The History of Standard ML
The History of Standard ML DAVID MACQUEEN, University of Chicago, USA ROBERT HARPER, Carnegie Mellon University, USA JOHN REPPY, University of Chicago, USA Shepherd: Kim Bruce, Pomona College The ML family of strict functional languages, which includes F#, OCaml, and Standard ML, evolved from the Meta Language of the LCF theorem proving system developed by Robin Milner and his research group at the University of Edinburgh in the 1970s. This paper focuses on the history of Standard ML, which plays a central rôle in this family of languages, as it was the first to include the complete set of features that we now associate with the name “ML” (i.e., polymorphic type inference, datatypes with pattern matching, modules, exceptions, and mutable state). Standard ML, and the ML family of languages, have had enormous influence on the world of programming language design and theory. ML is the foremost exemplar of a functional programming language with strict evaluation (call-by-value) and static typing. The use of parametric polymorphism in its type system, together with the automatic inference of such types, has influenced a wide variety of modern languages (where polymorphism is often referred to as generics). It has popularized the idea of datatypes with associated case analysis by pattern matching. The module system of Standard ML extends the notion of type-level parameterization to large-scale programming with the notion of parametric modules, or functors. Standard ML also set a precedent by being a language whose design included a formal definition with an associated metatheory of mathematical proofs (such as soundness of the type system).
[Show full text]