end speed of over 10,000 rpm if needed. The only change I would make is to have a totally enclosed motor to keep out the grit. Our project is design and fabrication of Multi Use Tool Post Grinder. It is used to grind the machining surfaces to super finish and accuracy. It can be used as an internal and external Grinder by fixing the attachment on the Carriage of a center Lathe. The principle parts of this attachment are main body, Spindle shaft, bearings, rope pulley and grinding wheel etc. Keywords: design, 2d diagram cad, grinding attachment 1. INTRODUCTION Generally some components in engineering field require high surface finish and accuracy. For example a cylindrical part requires high finish inside the bore or outside the body; it requires cylindrical grinding machine and center less grind machine. The above machinery cost will be more, and also unless we have lot of similar jobs, we equity keep these costly machines idle.
    [Show full text]
  • Hobbing and Grinding Process Modelling of Helical Wheel in the Speed Reducer of an Electric Vehicle
    Hobbing and Grinding Process Modelling of Helical Wheel in The Speed Reducer of an Electric Vehicle Master's Thesis in Mechanical Engineering Supervisors: Jérôme BRUYERE François GIRARDIN Tutor: Francesca Maria CURÀ Grad student: Nagelaa ES SAFIANI 2 MASTER'S THESIS IN MECHANICAL ENGINEERING Hobbing and Grinding Process Modelling of Helical Wheel in The Speed Reducer of an Electric Vehicle Nagelaa ES SAFIANI Department of Mechanical Engineering Division of Industrialization and Processes National Institute of Applied Sciences of Lyon Lyon, France 2019 Department of Mechanical Engineering Division of Production Polytechnic University of Turin Turin, Italy 2019 3 Abstract When developing a mechanical transmission one important characteristic of the transmission is how much tonal noise and vibrations are generated. The vibrations causing are called gear whine noise and they are generated in the gear contacts of the transmission and propagate through the shafts and bearings to the housing, where they become airborne. In electrical vehicle applications the absence of a loud combustion engine makes the gear whine noise more distinct and easily perceived by the human ear. The main cause of the noise has been assumed to be excitations due to variations of tooth profile errors in the wheel of speed reducer. For this reason, a code to simulate the hobbing and grinding process, that generates the helical wheel, has been developed by the MATLAB software. To write the code, a kinematic study about hobbing and grinding process has been performed, then it has been possible to obtain the theoretical points of contact on wheel surface and hob surface. After obtaining the programming code, it will be possible to compare the theoretical and real surfaces and analyse the possible causes.
    [Show full text]
  • Machine Builders Develop Technologies That Improve Thread Grinding
    SEPTEMBER 2005 / VOLUME 57 / NUMBER 9 BY SUSAN WOODS, FEATURES EDITOR Machine builders develop technologies that improve thread grinding. hread grinding is one of the most piece around its own axis challenging grinding tasks, be- while the linear axis T cause the operator has to be con- moves the workpiece past cerned with precise lead, pitch, and the grinding wheel to cre- flank and helix angles. It is not just ate the lead. The wheel grinding to a diameter, but producing a axis feeds the grinding specific form to a specific diameter. wheel into the workpiece The form may be a 60° V thread, a 29° to control the thread angle Acme thread or a gothic thread depth. for a ballscrew. This is difficult consid- Today’s CNC technol- ering the grinding wheel that is required ogy and the capability of to hold a fine radius in the root of the processors and digital thread also has to remove the rest of the drives make the task of material in a cost-effective manner. combining all basic mo- Because of material hardness and Drake tions relatively easy. This high-precision and fine surface-finish task can be performed by a requirements, some parts must be servomotor connected to a thread-ground. Precision ballscrews, ballscrew and table slide. lead screws, worm gears, thread gages However, thread grinding ma- and automotive steering components chines are available that are equipped are good examples. Precision parts with linear motors that eliminate the with internal threads that are typically need for the ballscrews on the X and Z thread-ground include ball nuts and axes.
    [Show full text]
  • Grinding Machines: (14 Metal Buildup:And (15) the (Shipboard) Repair Department and Repair Work
    DOCUMENT RESUME ED 203 130 CE 029 243 AUTHOR Bynum, Michael H.: Taylor, Edward A. TITLE Machinery Repairman 3 6 2. Rate TrainingManual and Nonresident Career Course. Revised. INSTITUTION Naval Education and Training Command,Washington, D.C. REPORT NO NAVEDTRA-10530-E PUB DATE 81 NOTE 671p.: Photographs andsome diagrams will not reproduce well. EDRS PRICE MF03/PC27 Plus Postage. DESCRIPTORS Behavioral Objectives; CorrespondenceStudy; *Equipment Maintenance: Rand Tools;Independent Study: Instructional Materials: LearningActivities: Machine Repairers: *Machine Tools;*Mechanics (Process): Military Training: Postsecondary Education: *Repair: Textbooks: *Tradeand Industrial Education IDENTIFIERS Navy ABSTRACT This Rate Training Manual (textbook)and Nonresident Career Course form a correspondence self-studypackage to teach the theoretical knowledge and mental skillsneeded by the Machinery Repairman Third Class and Second Class. The15 chapters in the textbook are (1)Scope of the Machinery Repairman Rating:(2) Toolrooms and Tools:(3) Layout and Benchwork: (4) Metals and Plastics:(51 Power Saws and Drilling Machines:(6) Offhand Grinding of Tools:(7) Lathes and Attachments:(8) Basic Engine Lathe Operations:(9) Advanced Engine Lathe Operations: (10)Turret Lathes and Turret Lathe Operations:(11) Milling Machines and Milling Operations:(121 Shapers, Planers, and Engravers: (13)Precision Grinding Machines: (14 Metal Buildup:and (15) The (Shipboard) Repair Department and Repair Work. Appendixesinclude Tabular Tnformation of Benefit to Machinery Repairman(23 tables), Formulas. for Spur Gearing, Formulas for DiametralPitch System, and Glossary. The Nonresident Career Course follows theindex. It contains T1 assignments, which are organized into thefollowing format: textbook assignment and learning objectives withrelated sets of teaching items to be answered. (YLB) *********************************************************************** Peproductions supplied by EDRSare the best that can be made from the original document.
    [Show full text]
  • PDH Course M381
    PDHonline Course M 497 (6 PDH) _______________________________________________________________________________________ Conventional Machining Technology Fundamentals Instructor: Jurandir Primo, PE 2013 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course M 497 www.PDHonline.org CONVENTIONAL MACHINING TECHNOLOGY – FUNDAMENTALS Introduction Shaping Machines Lathes Slotting Machines - Metalworking lathes - Planing, shaping and slotting calculations - Classification of lathes - Turning operations Boring Machines - Semiautomatic and automatic lathes - Types of boring machines - Accessories - Boring types - Live centers and dead centers - Boring calculations - Rests and micrometer supports - Lathe cutting tools Hobbing & Gear Shaping Machines - Lathe calculations - Common gear generation types - Graduate micrometer and measurements - Details of involute gearing - Tools and inserts - Proper meshing and contact ratio - Common holders with inserts - Gear Shaping Machines - Goose-neck holders with inserts Broaching Machines Drilling Machines - Horizontal broaching machines - Classification of drilling machines - Vertical broaching machines - Application of drilling machines - Broaching principles - Types of drills - Broaching configuration - Drill sizes and geometry - Materials of broaches - Drill point angles - Geometry of broaching teeth - Drill holding & clamping of workpieces - Broaching operations
    [Show full text]