Habitat Restoration As a Means of Controlling Non-Native Fish in a Mojave Desert Oasis G

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Restoration As a Means of Controlling Non-Native Fish in a Mojave Desert Oasis G Habitat Restoration as a Means of Controlling Non-Native Fish in a Mojave Desert Oasis G. Gary Scoppettone,1,2 Peter H. Rissler,1 Chad Gourley,3 and Cynthia Martinez4 Abstract depth (TD) than non-native Sailfin molly (Poecilia lati- Non-native fish generally cause native fish decline, and pinna) and Mosquitofish (Gambusia affinis) in warm once non-natives are established, control or elimination is water stream habitat, and Ash Meadows speckled dace in- usually problematic. Because non-native fish colonization habited significantly faster water than non-natives in cool has been greatest in anthropogenically altered habitats, water stream habitat. Modification of the outflow of Kings restoring habitat similar to predisturbance conditions may Pool Spring from marsh to warm water stream, with offer a viable means of non-native fish control. In this MWCV, TD, and temperature favoring native fish, investigation we identified habitats favoring native over changed the fish composition from predominantly non- non-native fish in a Mojave Desert oasis (Ash Meadows) native Sailfin molly and Mosquitofish to predominantly and used this information to restore one of its major warm Ash Meadows pupfish. This result supports the hypoth- water spring systems (Kings Pool Spring). Prior to restora- esis that restoring spring systems to a semblance of pre- tion, native fishes predominated in warm water (25–32°C) disturbance conditions would promote recolonization stream and spring-pool habitat, whereas non-natives pre- of native fishes and deter non-native fish invasion and dominated in cool water (•23°C) spring-pool and marsh/ proliferation. slack water habitat. Native Amargosa pupfish (Cyprino- don nevadensis) and Ash Meadows speckled dace (Rhi- Key words: Ash Meadows, Cyprinodon nevadensis, habi- nichthys osculus nevadensis) inhabited significantly faster tat manipulation, Mojave Desert, non-native fish control, mean water column velocities (MWCV) and greater total Rhinichthys osculus nevadensis, thermo springs. Introduction non-natives. Because non-native fish invasions are often Non-native fish alter native aquatic communities, are an associated with anthropogenically disturbed environments agent of native fish decline and extirpation (Taylor et al. (Moyle & Nichols 1974), restoration of the aquatic system 1984; Moyle et al. 1986; Miller et al. 1989; Minckley & may counteract the effects of human disturbance. In un- Deacon 1991), and are difficult to control or eliminate. disturbed or more natural habitat, native fishes may have Chemical treatment is often unsuccessful (Meffe 1983; a better chance of tolerating a non-native fish invasion Rinne & Turner 1991; Meronek et al. 1996) and is lethal because such conditions contributed to evolution of the to aquatic invertebrates (Morrison 1987; Mangum & native species (Southwood 1988; Ricklefs 1991). Thus, Madrigal 1999), and physical removal has usually met with restoring aquatic habitat to predisturbance conditions limited success (Meronek et al. 1996; Knapp & Mathews may serve to promote native fishes (Baltz & Moyle 1993; 1998). Thus, alternate and innovative strategies need to be Moyle & Light 1996) if environmental conditions that developed to enhance population expansion of natives at favor natives over non-native species are emphasized in the expense of non-natives. the restoration. Physical changes in aquatic ecosystems can alter fish Ash Meadows National Wildlife Refuge (AMNWR) in community structure, population demographics, and rela- Northern Mojave Desert offers an opportunity to study tive abundance of species (Bain et al. 1988; Rabeni & the feasibility of non-native fish control through habitat Jacobson 1993; Gido & Propst 1999). Therefore, non- manipulation associated with spring and stream restora- native fish control may be possible through the creation or tion. Ash Meadows’ water resources are a series of ther- re-creation of habitat that promotes native fishes over mal springs with discharge sufficiently low that flows are manipulable. The spring habitats have been significantly altered and invaded by non-native fishes. Typical of spring 1 Biological Resources Division, U.S. Geological Survey, 1340 Financial systems of the southwestern United States, there are few Boulevard, Suite 161, Reno, NV 89502, U.S.A. native species present (Miller 1961). In addition, Ash 2 Address correspondence to G. G. Scoppettone, email gary_scoppettone@ usgs.gov Meadows has few non-native fish species, thus simplifying 3 Otis Bay, Incorporated, 110 Mule Deer Drive, Reno, NV 87523, U.S.A. the task of identifying habitat conditions favoring the 4 U.S. Fish and Wildlife Service, 4701 N. Torrey Pines Drive, Las Vegas, NV native fishes over non-natives. The natives in spring sys- 89130, U.S.A. tems of most of AMNWR had Amargosa pupfish Ó 2005 Society for Ecological Restoration International (Cyprinodon nevadensis), Ash Meadows speckled dace JUNE 2005 Restoration Ecology Vol. 13, No. 2, pp. 247–256 247 Habitat Restoration as a Means of Controlling Non-Native Fish (Rhinichthys osculus nevadensis), or both species. The Meadows speckled dace, and the now extinct Ash Mead- primary non-native fishes are Mosquitofish (Gambusia ows poolfish (Empetrichthys merriami) (Miller 1948, 1961). affinis) and Sailfin molly (Poecilia latipinna). Centrally located on the eastern edge of AMNWR is a com- Like most aquarium fish invaders of Southwestern ther- plex of higher-elevation (710 m msl) springs that are suffi- mal springs, Sailfin molly evolved in lentic or slack water ciently isolated physiographically to harbor another endemic habitat (Harrington & Harrington 1961). This is also true fish, Warm Springs pupfish (C. n. pectoralis) (Miller 1948). of the Mosquitofish, which has successfully invaded slack Each spring harboring Warm Springs pupfish is character- and lentic temperate to warm water throughout the west- ized by low water discharge (<0.01 m3/second) and warm ern United States (Swanson et al. 1996). Our impression water (32–33°C). The most physiographically isolated of from initial observations in Ash Meadows was that pupfish Ash Meadows fishes is the Devils Hole pupfish (C. diabolis), predominated over non-native fishes in warmer water, which occurs at 730 m msl in a 15-m depression on a hillside. especially lotic warm water and that non-native fishes pre- At the northeast edge of AMNWR, Devils Hole has been dominated in cool water, especially lentic habitat. Further- part of the Death Valley National Park system since 1952 more, Ash Meadows speckled dace do occur in warm (Deacon & Williams 1991). water but flourish in cool fast water. We hypothesized that Prior to its acquisition by the U.S. Fish and Wildlife non-native lentic and slack water species can be controlled Service for the preservation of its endemic species, Ash through spring system restoration so outflow channels Meadows’ landscape had been greatly altered. Carson retain their warmer temperature with velocities conducive Slough was mined for peat and surrounding areas cleared to pupfish and speckled dace but detrimental to non- and leveled for agricultural use. Several springheads were native lentic forms. In this study we investigated habitat fitted with pumps, eliminating surface flow (Deacon & favoring native Ash Meadows pupfish and Ash Meadows Bunnell 1970; Pister 1974; Deacon & Williams 1991), and speckled dace over non-native Sailfin molly and Mosqui- spring-pools were enlarged. Water was diverted from nat- tofish. We also tracked species composition of a spring ural stream courses to a few earthen and concrete ditches outflow before and after it was restored to promote native and either stored in reservoirs or used directly for crop or fishes over non-natives. pasture irrigation. Along with loss of natural channel, there was loss of native riparian corridors, and non-native vegetation became established along several of the new or Study Site altered stream courses. Massive levees constructed to pro- The Mojave Desert is the driest region in North America, tect agricultural fields and irrigation ditches from flash with Ash Meadows its largest oasis, and it harbors one of floods eliminated these intermittent events in most spring the greatest numbers of endemic species, for its area, in outflows. Mosquitofish became established in the lower- North America (Sada 1990). Ash Meadows is situated elevation springs by the 1930s (Miller 1961), followed by within the Amargosa River Drainage, subdrainage of the Sailfin molly in most of the lower-elevation springs in the Death Valley System at the southwestern edge of Nevada, 1960s (Deacon & Bunnell 1970). Also in the 1960s Large- just east of Death Valley, California (Fig. 1) (Hubbs & mouth bass (Micropterus salmoides) were stocked in Ash Miller 1948; Miller 1948). Ash Meadows’ primary water Meadows’ largest reservoir, Crystal Reservoir, and Brown sources are approximately 24 thermal springs within a 7-km bullhead (Ameiurus nebulosus) inhabited Davis Spring radius and with cumulative discharge of 0.65–0.68 m3/ until removal through chemical treatment in 1996. Other second (Dudley & Larson 1976). Garside and Schilling introduced aquatic species include Bullfrog (Rana (1979) reported near-source water temperatures from 18.0 catesbeiana), Crayfish (Procambarus clarki), and Oriental to 33.0°C, with highly mineralized water and dissolved snail (Melonoides tuberculata). Since the summer of 1993, oxygen well below saturation. AMNWR staff has annually removed Sailfin molly, Historically, Ash Meadows spring water emerged from Mosquitofish, and Crayfish from the larger spring-pools
Recommended publications
  • Relation of Desert Pupfish Abundance to Selected Environmental Variables
    Environmental Biology of Fishes (2005) 73: 97–107 Ó Springer 2005 Relation of desert pupfish abundance to selected environmental variables in natural and manmade habitats in the Salton Sea basin Barbara A. Martin & Michael K. Saiki U.S. Geological Survey, Biological Resources Division, Western Fisheries Research Center-Dixon Duty Station, 6924 Tremont Road, Dixon, CA 95620, U.S.A. (e-mail: [email protected]) Received 6 April 2004 Accepted 12 October 2004 Key words: species assemblages, predation, water quality, habitat requirements, ecological interactions, endangered species Synopsis We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray– Curtis resemblance functions, fish species assemblages differed mostly between Salt Creek and the drains (i.e., the three drains had relatively similar species assemblages). Pupfish numbers and environmental variables varied among sites and sample periods. Canonical correlation showed that pupfish abundance was positively correlated with abundance of western mosquitofish, Gambusia affinis, and negatively correlated with abundance of porthole livebearers, Poeciliopsis gracilis, tilapias (Sarotherodon mossambica and Tilapia zillii), longjaw mudsuckers, Gillichthys mirabilis, and mollies (Poecilia latipinna and Poecilia mexicana). In addition, pupfish abundance was positively correlated with cover, pH, and salinity, and negatively correlated with sediment factor (a measure of sediment grain size) and dissolved oxygen. Pupfish abundance was generally highest in habitats where water quality extremes (especially high pH and salinity, and low dissolved oxygen) seemingly limited the occurrence of nonnative fishes.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1990 Elsevier Inc. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/03009629 and may be cited as: Peterson, M. S. (1990). Hypoxia-induced physiological changes in two mangrove swamp fishes: sheepshead minnow, Cyprinodon variegatus Lacepede and sailfin molly, Poecilia latipinna (Lesueur). Comparative Biochemistry and Physiology Part A: Physiology, 97(1), 17-21.doi:10.1016/0300-9629(90)90715-5 let 1) Compo Biochem. Physiol. Vol. 97A, No. I, pp. 17-21, 1990 0300-9629/90 $3.00 +0.00 Printedin Great Britain © 1990 Pergamon Press pic HYPOXIA-INDUCED PHYSIOLOGICAL CHANGES IN TWO MANGROVE SWAMP FISHES: SHEEPSHEAD MINNOW, CYPRINODON VARIEGATUS LACEPEDE AND SAILFIN MOLLY, POECILIA LATIPINNA (LESUEUR) MARK S. PETERSON* Harbor Branch Oceanographic Institution, Inc. Division of Marine Science 5600 Old Dixie Highway Ft. Pierce, FL 34946, USA. Telephone: (601) 325-3120 (Received 19 December 1989) Abstract-I. Laboratory measurements (30°C and 300/00 salinity) were made of plasma osmolality, plasma chloride ion concentration, hematocrit, oxygen consumption and survival of sheepshead minnow, • Cyprinodon oariegatus Lacepede and sailfin molly, Poecilia latipinna (Lesueur) under normoxic (150 mm Hg) and hypoxic (40 mm Hg) conditions. 2. Significant increases in hematocrit and reductions in oxygen consumption were documented for both species. Plasma osmolality increased in sheepshead minnows while in hypoxic conditions but plasma " chloride did not change from values in 150mm Hg in either species. There was no mortality in either species during the 24 hr hypoxia survival tests.
    [Show full text]
  • Western Mosquitofish Gambusia Affinis ILLINOIS RANGE
    western mosquitofish Gambusia affinis Kingdom: Animalia FEATURES Phylum: Chordata The western mosquitofish male grows to about one Class: Osteichthyes inch in length, while the female attains a length of Order: Cyprinodontiformes about two inches. A dark, teardrop-shaped mark is present under each eye. Black spots can be seen on Family: Poeciliidae the dorsal and tail fins. The back is gray-green to ILLINOIS STATUS brown-yellow with a dark stripe from the head to the dorsal fin. The sides are silver or gray with a common, native yellow or blue sheen. Scales are present on the head, and scales on the body have dark edges, giving a cross-hatched effect. These fish tend to die in the summer that they become mature. BEHAVIORS The western mosquitofish may be found in the southern one-half of Illinois. This fish lives in areas of little current and plentiful vegetation in swamps, sloughs, backwaters, ponds, lakes and streams. The western mosquitofish reproduces three or four times during the summer. Fertilization is internal. After mating, sperm is stored in a pouch within the female and may be used to fertilize several broods. The eggs develop inside the female and hatch in three to four weeks. Young are born alive. A brood may contain very few or several hundred fish. Young develop rapidly and may reproduce in their first summer. The western mosquitofish swims near the ILLINOIS RANGE surface, alone or in small groups, eating plant and animal materials that includes insects, spiders, small crustaceans, snails and duckweeds. © Illinois Department of Natural Resources. 2020.
    [Show full text]
  • Molecular and Morphometric Evidence for the Widespread Introduction Of
    BioInvasions Records (2017) Volume 6, Issue 3: 281–289 Open Access DOI: https://doi.org/10.3391/bir.2017.6.3.14 © 2017 The Author(s). Journal compilation © 2017 REABIC Research Article Molecular and morphometric evidence for the widespread introduction of Western mosquitofish Gambusia affinis (Baird and Girard, 1853) into freshwaters of mainland China Jiancao Gao1, Xu Ouyang1, Bojian Chen1, Jonas Jourdan2 and Martin Plath1,* 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China 2Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany *Corresponding author E-mail: [email protected] Received: 6 March 2017 / Accepted: 9 July 2017 / Published online: 31 July 2017 Handling editor: Marion Y.L. Wong Abstract Two North American species of mosquitofish, the Western (Gambusia affinis Baird and Girard, 1853) and Eastern mosquitofish (G. holbrooki Girard, 1859), rank amongst the most invasive freshwater fishes worldwide. While the existing literature suggests that G. affinis was introduced to mainland China, empirical evidence supporting this assumption was limited, and the possibility remained that both species were introduced during campaigns attempting to reduce vectors of malaria and dengue fever. We used combined molecular information (based on phylogenetic analyses of sequence variation of the mitochondrial cytochrome b gene) and morphometric data (dorsal and anal fin ray counts) to confirm the presence
    [Show full text]
  • The Effects of Introduced Tilapias on Native Biodiversity
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 15: 463–483 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.699 The effects of introduced tilapias on native biodiversity GABRIELLE C. CANONICOa,*, ANGELA ARTHINGTONb, JEFFREY K. MCCRARYc,d and MICHELE L. THIEMEe a Sustainable Development and Conservation Biology Program, University of Maryland, College Park, Maryland, USA b Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Australia c University of Central America, Managua, Nicaragua d Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg, Virginia, USA e Conservation Science Program, World Wildlife Fund, Washington, DC, USA ABSTRACT 1. The common name ‘tilapia’ refers to a group of tropical freshwater fish in the family Cichlidae (Oreochromis, Tilapia, and Sarotherodon spp.) that are indigenous to Africa and the southwestern Middle East. Since the 1930s, tilapias have been intentionally dispersed worldwide for the biological control of aquatic weeds and insects, as baitfish for certain capture fisheries, for aquaria, and as a food fish. They have most recently been promoted as an important source of protein that could provide food security for developing countries without the environmental problems associated with terrestrial agriculture. In addition, market demand for tilapia in developed countries such as the United States is growing rapidly. 2. Tilapias are well-suited to aquaculture because they are highly prolific and tolerant to a range of environmental conditions. They have come to be known as the ‘aquatic chicken’ because of their potential as an affordable, high-yield source of protein that can be easily raised in a range of environments } from subsistence or ‘backyard’ units to intensive fish hatcheries.
    [Show full text]
  • Herpetofauna and Aquatic Macro-Invertebrate Use of the Kino Environmental Restoration Project (KERP)
    Herpetofauna and Aquatic Macro-invertebrate Use of the Kino Environmental Restoration Project (KERP) Tucson, Pima County, Arizona Prepared for Pima County Regional Flood Control District Prepared by EPG, Inc. JANUARY 2007 - Plma County Regional FLOOD CONTROL DISTRICT MEMORANDUM Water Resources Regional Flood Control District DATE: January 5,2007 TO: Distribution FROM: Julia Fonseca SUBJECT: Kino Ecosystem Restoration Project Report The Ed Pastor Environmental Restoration ProjectiKino Ecosystem Restoration Project (KERP) is becoming an extraordinary urban wildlife resource. As such, the Pima County Regional Flood Control District (PCRFCD) contracted with the Environmental Planning Group (EPG) to gather observations of reptiles, amphibians, and aquatic insects at KERP. Water quality was also examined. The purpose of the work was to provide baseline data on current wildlife use of the KERP site, and to assess water quality for post-project aquatic wildlife conditions. I additionally requested sampling of macroinvertebrates at Agua Caliente Park and Sweetwater Wetlands in hopes that the differences in aquatic wildlife among the three sites might provide insights into the different habitats offered by KERF'. The results One of the most important wildlife benefits that KERP provides is aquatic habitat without predatory bullfrogs and non- native fish. Most other constructed ponds and wetlands in Tucson, such as the Sweetwater Wetlands and Agua Caliente pond, are fuIl of non-native predators which devastate native fish, amphibians and aquatic reptiles. The KERP Wetlands may provide an opportunity for reestablishing declining native herpetofauna. Provided that non- native fish, bullfrogs or crayfish are not introduced, KERP appears to provide adequate habitat for Sonoran Mud Turtles (Kinosternon sonoriense), Lowland Leopard Frogs (Rana yavapaiensis), and Mexican Gartersnakes (Tharnnophis eques) and Southwestern Woodhouse Toad (Bufo woodhousii australis).
    [Show full text]
  • DIET and CONDITION of AMERICAN ALLIGATORS (Alligator Mississippiensis) in THREE CENTRAL FLORIDA LAKES
    DIET AND CONDITION OF AMERICAN ALLIGATORS (Alligator mississippiensis) IN THREE CENTRAL FLORIDA LAKES By AMANDA NICOLE RICE A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Amanda Nicole Rice ACKNOWLEDGMENTS I am very grateful to Dr. J. Perran Ross who made it possible for me to be involved in such an amazing project. Dr. Ross was always patient and provided encouragement when needed. He taught me many things that will stay with me throughout my career. My parents, John and LeeLonee Rice, graciously supported me throughout my graduate work. Their support and earlier guidance gave me what I needed to be successful. My other committee members, Dr. H. Franklin Percival and Dr. Mike S Allen, both contributed to my success during my graduate work. Many people helped me learn the necessary skills to handle this job. Notable among them were P. Ross, Allan “Woody” Woodward, Chris Tubbs, Dwayne Carbonneau, Arnold Brunnell, Chris Visscher, and John White. Woody Woodward was especially helpful with understanding basic alligator ecology and with fieldwork. Field techs C. Tubbs, Esther Langan, Rick Owen, Jeremy Olson, and Chad Rischar were essential to the project. Many great volunteers helped late into the night catching and lavaging alligators. The Florida Museum of Natural History’s (FLMNH) ornithology, mammology, ichthyology, herpetology, and zoo archaeology collection managers and their reference collections were invaluable with species identification. My lab assistants E Langan, Anthony Reppas, and Patricia Gomez were all very helpful in painstakingly sorting through the stomach samples.
    [Show full text]
  • The Declining Spadefoot Toad Pelobates Fuscus: Calling Site Choice and Conservation
    The declining spadefoot toad Pelobates fuscus: calling site choice and conservation Nyström, Per; Birkedal, L; Dahlberg, C; Brönmark, Christer Published in: Ecography DOI: 10.1034/j.1600-0587.2002.250411.x 2002 Link to publication Citation for published version (APA): Nyström, P., Birkedal, L., Dahlberg, C., & Brönmark, C. (2002). The declining spadefoot toad Pelobates fuscus: calling site choice and conservation. Ecography, 25(4), 488-498. https://doi.org/10.1034/j.1600- 0587.2002.250411.x Total number of authors: 4 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 28. Sep. 2021 ECOGRAPHY 25: 488–498, 2002 The declining spadefoot toad Pelobates fuscus: calling site choice and conservation Per Nystro¨m, Linda Birkedal, Christina Dahlberg and Christer Bro¨nmark Nystro¨m, P., Birkedal, L., Dahlberg, C.
    [Show full text]
  • THE MOSQUITOFISH Gambusia Affinis
    THE MOSQUITOFISH Gambusia affinis Adult male (above) and adu lt female (below) Cambusill affinis affinis. Courtesy of Or. L ouis .4. Krumholz . UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREA U OF COMMERCIAL FISHERIES Fishery Leaflet 525 ( THE MOSQUITOFISH, Gambusia affinis By Lola T. Dees Branch of Reports Divi ion of Resource Development CONTENTS Page Int roduction. • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 Range. • • • • • . • . • • . • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • 1 Fo reign introductions. • • • • . • • . • . • • • • • • • • • • • • • • • • • • • • • • • 2 Habitat . • . • . • • • • • • . • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 Li fe history. • • • • • • • • . • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • 2 Description •••••••••••••••• •••.•••••••••••.••. 1 • • • 2 Food . • . • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • 3 Reproduction . • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • 3 TIle young . • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 Enemies . • • • • • • . • • • . • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • 3 Cu lture. • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 Dealers . • . • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • 4 References . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
    [Show full text]
  • Compare and Contrast the Water Environment Between Death Valley Pupfish Specie and Devil’S Hole Pupfish Specie
    Compare and Contrast the Water environment between Death Valley Pupfish Specie and Devil’s Hole Pupfish Specie By Roy Tianran Gao 1 Table of Contents Title page 1 Abstract 3 Introduction and Background 3 Water Temperature 4 Salinity 6 Water Level 7 Conservation 10 Conclusion 11 References 12 2 ABSTRACT The two types of pupfish (Cyprinodon) in Death Valley National Park are Death Valley pupfish and Devil’s Hole pupfish. Death Valley pupfish has been existed over 10,000 years and Devil’s Hole pupfish has been existed for over 20,000 years. Both of the pupfishes are endangered species. The average number of Death Valley pupfish has decreased by about 100 since 1990s, and the number of Devil’s Hole pupfish has decreased by 400 since 1995. Comparing the water level, water temperature and the water salinity between the two species of pupfish would help to define the living requirements and reason of decreasing population. The research toward the result is based on 7 journal articles, 4 websites, and 1 book. As the result shows, Death Valley Pupfish and Devil’s Hole Pupfish live in different water environments and functioned differently. Understanding the water environment of the two types of pupfishes will help people building new habitats for pupfishes and increase their population so that would be possible to avoid the extinction of pupfishes from the earth. INTRODUCTION AND BACKGROUND Pupfish is a small killifish in the Southwest of America. There are five pupfish species in Death Valley which are Armargosa pupfish, Saratoga Pupfish, Devil’s Hole pupfish, Death Valley pupfish, and Cotton ball Marsh pupfish (National Park Service, 2008).
    [Show full text]
  • The Endangered White Sands Pupfish (Cyprinodon Tularosa)
    The Endangered White Sands pupfish (Cyprinodon tularosa) genome reveals low diversity and heterogenous patterns of differentiation Andrew Black1, Janna Willoughby2, Anna Br¨uniche-Olsen3, Brian Pierce4, and Andrew DeWoody1 1Purdue University 2Auburn University 3University of Copenhagen 4Texas A and M University College Station November 24, 2020 Abstract The White Sands pupfish (Cyprinodon tularosa), endemic to New Mexico in Southwestern North America, is of conservation concern due in part to invasive species, chemical pollution, and groundwater withdrawal. Herein, we developed a high quality draft reference genome and use it to provide biological insights into the evolution and conservation of C. tularosa. Specifically, we localized microsatellite markers previously used to demarcate Evolutionary Significant Units, evaluated the possibility of introgression into the C. tularosa genome, and compared genomic diversity among related species. The de novo assembly of PacBio Sequel II error-corrected reads resulted in a 1.08Gb draft genome with a contig N50 of 1.4Mb and 25,260 annotated protein coding genes, including 95% of the expected Actinopterigii conserved orthologs. Many of the previously described C. tularosa microsatellite markers fell within or near genes and exhibited a pattern of increased heterozygosity near genic areas compared to those in intergenic regions. Genetic distances between C. tularosa and the widespread invasive species C. variegatus, which diverged ~1.6-4.7 MYA, were 0.027 (nuclear) and 0.022 (mitochondrial). Nuclear alignments revealed putative tracts of introgression that merit further investigation. Genome-wide heterozygosity was markedly lower in C. tularosa compared to estimates from related species, likely because of smaller long-term effective population sizes constrained by their isolated and limited habitat.
    [Show full text]
  • Ichthyological Studies: Reproduction Study
    KSC TR 5 1-2, Vol. Ill, Part 2 July 1980 (HAS A -CH-163122) A CONTINUATION OF N80- 289kO BASE-LINE ST5 DIES FOR ENVIRONMENTALLY HOI(ITOR1 NG SPACE TPANSP3RATION SYSTENS AT JOHN P. KElr'N EDY SPACE CENTER. VOLUUE 3, Unclas PA9T 2: (Uaiversity of Central Florida) G3/U5 28167 NAS.4 Contract Report 1631 22 A Continuation of Base-Line Studies for Environmentally Monitoring Space Transportation Systems at John F. Kennedy Space Center Ichthyological Studies: Sailfin Molly Reproduction Study National Aeronaut~csand Space Admin~stration John F. Kennedy Space Center ,- - .. ~... .. i I 't t\ .. ;! VOLUME 111: PART 2 OF THE FINAL REPORT TO THE NATIONAL AERONAUTICS AND SPACE ADMINISTHATION JOHN F. KENNEDY SPACE CENTER A CONTINUATION OF BASE-L IN€ STUDIES FOR Ei.IV1KONMEhTALLY MONITOR IN SPACE TRANSPORTATION SYSTEMS (STS ) A1 JOHN F. KENNEDY SPACE CENTER CONTFthCT NO. NAS 10-8986 VOLUME 11 I OF IV: PART 2 - ICliTtiYOLOtiICAL STUDIES, Sailfin Molly Reproduction Study PR INCiPAL INVESTIGATOR: F. F. SNELSUN, Jr. UNIVEESITY OF CENTRAL FLORIDA - P. b. BOX 25000 URLANDU, FLOR IDA 32816 BIOMEDICAL OFF ICE BIOSCIENCE OPERATIONS CODE MD-B JOHN F. KENNEDY SPACE CENTER NASA PREFACE This docwent is part of a University of Central Florida contract report, "A Continuation of Base-L ine Studies for Environnental 1y Monitoring Space Trdnsportation Systems at John F. Kennedy Space Center." 1 The entire report consists of four vol unles and an executive sulmllary, a1 1 identified as liSC TR 51-2; NASA CR 163122: Volu~lreI : Terrestrial Comuni ty Anal ysi s Volume 11:
    [Show full text]