Topology Preserving Isosurface Extraction for Geometry Processing

Total Page:16

File Type:pdf, Size:1020Kb

Topology Preserving Isosurface Extraction for Geometry Processing Topology Preserving Isosurface Extraction for Geometry Processing Gokul Varadhan1, Shankar Krishnan2, TVN Sriram1, and Dinesh Manocha1 1Department of Computer Science, University of North Carolina, Chapel Hill, U.S.A 2AT&T Labs - Research, Florham Park, New Jersey, U.S.A http://gamma.cs.unc.edu/recons ABSTRACT Marching Cubes (MC) [2] or any of its variants [3–5]. We We address the problem of computing a topology preserving refer to these isosurface extraction algorithms collectively as isosurface from a volumetric grid using Marching Cubes for MC-like algorithms. The output of an MC-like algorithm is geometry processing applications. We present a novel adap- an approximation – usually a polygonal approximation – of tive subdivision algorithm to generate a volumetric grid. the implicit surface. We refer to this step as reconstruction Our algorithm ensures that every grid cell satisfies certain of the implicit surface. sampling criteria. We show that these sampling criteria Compared to other surface representations (e.g. para- are sufficient to ensure that the isosurface extracted from metric surfaces), implicit surface representations are easy to the grid using Marching Cubes is topologically equivalent use to perform geometric operations like union, intersection, to the exact isosurface: both the exact isosurface and the difference, blending, and warping. Specifically, they map extracted isosurface have the same genus and connectivity. Boolean operations into simple minimum/maximum opera- We use our algorithm for accurate boundary evaluation of tions on the scalar fields of the primitives. Suppose we have Boolean combinations of polyhedra and low degree algebraic two primitives P1 and P2 with scalar fields f1 and f2. Then primitives, Minkowski sum computation, model simplifica- we have tion, and remeshing. The running time of our algorithm p ∈ ∂(P1 ∪ P2) ⇐⇒ min(f1(p), f2(p)) = 0 varies between a few seconds for simple models composed p ∈ ∂(P ∩ P ) ⇐⇒ max(f (p), f (p)) = 0 of a few thousand triangles and tens of seconds for complex 1 2 1 2 polyhedral models represented using hundreds of thousands p ∈ ∂(P1 \P2) ⇐⇒ max(f1(p), −f2(p)) = 0 of triangles. where ∂P denotes the boundary of P. Because of the above property, implicit representations are frequently used to per- 1. INTRODUCTION form Boolean operations. They have been used for numerous applications including geometric modeling, volume render- Implicit surface representations have become increasingly ing, morphing, path planning, swept volume computation, common in computer graphics and geometric modeling. This and sculpting digital characters [3, 4, 6–11]. representation uses a function f : d → to represent a R R Our goal is to exploit the desirable properties of implicit closed surface S. The function f : d → is known as the R R surface representations for geometric computations such as implicit function or the scalar field. S is the set of points Boolean operations (i.e. union, intersection and difference), p where f(p) = 0; S is referred to as an implicit surface or Minkowski sum computation, simplification, and remeshing. an isosurface. A commonly used scalar field is the signed In each case, we wish to obtain an accurate polygonal ap- distance field. The signed distance field D : d → is a R R proximation of the boundary of the final solid. Let E denote continuous function that at a point p measures the distance this boundary. We represent E implicitly – as an isosurface between p and S. This value is positive or negative de- of a scalar field. This scalar field is obtained by performing pending on whether the point lies outside or inside S. The minimum/maximum operations over the scalar fields defined distance can be defined under any reasonable norm (e.g., for the primitives. At a broad level, our approach performs Euclidean, max-norm). three main steps. A common way of representing a scalar field is to dis- cretize the continuous scalar field into discrete samples – to 1. Sampling: Generate a volumetric grid and compute compute the value of the scalar field at the vertices of a a scalar field (e.g, a signed distance field) at its corner volumetric grid. We refer to this step as a sampling of the grid points. scalar field. The grid is an approximate representation of the scalar field; the accuracy of the approximate representation 2. Operation: For each geometric operation (union or depends on the rate of sampling – the resolution of the grid. intersection), perform an analogous operation (e.g., An explicit boundary representation of the implicit surface min/max) on the scalar fields of the primitives. At can be obtained by extracting the zero-level isosurface using the end of this step, the scalar values at the grid points define a sampled scalar field for E. 3A preliminary version of this work appeared in the second European Symposium on Geometry Processing 2004 [1]. 3. Reconstruction: Perform isosurface extraction using (a) Union (b) Sampling and Operation (c) Reconstruction Figure 1: Sampling and reconstruction: This figure shows how to perform a union operation using the sampling and and reconstruction approach. The sampling step generates a volumetric grid (shown as a uniform grid). At each grid point, it computes a signed distance to the boundaries of each of the two primitives, P and Q. Next, a minimum operation is performed on the two signed distances. This generates another distance field on which the reconstruction is performed using an MC-like algorithm. The rightmost figure shows the reconstruction, which is an approximation to the union. an MC-like algorithm to obtain a polygonal approxi- plicity and efficiency. Each step is easy to implement. A mation A of E. uniform grid or an adaptive grid (e.g. octree) may be cho- sen. Geometric operations such as union or intersection are This approach is illustrated in Fig. 1. We will refer to E as cheap – we only need to perform simple min/max opera- the exact isosurface and A as the extracted isosurface or the tions on the corresponding scalar fields. Isosurface extrac- reconstructed isosurface. tion is also reasonably straightforward: MC-like algorithms are both simple and fast. Many public domain implementa- tions of MC-like algorithms [12] are available. Challenges/Issues: The above approach produces an ap- proximation A to the final surface E. The accuracy of the approximation mainly depends on the resolution of the un- derlying grid. Insufficient grid resolution can result in a poor approximation. This occurs especially if E has small com- ponents, thin sheets, or needle-shaped features. A may suffer from various kinds of errors: small components or handles present in E may not be captured in A. The process of re- construction may also introduce “extraneous topology”, i.e., A may have unwanted additional components or undesirable handles that were not present in E. Fig. 2 shows an example Figure 2: Accuracy problems with MC-like meth- of such a situation. ods: This figure highlights the errors that can be The above problems occur on account of inadequate res- present in the output when MC-like methods are used olution of the grid. Therefore, to alleviate these problems, to reconstruct surfaces with thin features. The left many applications generate samples on a fine grid. However, image shows the “gun model” of the Bradley Fight- the use of fine grid can result in three problems. First, there ing Vehicle, which is generated using 8 Boolean opera- may still be no guarantees on the accuracy of A. Second, tions. The right image shows the output of a MC-like a fine grid increases the storage overhead and the recon- algorithm (dual contouring) on a distance field sam- structed surface can have a high number of polygonal prim- pled on a uniform 64 × 64 × 64 grid. The output has itives. Finally, it is computationally expensive to use a fine many artifacts such as unwanted holes and extrane- grid. Recent work on adaptive grid generation and subdivi- ous handles. sion algorithms overcomes some of these problems [10, 13]. However, none of these algorithms give rigorous guarantees Two important advantages of the above approach are sim- on the accuracy of A. As compared to prior work, the main benefits of our algo- rithm are its speed, simplicity, and accuracy. It not only Goals: Our goal is to ensure an accurate approximation by offers the simplicity and efficiency of MC-like reconstruc- providing geometric and topological guarantees on A. In tion, but also the ability to guarantee the topology of the particular, we wish to ensure that A has a bounded two- extracted isosurface. sided Hausdorff error, and is topologically equivalent to E. Organization: The rest of our paper is organized as fol- The Hausdorff error measures the surface deviation between lows. Section 2 gives a brief overview of previous work on A and E; bounding this error is important to ensure a geo- isosurface extraction. Section 3 introduces the notation and metrically close approximation. definitions used in the rest of the paper. Section 4 presents Preserving topology is also important in many applica- an overview of the MC-like methods and analyzes the er- tions. In CAD, topological features such as tunnels often rors in their output that can be caused due to inadequate correspond to distinguishing characteristics of the model. resolution of the grid. In Section 5, we present a sampling The geometric models used to represent the organs in med- condition on the volumetric grid to ensure topology preser- ical datasets often consist of handles. Retaining these topo- vation. In Section 6, we present an adaptive subdivision logical features can be necessary in order to preserve the algorithm to generate a volumetric grid satisfying the sam- anatomical structure of the organ, which can be crucial for pling condition.
Recommended publications
  • An Algorithm for the Construction of Intrinsic Delaunay Triangulations with Applications to Digital Geometry Processing
    An Algorithm for the Construction of Intrinsic Delaunay Triangulations with Applications to Digital Geometry Processing Matthew Fisher Boris Springborn Peter Schroder¨ Alexander I. Bobenko Caltech TU Berlin Caltech TU Berlin Abstract The discrete Laplace-Beltrami operator plays a prominent role in many Digital Geometry Processing applications ranging from de- noising to parameterization, editing, and physical simulation. The standard discretization uses the cotangents of the angles in the im- mersed mesh which leads to a variety of numerical problems. We advocate the use of the intrinsic Laplace-Beltrami operator. It sat- isfies a local maximum principle, guaranteeing, e.g., that no flipped triangles can occur in parameterizations. It also leads to better con- ditioned linear systems. The intrinsic Laplace-Beltrami operator is based on an intrinsic Delaunay triangulation of the surface. We detail an incremental algorithm to construct such triangulations to- gether with an overlay structure which captures the relationship be- tween the extrinsic and intrinsic triangulations. Using a variety of example meshes we demonstrate the numerical benefits of the in- trinsic Laplace-Beltrami operator. Figure 1: Left: carrier of the (cat head) surface as defined by the original embedded mesh. Right: the intrinsic Delaunay triangu- 1 Introduction lation of the same carrier. Delaunay edges which appear in the original triangulation are shown in white. Some of the original 2 Delaunay triangulations of domains in R play an important role edges are not present anymore (these are shown in black). In their in many numerical computing applications because of the quality stead we see red edges which appear as the result of intrinsic flip- guarantees they make, such as: among all triangulations of the con- ping.
    [Show full text]
  • Iso-Surface Volume Rendering: Speed and Accuracy for Medical Applications Proefschrift Universiteit Twente, Enschede
    Iso-Surface Volume Rendering Speed and Accuracy for Medical Applications Marco Bosma Copyright © 2000 by M.K. Bosma All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the copyright owner. Bosma, Marco Klaas Iso-Surface Volume Rendering: Speed and Accuracy for Medical Applications Proefschrift Universiteit Twente, Enschede. -Met index, lit. opg. -Met samenvatting in het Nederlands ISBN 90-365-1397-5 Eerste Uitgave 2000 Druk: PrintPartners Ipskamp, Enschede ISO-SURFACE VOLUME RENDERING: SPEED AND ACCURACY FOR MEDICAL APPLICATIONS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. F.A. van Vught, volgens besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 20 oktober 2000 te 16.45 uur. door Marco Klaas Bosma geboren op 28 oktober 1970 te Losser Dit proefschrift is goedgekeurd door: Prof. Dr.-Ing. O.E. Herrmann (promotor) en Ir. J. Smit (assistent-promotor) SUMMARY This thesis describes the research on the accuracy and speed of different methods for the visualization of three-dimensional (3D) sets of (measured) data. In medical environments, these 3D datasets are generated by for instance CT and MRI scanners. The medical application makes special demands on the visualization methods. Medical application of 3D visualization methods asks for high accuracy. For practical application, the speed of the visualization should also be high, preferably real-time (25 images per second or higher).
    [Show full text]
  • Geometry-Aware Topological Decompositions of Meshes
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Geometry-aware topological decompositions of meshes Permalink https://escholarship.org/uc/item/3vh0q7wn Author Chen, Jia Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Geometry-aware topological decompositions of meshes DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Jia Chen Dissertation Committee: Professor Gopi Meenakshisundaram, Chair Professor Aditi Majumder Professor Shuang Zhao 2019 Chapter3 c 2016 ACM New York, NY, USA Chapter3 c 2018 ACM New York, NY, USA All other materials c 2019 Jia Chen DEDICATION To my family \. a man who keeps company with glaciers comes to feel tolerably insignificant by and by." { Mark Twain, A Tramp Abroad ii TABLE OF CONTENTS Page LIST OF FIGURESv LIST OF TABLESx LIST OF ALGORITHMS xi ACKNOWLEDGMENTS xii CURRICULUM VITAE xiii ABSTRACT OF THE DISSERTATION xiv 1 Introduction1 1.1 Cycles of topological properties.........................2 1.2 Topological decompositions of meshes......................4 2 Definitions and Background7 2.1 Surfaces and their topological classification...................7 2.2 Primal graph and dual graph embedded on a surface.............8 2.3 Paths and cycles.................................9 2.4 Tunnel and handle cycles............................. 11 3 Iterative localization of handle and tunnel cycles 13 3.1 Related work................................... 14 3.2 Problem formulation............................... 15 3.3 Localizing handle and tunnel cycles....................... 16 3.3.1 Iterative tree-cotree algorithm...................... 16 3.3.2 Cycle tightening.............................. 20 3.3.3 Decoupling composite fundamental cycles...............
    [Show full text]
  • A Comparative Analysis of Iso-Surface Generation Techniques for 3D Scalar Field Visualization
    ISSN 2321 3361 © 2020 IJESC Research Article Volume 10 Issue No.7 A Comparative Analysis of Iso-surface Generation Techniques for 3D Scalar Field Visualization Shubhashree Sahoo Department of Computer Science and Engineering Teegala Krishna Reddy Engineering College, India Abstract: A simple and efficient method for the extraction of high-quality continuous isosurfaces from the volumetric datasets is implemented and tested. The present method proceeds in two steps. In the first step, a continuous interpolant of the dataset were determined and second step involves the extraction of isosurface geometry by sampling the points on Marching Cubes triangles and projecting them onto the isosurface defined by the interpolant. The algorithms are studied and implemented using Matlab. The results using a synthetic datasets and discussion of practical considerations are presented. The importance of present method is that the proposed implementation could be applied to any arbitrary data. Keywords: Volumetric visualization, Iso-surface generation, Marching Cubes, MATLAB environment. 1. INTRODUCTION 2. RELATED WORK Recent preferment in computing hardware has eased the job of There are assorted approaches to the difficulty of 3D isosurface researchers and practitioners to model and simulate a variety of generation [5]. One of the elderly approaches involves physical phenomena in a faster and efficient manner [1]. The construction of surface contours and its interconnection. output of such simulations and measurements is a dataset, which However, presence of more than one contour in a slice causes is massive in size and complex in nature. The eminent challenge ambiguity. The Mayo Clinic has used a different approach that is extraction of essential information from such a huge dataset.
    [Show full text]
  • Digital Geometry Processing Mesh Basics
    Digital Geometry Processing Basics Mesh Basics: Definitions, Topology & Data Structures 1 © Alla Sheffer Standard Graph Definitions G = <V,E> V = vertices = {A,B,C,D,E,F,G,H,I,J,K,L} E = edges = {(A,B),(B,C),(C,D),(D,E),(E,F),(F,G), (G,H),(H,A),(A,J),(A,G),(B,J),(K,F), (C,L),(C,I),(D,I),(D,F),(F,I),(G,K), (J,L),(J,K),(K,L),(L,I)} Vertex degree (valence) = number of edges incident on vertex deg(J) = 4, deg(H) = 2 k-regular graph = graph whose vertices all have degree k Face: cycle of vertices/edges which cannot be shortened F = faces = {(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,L),(C,D,I), (D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)} © Alla Sheffer Page 1 Digital Geometry Processing Basics Connectivity Graph is connected if there is a path of edges connecting every two vertices Graph is k-connected if between every two vertices there are k edge-disjoint paths Graph G’=<V’,E’> is a subgraph of graph G=<V,E> if V’ is a subset of V and E’ is the subset of E incident on V’ Connected component of a graph: maximal connected subgraph Subset V’ of V is an independent set in G if the subgraph it induces does not contain any edges of E © Alla Sheffer Graph Embedding Graph is embedded in Rd if each vertex is assigned a position in Rd Embedding in R2 Embedding in R3 © Alla Sheffer Page 2 Digital Geometry Processing Basics Planar Graphs Planar Graph Plane Graph Planar graph: graph whose vertices and edges can Straight Line Plane Graph be embedded in R2 such that its edges do not intersect Every planar graph can be drawn as a straight-line plane graph ©
    [Show full text]
  • Evolution of the Graphical Processing Unit
    University of Nevada Reno Evolution of the Graphical Processing Unit A professional paper submitted in partial fulfillment of the requirements for the degree of Master of Science with a major in Computer Science by Thomas Scott Crow Dr. Frederick C. Harris, Jr., Advisor December 2004 Dedication To my wife Windee, thank you for all of your patience, intelligence and love. i Acknowledgements I would like to thank my advisor Dr. Harris for his patience and the help he has provided me. The field of Computer Science needs more individuals like Dr. Harris. I would like to thank Dr. Mensing for unknowingly giving me an excellent model of what a Man can be and for his confidence in my work. I am very grateful to Dr. Egbert and Dr. Mensing for agreeing to be committee members and for their valuable time. Thank you jeffs. ii Abstract In this paper we discuss some major contributions to the field of computer graphics that have led to the implementation of the modern graphical processing unit. We also compare the performance of matrix‐matrix multiplication on the GPU to the same computation on the CPU. Although the CPU performs better in this comparison, modern GPUs have a lot of potential since their rate of growth far exceeds that of the CPU. The history of the rate of growth of the GPU shows that the transistor count doubles every 6 months where that of the CPU is only every 18 months. There is currently much research going on regarding general purpose computing on GPUs and although there has been moderate success, there are several issues that keep the commodity GPU from expanding out from pure graphics computing with limited cache bandwidth being one.
    [Show full text]
  • 1 Parallel Algorithms for Volumetric Surface Construction Joseph Jaja
    1 Parallel Algorithms for Volumetric Surface Construction Joseph JaJa, Qingmin Shi, and Amitabh Varshney Institute for Advanced Computer Studies University of Maryland, College Park Summary Large scale scientific data sets are appearing at an increasing rate whose sizes can range from hundreds of gigabytes to tens of terabytes. Isosurface extraction and rendering is an important visualization technique that enables the visual exploration of such data sets using surfaces. However the computational requirements of this approach are substantial which in general prevent the interactive rendering of isosurfaces for large data sets. Therefore, parallel and distributed computing techniques offer a promising direction to deal with the corresponding computational challenges. In this chapter, we give a brief historical perspective of the isosurface visualization approach, and describe the basic sequential and parallel techniques used to extract and render isosurfaces with a particular focus on out-of-core techniques. For parallel algorithms, we assume a distributed memory model in which each processor has its own local disk, and processors communicate and exchange data through an interconnection network. We present a general framework for evaluating parallel isosurface extraction algorithms and describe the related best known parallel algorithms. We also describe the main parallel strategies used to handle isosurface rendering, pointing out the limitations of these strategies. 1. Introduction Isosurfaces have long been used as a meaningful way to represent feature boundaries in 2 volumetric datasets. Surface representations of volumetric datasets facilitate visual comprehension, computational analysis, and manipulation. The earliest beginnings in this field can be traced to microscopic examination of tissues. For viewing opaque specimen it was considered desirable to slice the sample at regular intervals and to view each slice under a microscope.
    [Show full text]
  • Computer Graphics CMU 15-462/15-662 Scotty 3D Setup Recitation Today! Hunt Library Computer Lab 3:30-5Pm
    Digital Geometry Processing Computer Graphics CMU 15-462/15-662 Scotty 3D setup recitation Today! Hunt Library Computer Lab 3:30-5pm CMU 15-462/662 Last time part 1: overview of geometry Many types of geometry in nature Geometry Demand sophisticated representations Two major categories: - IMPLICIT - “tests” if a point is in shape - EXPLICIT - directly “lists” points Lots of representations for both CMU 15-462/662 Last time part 2: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: “fans, not fins” Data structures for surfaces - polygon soup - halfedge mesh - storage cost vs. access time, etc. Today: next how do we manipulate geometry? twin - face edge - geometry processing / resampling Halfedge vertex CMU 15-462/662 Today: Geometry Processing & Queries Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals: - upsampling / downsampling / resampling / filtering ... - aliasing (reconstructed surface gives “false impression”) Also ask some basic questions about geometry: - What’s the closest point? Do two triangles intersect? Etc. Beyond pure geometry, these are basic building blocks for many algorithms in graphics (rendering, animation...) CMU 15-462/662 Digital Geometry Processing: Motivation 3D Scanning 3D Printing CMU 15-462/662 Geometry Processing Pipeline scan print process CMU 15-462/662 Geometry Processing Tasks reconstruction filtering remeshing parameterization compression shape analysis CMU 15-462/662 Geometry Processing: Reconstruction
    [Show full text]
  • Creating and Processing 3D Geometry
    Creating and processing 3D geometry Marie-Paule Cani [email protected] Cédric Gérot [email protected] Franck Hétroy [email protected] http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/ Context: computer graphics ● We want to represent objects – Real objects – Virtual/created objects ● Several ways for virtual object creation – Interactive by graphists – Automatic from real data ● 3D scanner, medical angiography, ... – Procedural (on the fly) ● Complex scenes, terrain, ... ● Different uses – Display, animation, ph ysical simulation, ... Course overview 1.Objects representations – Volume/surface, implicit/explicit, ... Real-time triangulation of implicit surfaces Course overview 1.Objects representations – Volume/surface, implicit/explicit, ... 2.Geometry processing – Simplify, smooth, ... Interactive multiresolution surface exploration Course overview 1.Objects representations – Volume/surface, implicit/explicit, ... 2.Geometry processing – Simplify, smooth, ... 3.Virtual object creation – Surface reconstruction, interactive modeling Shape modeling by sketching Planning (provisional) Part I – Geometry representations ● Lecture 1 – Oct 9th – FH – Introduction to the lectures; point sets, meshes, discrete geometry. ● Lecture 2 – Oct 16th – MPC – Parametric curves and surfaces; subdivision surfaces. ● Lecture 3 – Oct 23rd - MPC – Implicit surfaces. Planning (provisional) Part II – Geometry processing ● Lecture 4 – Nov 6th – FH – Discrete differential geometry; mesh smoothing and simplification (paper presentations).
    [Show full text]
  • Research on Shape Mapping of 3D Mesh Models Based on Hidden
    Research on Shape Mapping of 3D Mesh Models based on Hidden Markov Random Field and EM Algorithm WANG Yong1 WU Huai-yu2 1 (University of Chinese Academy of Sciences, Beijing 100049, China) 2 (Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China) Abstract How to establish the matching (or corresponding) between two different 3D shapes is a classical problem. This paper focused on the research on shape mapping of 3D mesh models, and proposed a shape mapping algorithm based on Hidden Markov Random Field and EM algorithm, as introducing a hidden state random variable associated with the adjacent blocks of shape matching when establishing HMRF. This algorithm provides a new theory and method to ensure the consistency of the edge data of adjacent blocks, and the experimental results show that the algorithm in this paper has a great improvement on the shape mapping of 3D mesh models. Keywords Shape Mapping, 3D Mesh Model, Hidden Markov Random Field, EM Algorithm 1 Introduction bending deformation, different sampling rate, and Digital geometry processing of 3D mesh models different parameterization methods. (a1'/a2', b1'/b2') has broad application prospects in the fields of are the transformed models of (a1/a2, b1/b2) by the industrial design, virtual reality, game entertainment, geometry processing framework of global Internet, digital museum, urban planning and so on[1]. perspective. It can be seen that the transformed However the surface of 3D mesh models is usually models are much similar in their poses and shapes. bent arbitrarily, lack of continuous parameters, and So the difficulty of establishing the automatic has complex characterized details, as is quite different matching between two different 3D shapes has been from the regular 2D image data with the uniform greatly reduced.
    [Show full text]
  • Computer Graphics CMU 15-462/15-662
    Digital Geometry Processing Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: “fans, not fns” Data structures for surfaces - polygon soup - halfedge mesh - storage cost vs. access time, etc. Today: next how do we manipulate geometry? twin - face edge - geometry processing / resampling Halfedge vertex CMU 15-462/662 Today: Geometry Processing Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals: - upsampling / downsampling / resampling / fltering ... - aliasing (reconstructed surface gives “false impression”) Beyond pure geometry, these are basic building blocks for many areas/algorithms in graphics (rendering, animation...) CMU 15-462/662 Digital Geometry Processing: Motivation 3D Scanning 3D Printing CMU 15-462/662 Geometry Processing Pipeline scan print process CMU 15-462/662 Geometry Processing Tasks reconstruction filtering remeshing parameterization compression shape analysis CMU 15-462/662 Geometry Processing: Reconstruction Given samples of geometry, reconstruct surface What are “samples”? Many possibilities: - points, points & normals, ... - image pairs / sets (multi-view stereo) - line density integrals (MRI/CT scans) How do you get a surface? Many techniques: - silhouette-based (visual hull) - Voronoi-based (e.g., power crust) - PDE-based (e.g., Poisson reconstruction) - Radon transform / isosurfacing (marching cubes) CMU 15-462/662 Geometry Processing: Upsampling Increase resolution
    [Show full text]
  • Geometry Processing Algorithms
    Geometry Processing Algorithms CSCS468468 http: //cs468.stfdd/tanford.edu/ Mirela Ben Chen Objective • Theory and algorithms for efficient analysis and manipulation of complex 3D models • Hands-on experience 2 Requirements Prerequisites: - Experience with C++ programming - Background in geometry or computational geometry helpful, but not necessary. Grade (3 units): - Programming exercises - OpenMesh intro (10%) - Surface smoothing (20%) - Simplification (20%) - Parameterization (25%) - Remeshing (25%) Use OpenMesh API Sign up to Piazza! 3 References • Book “Polygon Mesh Processing” by Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Levy • Eurographics 2008 course notes “Geometric Modeling Based on Polygonal Meshes” by Mario Botsch, Mark Pauly, Leif Kobbelt, Pierre Alliez, Bruno Levy, Stephan Bischoff, Christian Rössl • More links on web site 4 What is Geometry Processing About? • Acquiring • Analyzing • Manipulating 5 Applications Medical E-Commerce Simulation Engineering Culture Games & Movies Architecture Architecture Creating Reverse Engineering 6 A Geometry Processing Pipeline Low Level Algorithms 7 A Geometry Processing Pipeline 8 A Geometry Processing Pipeline High Level Algorithms Deformation and editing Extracting shape structure 9 Acquiring 33DD Geometry RSRange Scanners 10 Acquiring 33DD Geometry RSRange Scanners 11 Acquiring 33DD Geometry Tomography Simplification 20,000 8,000 2,000 Demo Applications Multi-resolution hierarchies for – efficient geometry processing – level-of-detail (()LOD) renderin g 14 Size-Quality
    [Show full text]