ACOMPARATIVEANALYSISOFSIZEAND ECOLOGICALFACTORSIN Athesissubmittedto KentStateUniversityinpartial fulfillmentoftherequirementsforthe degreeofMasterofArts by MelissaEdler August2007

Thesiswrittenby MelissaEdler B.A.,KentStateUniversity,2000 M.A.,KentStateUniversity,2007 Approvedby Dr.ChetC.Sherwood,Advisor Dr.RichardS.Meindl,Chair,DepartmentofAnthropology Dr.JohnR.D.Stalvey,Dean,CollegeofArtsandSciences

ii TABLE OF CONTENTS

LISTOFFIGURES……………………………………………………………………v

LISTOFTABLES…………………………………………………………………….vii

ACKNOWLEDGEMENTS……………………………………………………………ix

Chapter

I.INTRODUCTION…………………………………………………………1

Overview…………………………………………………………………...1 RoleoftheHippocampusin………………………………...... 2 SpatialMemory…………………………………………………………….7 PlaceCells………………………………………………………………….9 SpatialViewCells………………………………………………………….12 UseofSpatialMemoryinForaging…………………………………....…..17 CognitiveAdaptationstotheEnvironment………………………………...21

II.METHODS………………………………………………………………...26

SpeciesAnalyses…………………………………………………………...31 IndependentContrastAnalyses…………………………………………….33

III.RESULTS…………………………………………………………………..37

PercentageofFrugivorousDiet…………………………………………….37 PercentageofFolivorousDiet……………………………………………...39 PercentageofInsectivorousDiet…………………………………………...42

iii HomeRange………………………………………………………………..44 DiurnalActivityPattern…………………………………………………….47 NocturnalActivityPattern…………………………………………….…....48 ArborealHabitat…………………………………………………………….49 SemiTerrestrialHabitat…………………………………………………….50 TerrestrialHabitat…………………………………………………………..51

IV.DISCUSSION………………………………………………………………52

DietandHippocampusVolume…………………………………………….52 HomeRangeandHippocampusVolume……………………………………56 ActivityPatternsandHippocampusVolume……………………………….59 HabitatsandHippocampusVolume………………………………………..61

V.CONCLUSION……………………………………………………………..65

REFERENCES……………………………………………………………………….....67

iv LIST OF FIGURES

Figure1:HippocampusandSurroundingCortices……………………………………3 Figure2:InformationFlowthroughMedialTemporalLobe…………………………4 Figure3:OdorDiscriminationTest…………………………………………………..6 Figure4:RadialArmMazeTest……………………………………………………...8 Figure5:PlaceCellsintheHippocampus……………………………………………10 Figure6:MicrocircuitsoftheHippocampus………………………………………….16 Figure7:PhylogeneticTreeforPrimates……………………………………………...36 Figure8:PlotofLogHippocampusVolumeversusPercentageof FrugivorousDiet……………………………………………………………..38 Figure9:PlotofHippocampusResidualfromMedullaOblongata versusPercentageofFrugivorousDiet………………………………………38 Figure10:PlotofHippocampus/MedullaOblongataRatioversus PercentageofFrugivorousDiet……………………………………………..39 Figure11:PlotofLogHippocampusVolumeversusPercentageof FolivorousDiet………………………………………………………………40 Figure12:PlotofHippocampusResidualfromMedullaOblongata versusPercentageofFolivorousDiet………………………………………..41 Figure13:PlotofHippocampus/MedullaOblongataRatioversus PercentageofFolivorousDiet……………………………………………….41

v Figure14:PlotofLogHippocampusVolumeversus PercentageofInsectivorousDiet……………………………………………43 Figure15:PlotofHippocampusResidualfromMedullaOblongata versusPercentageofInsectivorousDiet……………………………………43 Figure16:PlotofHippocampus/MedullaOblongataRatioversus PercentageofInsectivorousDiet……………………………………………44 Figure17:PlotofLogHippocampusVolumeversusLogHomeRange……………..46 Figure18:PlotofHippocampusResidualfromMedullaOblongata versusLogHomeRange…………………………………………………….46 Figure19:PlotofHippocampus/MedullaOblongataRatioversus LogHomeRange……………………………………………………………47 Figure20:PlotofLogBodyMassversusPercentageofFrugivorousDiet………….54

vi LIST OF TABLES Table1:RawDataValuesforHippocampusandMedullaVolumes, HomeRangeAreas,Diet,ActivityPatternandHabitat.....…………………27 Table2:CorrelationValuesbetweenHippocampusVolume andPercentageofFrugivorousDiet…………………………………………37 Table3:CorrelationValuesbetweenHippocampusVolume andPercentageofFolivorousDiet…………………………………………..40 Table4:CorrelationValuesbetweenHippocampusVolume andPercentageofInsectivorousDiet………………………………………..42 Table5:CorrelationValuesbetweenHippocampusVolumeandHomeRange………45 Table6:CorrelationValuesbetweenHippocampusVolume andDiurnalActivityPattern…………………………………………………48 Table7:CorrelationValuesbetweenHippocampusVolume andNocturnalActivityPattern………………………………………………49 Table8:CorrelationValuesbetweenHippocampusVolumeandArborealHabitat…..50 Table9:CorrelationValuesbetweenHippocampusVolume andSemiTerrestrialHabitat…………………………………………………51 Table10:CorrelationValuesbetweenHippocampusVolume andTerrestrialHabitat……………………………………………………….51

vii Table11:CorrelationValuesbetweenHippocampusVolumeandHomeRange afterRemovingFrugivorousInsectivores……………………………………59

viii ACKNOWLEDGEMENTS IthankDr.ChetSherwoodforservingasmyadvisorallthewayfrom

Washington,D.C.ThanksalsogoestoDr.ChrisVinyardfortakingthetimetohelp melearnMesquiteandmakingsurethatIgraspedthestatisticalanalyses.IthankDr.

OwenLovejoyforagreeingtoserveonmythesiscommittee.Inaddition,thanksto

Dr.EmmanuelGilissenforallowingmetousemuchofthesocioecological datahepreviouslygathered.

IthankMarianneBlankenshipforfindinganoldMacIntoshthatwould supportCAICandthetechieswhoriggedittoworkonaclassicoperatingsystem.

Ithankmyfamily,especiallymyMom,andfriendsfortheirsupport, encouragementandakickinthebuttwhenitwasneededalongtheway.Finally,I thankmyhusbandRyanwhosurrenderedhiswifeformanymonthstothethesis monsterandwhocookeddinner,cleanedhouseandwashedlaundrytoallowmetime toworkonmythesis.

ix

CHAPTER I: INTRODUCTION

Overview

Ananimal’secologicalsurroundingscanprovidecluestoitsmorphology.For instance,variousareasofthemammalianhavebeenshowntoadaptinresponseto environmentalinfluences(EisenbergandWilson,1978;Bartonetal.,1995;Hutcheonet al.,2002).Onewellstudiedexampleisthehippocampus,knownforitsroleinspatial memory,whichselectivelyincreasesinresponsetoenvironmentalpressuresinanimals suchasbirds,rodents,batsand(Krebsetal.,1989;Jacobsetal.,1990;Safiand

Dechmann,2005;Maguireetal.,2000).Whetherasimilarrelationshipexistsbetweenthe primatehippocampusandenvironmenthasyettobeexamined.

Thegoalofthisstudyistodeterminewhethervariationinprimatehippocampal sizeisrelatedtoenvironmentalfactors,suchasdiet(frugivory,folivoryorinsectivory), homerangesize,activitypattern(diurnalornocturnal)andhabitat(arboreal,semi terrestrialorterrestrial).Basedonresultsfrompriorstudies,thiscurrentanalysisteststhe followinghypotheses:

Hypothesis 1: Primateswithahigherpercentageoffrugivoryintheirdietshould

havelargerhippocampithanthosewithahigherpercentageoffolivoryor

1 2

insectivoryintheirdiet(CluttonBrockandHarvey,1980;Harveyetal.,1980;

SafiandDechmann,2005).

Hypothesis 2:Ashomerangesizeincreases,hippocampusvolumealsoshould

increaseinprimatesdue,inpart,toitsroleinspatialmemory(CluttonBrockand

Harvey,1977;CluttonBrockandHarvey,1980;Harveyetal.,1980).

Hypothesis 3: Hippocampusvolumesizeshouldnotdiffersignificantlybetween

diurnalandnocturnalprimates(CluttonBrockandHarvey,1980;BiccaMarques

andGarber,2004).

Hypothesis 4: Arborealprimatesviewspacethreedimensionallyandrelymore

heavilyonspatialabilitiesthanterrestrialprimates,thusarborealprimatesshould

havelargerhippocampalsizethanterrestrialprimates(Russon,2002).

RoleoftheHippocampusinMemory

Locatedinthemedialtemporallobe,thehippocampalformationcomprisesthe perirhinal,entorhinal,andparahippocampalcorticesandtherhinalsulcus(seeFigure1).

Inprimates,majorinputconnectionstothehippocampuscomefromassociationareasof thecerebralcortex,includingtheparietalcortex,thetemporallobe’svisualandauditory areasandthefrontalcortex,andthehippocampussuppliesoutputstotheand cerebralcortexviathesubiculum,entorhinalcortexandparahippocampalgyrus(see

Figure2)(VanHoesen,1982;Amaral,1987;SuzukiandAmaral,1994;Rolls,1999).

3

Figure 1.Thebrainissectionedcoronallyshowingthehippocampusanditssurrounding cortices.(Source:Bearetal.,1996)

Thehippocampusplaysalargeroleinmemoryand.Twomaintheories existconcerningtheroleofthehippocampusinmemory.Theepisodictheoryof hippocampalfunctionsuggeststhatthehippocampusplaysaselectiveroleinepisodic memory,whichinvolvesthecapacitytorememberspecificpersonalexperiencesand detailedseriesofevents,withlittleornocontributiontosemanticmemory,thatoffacts andworldknowledge(VarghaKhademetal.,1997;Fujiietal.,2000).Incontrast,the declarativetheoryofmedialtemporallobefunctionarguesthatthehippocampus,along withsurroundingcortices,contributestobothsemanticandepisodicmemory.Thisview issupportedbyalargebodyofsimilarfindingsfromstudiesinamnesicpatients

(MannsandSquire,2002;SquireandZola,1998).

ScovilleandMilner(1957)werethefirsttohypothesizethathippocampaldamage mightbetheunderlyingcauseofinthecaseofpatientH.M.Duetosevere

4

Figure 2.Informationflowthroughthemedialtemporallobe.(Source:Bearetal.,1996)

seizures,H.M.hadsurgeryinwhichan8cmlengthofthemedialtemporallobe,

includingtwothirdsoftheanteriorhippocampus,wasremoved(Bearetal.,1996).While

theoperationhadlittleeffectonhisperception,intelligenceandpersonality,H.M.

developedpartialretrogradeamnesia(beforetheonset)andsevereanterogradeamnesia

(aftertheonset).Thoughherememberedagreatdealofhischildhood,hewasunableto

recognizeapersonhemetfiveminutesearlier.H.M.lackedtheabilitytoformnew

declarative(factsandevents),despiteretainingtheabilitytolearnnewtasks,

orcreatenewproceduralmemories.

Inamorerecentexampleofhumanamnesia,Mannsetal.(2003)examinedthe performanceofagroupofhippocampaldamagedpatientsversusmatchedcontrolsfor

memoryofnewsevents.Eventswereeitherencounteredbeforeoraftertheonsetof

amnesia.Researchersfoundpatientswithhippocampaldamageexhibitedanterograde

amnesiawithsignificantimpairmentsinrecallingandansweringmultiplechoice

questionsaboutnewseventsthatoccurredaftertheonsetofamnesiaandpartial

retrogradeamnesiaforeventsoccurringonetotenyearsbeforetheonsetofamnesia

(Mannsetal.,2003).Conversely,memoryforeventsoccurringeleventothirtyyears

5

beforetheonsetofamnesiawasnotaffected(Mannsetal.,2003).Thus,resultsare

consistentwiththedeclarativeviewthatthehippocampusisinvolvedinnotonlyepisodic

memorybutalsosemanticmemory.

AsimilarmodelofhumanamnesiainprimateswascreatedbySquireandZola

Morgan(1991)inaseriesofexperiments.Threegroupsofmonkeys(Macaca fascicularis )wereeachgivenadifferenttypeoflesion,oneencompassingboththe hippocampusandamygdalalesion(H+A+),onerestrictedtoonlythehippocampus(H+) andahippocampusandsurroundingcorticeslesion(H++)(SquireandZolaMorgan,

1991).Indelayednonmatchingtosampletasks,monkeyswiththeH+A+lesion,like humanamnesicpatients,wereseverelyimpairedonanumberofmemorytasksbutwere entirelynormalatacquiringandretainingskills(SquireandZolaMorgan,1991).Even thosewithonlytheH+lesionhadstatisticallysignificantmemoryimpairmentafter preoperativetraining(SquireandZolaMorgan,1991).Themostseverelyimpaired monkeyswerethosewithbilateralH++lesions(SquireandZolaMorgan,1991).These findingsemphasizethatthehippocampusitselfisimportantformemory,thatthe hippocampusisdependentoninputfromsurroundingcortices,andthatdamagelimitedto thehippocampusissufficienttocausesignificantmemoryimpairment.

Experimentswithrodentshaveledtothesameconclusion.Inanexperimentto testforsequentialordermemory,ratswerepresentedwithaseriesoffiverandomly selectedodors(Fortinetal.,2002).Animalswererewardedforselectingtheodorthat hadappearedearlierintheseries.Controlratsperformedwell,whilethosewith

6

Figure 3.ExampleofEichenbaum’sodordiscriminationexperiment.(Source:Adapted fromEichenbaum,Fagan,MathewsandCohen,1988)

hippocampallesionsperformedatnearchancelevels(Fortinetal.,2002).Inasecond

test,thesameratswereexaminedontheirabilitytorecognizeodorsinapreviousseries

andwererewardedwhentheyselectedtheodorthatwasnotpresentedintheprior

sequence(Fortinetal.,2002).Ratswithhippocampallesionsperformedaswellas

normalratsontherecognitionprobes;therefore,ratswithhippocampaldamagecould

recognizeodorsbutlackedtheabilitytoremembertheirsequentialorder(Fortinetal.,

2002).Thissupportstheviewthatthehippocampusalsoplaysaspecificandfundamental

roleinepisodicmemory.

Eichenbaumetal.(2005)developedataskthatassessedepisodicmemory

involvingacombinationofodorspresentedinuniqueplacesinaspecificorder.During

eachtrial,ratssequentiallysampledauniqueseriesoffourrewardedodorcups,

eachinadifferentplacealongtheedgeofanopenfield(Eichenbaumetal.,2005).Then,

memoryfortheorderofthoseeventswastestedbypresentingachoicebetweenapairof

7

odorcupsintheiroriginallocations(seeFigure3)(Eichenbaumetal.,2005).Controlrats performedwellabovechance(76.2percent),indicatingthattheyusebothodorand

spatialcuesincreatingtheirjudgmentsabouttheorderofevents(Eichenbaumetal.,

2005).Notsurprisingly,ratswithhippocampaldamagefailedonbothaspectsofthistask

(Eichenbaumetal.,2005).Thoughtheanimalsseemedtopossesssomeformofmemory

forbothspatialandolfactorycues,theycouldnotcombinethesecueseffectivelyto

determinethecorrectorderofevents(Eichenbaumetal.,2005).

Spatial Memory

Inthebrain,declarativememoriesareorganizedinawaythatspatialparameters

oftheoriginalsensorystimuli—theirrelativedistanceanddirection—areaccurately

represented(SquireandZola,1996;Ludvigetal.,2003).Thisenablesthebrainto

generateacognitivemapoftheenvironment,perhapscomposedofengramsencoding

objectsinspace(Tolman,1948;O’KeefeandNadel,1978).Theselection,consolidation

andassociationoftheseengramsaretermed‘spatialmemoryformation’(Tolman,1948;

O’KeefeandNadel,1978).Spatialmemoryisatypeofepisodicmemoryusedin performingvariousspatialtasks.

Researchontherathippocampussuggeststhatitperformsafunctioninspatial

memory.Inanalysesofthehippocampus,Rollsandhiscolleagues(1989)foundthatrats

withhippocampaldamagehaveanimpairedabilitytocorrectlyruninan8armmaze,

whichconsistsofpassagewaysthatradiatefromacentralplatform(seeFigure4).A

normalratexploreseacharmuntilitfindsthefoodattheendofthearm.Withpractice,

8

Figure 4.Followingaratthrougharadialarmmaze. (a) An8armradialmaze. (b) The pathofaratthroughamazeinwhichallthearmscontainfood. (c) Ifaratlearnsthat4of the8armsnevercontainfood,itwillignoretheseandfollowapathtoonlythebaited arms.(Sources:Parta,Bearetal.,1996;Partsbandc,AdaptedfromCohenand Eichenbaum,1993)

theratbecomesefficientatfindingallthefood,goingdowneacharmofthemazeonce andusingvisualorothercuesaroundthemazetorememberwhereithasalreadybeen.

Ratsthathavehippocampaldamagepriortobeingputinthemazestilllearntogodown thearmsofthemazeandeatthefoodplacedattheendofeacharm(Rollsetal.,1989;

Bearetal.,1996).However,theyneverlearntodothisefficiently;ratswithhippocampal lesionsvisitthesamearmsmorethanonce,evenafterfindingnofoodafterthefirsttrip, andtheyleaveotherarmscontainingfoodunexploredforanabnormallylongtime(Rolls etal.,1989;Bearetal.,1996).Theseratslearnthetaskbutcannotseemtoremember

9

whicharmstheyhavealreadybeendownandlacktheabilitytoformacognitivespatial

map(Rollsetal.,1989).

Spatialfunctionintherathippocampusalsoisinvolvedwithpathintegration.Ina

seriesofablationstudies,Whishawandcolleagues(1997)foundthatthehippocampus

usesidiotheticinformationasanestimateoftheanimal'scurrentenvironmentallocation,

derivedfromtheanimal'sownmovementsthroughspaceinreferencetoaknownstarting point.Therefore,therathippocampushelpsintegratesignalsoftheanimal'smovement

overtime(WhishawandJarrard,1996;WhishawandTomie,1997;Whishawetal.,

1997;Gaffan,1998).

Place Cells

Multipleintherathippocampusselectivelyrespondwhentheanimalisin

aparticularlocationinitsenvironment;theseneuronsareknownasplacecells(O’Keefe

andDostrovsky,1971).Usingamicroelectrodeimplantedintherat’shippocampus,

O’KeefeandDostrovsky(1971)foundspecificcellsfiredbasedonwhichcornerofabox

theratmovedinto.Forexample,whentheratmovedtothenorthwestcornerthecell beganfiring,andwhentheratmovedoutofthecorner,thefiringstopped.Theparticular cellonlyrespondedwhentheratwasinthatoneportionofthebox;thislocationis knownasthe’splacefield(O’KeefeandDostrovsky,1971).

Thelocationoftheplacefieldisrelatedtosensoryinputsuchasvisualstimuliin theenvironment(O’KeefeandDostrovsky,1971).Inthesameexperiment,O’Keefeand

Dostrovsky(1971)paintedimagesabovethefourcorners,suchasastarabovethe

10

Figure 5. Placecellsinthehippocampus. Aratexploresasmallbox(leftpanels); thenapartitionisremovedsothatitcan explorealargerarea(centerandright panels). (a) Colorcodingindicatesthearea intheboxwhereoneplacecellinthe hippocampusresponds:red=large response,yellow=moderateresponse, lightblue=weakresponse,darkblue=no response.Thiscellhasaplacefieldinthe smallupperbox;whenthepartitionis removed,itstaysinthesamelocation. (b) Anelectrodeisnexttoacellinthe hippocampusthatdoesnotrespondwhen theanimalisinthesmallupperbox(left). Overthenext20minutes,aplacefield developsinthenewlargerbox(centerand right).(Source:AdaptedfromWilsonand McNaughton,1993) northwestcornerandahappyfaceabovethesoutheastcorner.Theyremovedtheratfrom thebox,blindfoldedit,andthensecretlyrotatedthebox180degreessothatthe northwestcornerhadthehappyfaceandthesoutheastcornerhadthestar.Then researchersreturnedtherattotheboxandremovedtheblindfold.Whentheratwentinto thecornernearthestar,theneuronbecameactive,whichdemonstratesthattheresponse canbebasedonvisualstimuli(O’KeefeandDostrovsky,1971).Aslongastheanimal hashadenoughtimetoexploreitsenvironment,theplacecellswillbelocationspecific

(O’KeefeandDostrovsky,1971;Bearetal.,1996).

Placecellsaredynamicandcanaltertheirplacefieldsbasedonthecurrent environment.O’KeefeandDostrovsky(1971)examinedplacefieldsofseveralcells whenaratwasputinasmallboxandabletoexploreit.Thentheycutaholeintheside ofthebox,sotheanimalcouldexplorealargerarea.Initiallynoplacefieldsexisted

11

outsidethebox,butaftertheratexploreditsexpandedarea,somecellsdevelopedplace

fieldsinthenew,externallocation(seeFigure5).

Additionalexperimentshavebeenconductedtocharacterizetheinformationused

inconstructingplacecellsandwhatroletheymightplayininformationprocessingand

memorymechanisms(O’Keefe,1979;McNaughtonetal.,1983;O’Keefe,1984;Muller

etal.,1991;Markusetal.,1995;NadelandEichenbaum,1999;ShapiroandEichenbaum,

1999;Fentonetal.,2000;Redishetal.,2001;Hölscheretal.,2004).Inarecenttest,

FerbinteanuandShapiro(2003)examinedthemnemonicsignalsofhippocampalcellsin

ratswithdamagetothefornix,amajoroutputpathwayfromthehippocampus,duringthe performanceofaradialarmmazealternationtask.Beyondtypicalhippocampalplacecell

activity,theyalsofoundasecondactivitypatterntermed“journeydependent”spatial

activity,wherecellsfiredinaparticularlocationinthemazeduringaspecificjourney

(FerbinteanuandShapiro,2003).

Twodifferenttypesofjourneydependentactivityweredescribed.Thefirsttype

ofjourneydependentactivitywasobservedonthegoalarmandwasdependentonthe

identityofthestartarmvisitedonthattrial(FerbinteanuandShapiro,2003).Therefore,

thesecellssignaledinformationaboutthepreviouslyvisitedplace(retrospectivesignal).

Thesecondtypeofjourneydependentactivitywasdetectedonthestartarmandwas

dependentonthegoalarmabouttobechosen(prospectivesignal)(Ferbinteanuand

Shapiro,2003).Hence,hippocampalneuronssignalinformationnotonlyaboutthe

immediatepast(retrospectivesignal)andthepresent(classicplacecellactivity)butalso

theimminentfuture(prospectivesignal).Moreover,becausealmosthalfofthejourney

12

dependentcellsinthegoalarmmaintainedtheirspatialactivityduringdetourtrials,when

thepathbetweenthestartandgoalarmwasnotdirect,thissuggeststhatthesecellsdid

notdependonthespatialtrajectoryorthespecificcombinationsofbodymovements

madebytheanimal(FerbinteanuandShapiro,2003).Instead,thisactivityappearsto

signalselectiveinformationaboutparticulargoaldirectedjourneys,inpart,confirming

thatthehippocampusisinvolvedinpathintegration.

Spatial View Cells

Inadditiontorodents,primateswithhippocampaldamagealsoshowspatial

memorydeficitsinobjectplacememorytasks,whichrequireawholesceneorsnapshot

likememory(Mishkin,1982;GaffanandSaunders,1985;Gaffan,1987;Gaffan,1994;

Rolls,1999).Forexample,macaquesandhumanswithdamagetothehippocampusor

fornixareimpairedintasks,wherethelocationofobjectsandtheplaceswhereresponses

shouldbemade,mustberemembered(SmithandMilner,1981;GaffanandSaunders,

1985;Parkinsonetal.,1988;Rolls,1999).

Neuronsthatrespondinrelationtothelocationoftheanimal,likeplacecellsin

therathippocampus,havenotbeenfoundintheprimatehippocampus(Rolls,1999).

Instead,researchershavefoundspatialviewcells,whichrespondtotheplaceatwhich

theprimateislooking(WatanabeandNiki,1985;Rollsetal.,1989;RollsandO’Mara,

1993,1995;Rollsetal.,1997;Rollsetal.,1998;Rolls,1999).WhenWatanabeandNiki

(1985)analyzedhippocampalneuronalactivityinmonkeysperformingadelayedspatial

responsetask,theyreportedthat6.4percentofhippocampalneuronsresponded

13

differentlywhilethemonkeywasrememberingleftascomparedtoright.Moreoverinthe

sametypeofspatialresponselearningtask,Miyashitaetal.(1989)found14percentof

hippocampalneuronsrespondedtoparticularcombinationsofvisualstimuliandspatial

responses.

Inadditiontodelayedresponsetasks,spatialviewcellsintheprimate

hippocampushelpprovidethespatialrepresentationthatenablesprimatestoperform

objectplacememorytests(Rollsetal.,1989;Rollsetal.,2005).Inananalysisinvolving bothadelayedspatialresponsetaskandanobjectplacememorytask,Cahusacetal.

(1989)probedmonkeyhippocampalactivity.Intheobjectplacememorytask,the

monkeywasshownasamplestimulusinonepositiononavideoscreen.Afteratwo

seconddelay,thesameoradifferentstimuluswasshownineitherthesameoradifferent position.Themonkeywasrequiredtorememberthesampleanditsposition,andifboth

matchedthedelayedstimulus,itlickedtoobtainfruitjuice.Ofthe600neuronsanalyzed

inthistask,3.8percentrespondeddifferentlyforthedifferentspatialpositions(Cahusac

etal.,1989).Therefore,somehippocampalneuronsresponddifferentlyforstimulishown

indifferentpositionsinspace,andsomeresponddifferentlywhenthemonkeyis

rememberingdifferentpositionsinspace.

Auniqueaspectofprimatespatialviewcellsistheirabilitytomaintaintheir

spatialpropertiesforperiodsofseveralminutesinthedark(Robertsonetal.,1998).For

instance,evenwhenvisualdetailsoftheviewwerecompletelyobscuredbyfloorto

ceilingblackcurtains,manyofthespatialneuronsrespondedwhenthemonkeylooked

towardswheretheviewhadbeen(Robertsonetal.,1998).Inthiscase,thesecellsused

14

idiotheticcues,includingeyepositionandheaddirection,totriggermemoryrecall

(Robertsonetal.,1998).

Consequently,primates,withtheirhighlydevelopedvisualandeyemovement

controlsystems,canexploreandrememberinformationaboutwhatispresentatlocations

intheenvironmentwithouthavingtovisitthoseplaces(Rolls,1999).Spatialviewcells

areusefulinthattheyprovidearepresentationofspacethatdoesnotdependonexactly

wherethemonkeyis,andthatcouldbeassociatedwithitemsthatmightbepresentin

thosespatiallocations.Forinstance,aprimatecouldusethisrepresentationtoremember

whereithadseenripefruit.

Asspatialviewcellsrespondtotheplaceatwhichaprimateislooking,these

cellscodeforparticularlocationsinallocentric(worldbased)space(Rollsetal.,1989;

FeigenbaumandRolls,1991;Rollsetal.,1998;GeorgesFrançoisetal.,1999;Rolls,

1999).Todeterminetheproportionofspatialviewcellsthatcodeforegocentricversus

allocentricspace,FeigenbaumandRolls(1991)examinedwhetherspatialfieldsinthe

hippocampususeegocentricorallocentriccoordinates.Theyfound10percentofspatial

neuronswereegocentric,meaningtheresponsesremainedinthesamepositionrelativeto

themonkey’sbodyaxiswhetherthescreenwasmovedorthemonkeywasrotatedor

movedtoadifferentposition(FeigenbaumandRolls,1991).However,46percentofthe

spatialneuronsanalyzedwereallocentric,inwhichtheresponsesremainedinthesame positiononthescreenorintheroomwhenthemonkeywasrotatedormovedtoa

differentposition(FeigenbaumandRolls,1991).

15

Anotherfunctionoftheprimatehippocampusmaybetoassociativelycombine

spatialandrewardinformationtoprovidearepresentationoftherewardsavailableat

differentspatiallocations(Marr,1971;Rolls,1989,1996;TrevesandRolls,1994;Rolls

andTreves,1998;Rollsetal.,2002).Thisassociationbetweenspatialview

representationsandrewardsmightofferabasisforrememberingwheredifferentrewards

arelocatedinspace.Totestthisidea,RollsandXiang(2005)recordedneuronalactivity

inthehippocampus,whilerhesusmacaquesperformedareward–placeassociationtask.

Eachspatialsceneshownonavideomonitorhadonelocationthat,iftouched,yieldeda preferredfruitjuicerewardandasecondlocationthatyieldedalesspreferredjuice

reward.Additionally,eachscenehaddifferentlocationsforthedifferentrewards.Of312

neuronsanalyzedinthehippocampus,18percentrespondedmoretothelocationofthe preferredrewardindifferentscenes,andfivepercentrespondedtothelocationofthe

lesspreferredreward(RollsandXiang,2005).Whenlocationsofthepreferredrewards

inthesceneswerereversed,60percentof44hippocampalneuronstestedswitchedthe

locationtowhichtheyresponded,showingthatthereward–placeassociationscouldbe

altered(RollsandXiang,2005).However,themajority(82percent)ofthesesame

neuronsdidnotrespondtorewardassociationsinavisualdiscrimination,object–reward

associationtask(RollsandXiang,2005).Therefore,theprimatehippocampuscontainsa

representationoftherewardassociationsofallocentriclocations.

Associatingtogethersuchaspatialrepresentationwitharepresentationofan

objectcouldbeemployedthroughanautoassociationnetworkimplementedbythe

recurrentcollateralconnectionsoftheCA3hippocampalpyramidalcells(Rolls,1989;

16

Figure 6.Microcircuitsofthehippocampus.(Source:Bearetal.,1996)

Rolls,1996;RollsandTreves,1998;TrevesandRolls,1992;TrevesandRolls,1994).

Withinthehippocampus,athreestagesequenceofprocessingconsistsofthedentate granulecells,theCA3pyramidalcellsandtheCA1pyramidalcells(seeFigure6).Akey hypothesisisthatthehippocampalCA3recurrentcollateralconnectionswhichspread throughouttheCA3regionprovideasingleautoassociationnetworkthatenablesthe firingofanysetofCA3neuronsrepresentingonepartofamemorytobeassociated togetherwiththefiringofanyothersetofCA3neuronsrepresentinganotherpartofthe samememory(Marr,1971;RollsandStringer,2005).

Inneuropsychologicalanalyses,Rollsetal.(1998)quantitativelyassessed informationaboutthespatialenvironmentrepresentedbyhippocampalspatialviewcells.

17

Theyfoundthattheinformationconveyedbyahippocampalneuronisroughly

independentofthatcarriedbyotherhippocampalneurons(Rollsetal.,1998).Inother

words,thenumberofstimuli,inthiscaselocationsinspacethatcanbeencodedbya populationofneuronsintheprimatehippocampus,increasesexponentiallyasthenumber

ofcellsinthesampleincreases(Rollsetal.,1998).Theconclusionisthatthenumberof

stimulithatcanbeencodedincreasesexponentiallywiththenumberofcellsinthe

representationexpressedbythispopulationofhippocampalneurons.Amechanismthat

hasbeensuggestedtocontributetothisisthepatternseparationperformedbythedentate

granulecellsoperatingasacompetitivenetworkandbythemossyfiberprojectiontothe

CA3cells(Rolls,1989;RollsandTreves,1998;TrevesandRolls,1992).

UseofSpatialMemoryinForaging

Inthewild,animalsbenefitfromanabilitytorememberthelocationofdifferent feedingsites. Mustached( Saguinus mystax )andsaddleback( Saguinus fuscicollis )

tamarinshaveshowntheabilitytomaintaindetailedknowledgeofthedistributionand

locationofmultipletreespeciesintheirhomerange(Garber,1989).Thetamarins

concentratedtheirfeedingeffortsonasmallnumberoftargettreespecies,visitingan

averageofthirteentreesperday(Garber,1989).In70percentofallcases,thenearest

treeofatargetspecieswasselectedasthenextfeedingsite,andtamarinstraveledusinga

straightlinepath(Garber,1989).Thegoaldirectedforagingabilitiesofthesetamarins

mayhelpoffsetthepatchinessoffruitandexudatesthatmakeuppartoftheirdiet.

18

Todemonstratethatprimatesusespatialmemoryinforagingforfood,Ludviget

al.(2003)examinedspatialmemoryformationinfreelymovingsquirrelmonkeys

(Saimiri sciureus ),byallowingthemonkeytomoveinalargetestchamber,collecting

foodfromasetofeightbaitedportsinterspersedamongemptyones.Theoutsideofthe portswereidenticalandpiecesoffoodwereinvisible.Theyfoundthatthemonkeys

couldreadilyformspatialmemoryofsignificantlocations,whichwasreflectedinthe

continuousimprovementintheirperformanceofthetask(Ludvigetal.,2003).

Inanotherstudy,Menzeletal.(2002)usedartificiallanguageasatoolforthe

studyofspatialmemoryorganizationinbonobos(Pan paniscus ).Inthefirstexperiment,

theyshowedthebonoboaroadsignjustoutsideitsindoorsleepingarea.Thesign

indicated,bymeansofarbitrarilydesignatedgeometricalshapes(lexigrams),wherefood

washidden.Onlytwoofthefifteenlocationswerevisiblefromthesign.Distances

rangedupto170metersfromthesign.In99of127testtrials,thebonobowentdirectly

tothedesignatedlocationonitsfirstmove(Menzeletal.,2002).Inasecondexperiment,

researcherspresentedtheroadsignatvariedpointsinthewoodsratherthanatthe

originalfixedplace.Inthesetrials,thegoalwasapreferredtoy.Thebonobo’shuman

companionswerenevertoldthelocationofthegoalanddistanceswereupto650meters.

Inall12trials,thebonoboleditscompanionstothedesignatedplaceviaanefficientpath

(Menzeletal.,2002).Thebonoboappearedtobeabletomove,basedontheinformation providedbyalexigram,fromalmostanyarbitrarystartinglocationinits20hectare

environmenttoanyoneofthenumerousgoallocations(Menzeletal.,2002).This

19

stronglysuggeststhatthebonobousedinformationcontainedinalexigramroadsignto

discriminateandtochoosewhichdistantlocationtovisit(Menzeletal.,2002).

Inadditiontothelocationoffood,animalsalsohavetheabilitytorememberthe

relativequalityofdifferentfeedingsitesandtoflexiblyadapttheirforagingbehaviorto

changingenvironmentalconditions.Inpart,thehippocampushelpsanimalscreatea

representationoftheseallocentriclocationsandtherewardsassociatedwitheach

location.

Todemonstratethatanimalsnotonlyusespatialandepisodicmemoryinforaging

forfood,butalsodistinguishbetweenfoodquality,ClaytonandDickinson(1998)

exploredthenaturalcachingbehaviorofscrubjays.Birdscachedbothwormsand peanutsinavarietyoflocations.Normally,scrubjayspreferwormsoverpeanuts,andif

recoverywasallowedwithinafewhoursaftercaching,thejaysrecoveredwormsfirst

(ClaytonandDickinson,1998).Conversely,whenrecoverywasnotallowedforseveral

daysaftercaching,jaysrecoveredthepeanutsfirst,becausethewormshaddegradedand

werenolongerpalatable(ClaytonandDickinson,1998).Sincescrubjayswerecapable

ofselectingthetypeoffooddependingonthetimesincecaching,ClaytonandDickinson

(1998)concludedthatjaysrememberedwhathadbeencached,aswellaswhereand

wheneachitemwascached.

ThesameparadigmwasadaptedbyHamptonetal.(2005)inanexperimentwith

rhesusmonkeys.Inthestudyphaseofeachtrial,monkeysfoundapreferredandaless preferredfoodrewardinatrialuniquearrayofthreelocationsinalargeroom.Afteran

hour,monkeysreturnedtothetestroom,wheretheyfoundfoodsplacedasduringthe

20

studyperiod.Twentyfivehourslater,themonkeysagainsearchedtheroom,butnowthe preferredfoodwasreplacedwithadistastefulfoodremnant,whilethelesspreferredfood

wasstillpresent.Althoughmonkeysrememberedthelocationsofthefoods,theydidnot

learnthatthepreferredfoodwasavailableaftertheshort,butnotafterthelongdelay

(Hamptonetal.,2005).Thus,monkeysdemonstratedlongtermmemoryforthetype

(recognitionmemory)andlocationoffood(spatialmemory)butfailedtodemonstrate

sensitivitytowhentheyacquiredthatknowledge(episodicmemory)(Hamptonetal.,

2005).

Thismemorypatternforthelocationandtypeoffoodreward,withoutconcurrent

memoryforthetimeatwhichthisinformationwasacquired,isnotrestrictedtorhesus

monkeys.Inexperimentsthatcloselyparalleledtheworkwithscrubjays,ratscarried preferredcheesechunksandlesspreferredpretzelpiecestoboxeslocatedattheendsof

thearmsofan8armradialmazewheretheratsleftthefoods(Birdetal.,2003).Cheese

wasmadeunpalatablebytreatmentwithaquininesolution;forhalftherats,cheesewas

degradedaftershortdelaysandafterlongdelaysfortheotherhalf.Theratsshowed

reliablememoryforthetypeandlocationoffood,buttheydidnotlearntosearchpretzel

locationsselectivelyafterdelaysassociatedwithquininetreatmentofthecheese(Birdet

al.,2003).Inarelatedsetofexperiments,ratsalsofailedtolearntoreenterthefirstarm

ofthemazevisitedduringasessiontoreceiveapreferredreward(RobertsandRoberts,

2002).

Inadditiontobirds,primatesandrodents,pigshavetheabilitytodiscriminate betweenfoodsitesofdifferentrelativevalueandtoremembertheirrespectivelocations.

21

Heldetal.(2005)investigatedwhetherdomesticpigsrememberedthelocationsoffood

sitesofdifferentrelativevalue,andhowarestrictedretrievalchoiceaffectstheirforaging behavior.Ninejuvenilefemalepigsweretrainedtorelocatetwofoodsitesoutofa possibleeightinaspatialmemorytask.Thetwobaitedsitescontaineddifferentamounts

offoodandanobstaclewasaddedtothesmalleramounttoincreasehandlingtime.When

allowedtoretrievebothbaits,pigsshowednopreferenceforretrievingaparticularfood

typefirst(Heldetal.,2005).Whenallowedtoretrieveonebait,theanimalssignificantly preferredretrievingthelargeramount(Heldetal.,2005).Incontroltrials,obstacleswere presentwithbothbaits.Pigscontinuedtoretrievethelargerbait,indicatingtheycould

discriminatebetweenthetwofoodsitesonthebasisofquantityorprofitabilityand

adjustedtheirbehavioraccordinglywhentherelocationchoicewasrestricted(Heldetal.,

2005).

CognitiveAdaptationstotheEnvironment

Howmammalianbrainregionsdevelopremainsacontroversialtopic.Thetwo

divergentconceptsproposethateitherthewholebrainofanorganismchangesinsizeor

selectionoperatesonindividualneurocognitivesystems.Knownasthephylogenetic

constrainthypothesis,researchersarguethatthesetupofacommonancestor’sbrain

constrainsdevelopmentsothatthesizeofitsconstituentstructureschangesina

coordinatedfashion(FinlayandDarlington,1995).Ontheotherhand,themosaictheory

suggeststhatselectioncanactonbrainregionsindependentlyofchangesinwholebrain

size(HarveyandKrebs,1990;Bartonetal.,1995;BartonandHarvey,2000).

22

Themammalianbrainconsistsofanumberoffunctionallydistinctsystems,soit

ispossiblethatnaturalselectiononparticularbehavioralcapacitiescouldcausesize

changesinthesystemsresponsibleforthosecapacities(Eisenberg,1981;Harveyand

Krebs,1990;FinlayandDarlington,1995).Inananalysisamongbrainstructuresin primatesandinsectivoresusingindependentcontrasttesting,BartonandHarvey(2000)

foundsignificantpartialcorrelationsevenafteraccountingfortheeffectsofchangein

otherstructures.Resultsshowedinsectivorecerebellumsizesignificantlycorrelateswith

neocortexsizewhendiencephalonsizeisexcluded(p=0.0001),andcerebellumsizein primatessignificantlycorrelateswithdiencephalonsizewhenneocortexsizeisexcluded

(p=0.003)(BartonandHarvey,2000).

Inaddition,BartonandHarvey(2000)testedforcorrelatedevolutionarychange

intheindividualcomponentsofsixspecificfunctionalsystems,includingolfactory

system,hippocampalformation,amygdala,sensorymotorsystem,visualsystemand

auditorysystem.Inallinstances,componentsoffunctionalsystemsevolvedtogether

independentlyofevolutionarysizechangeinotherstructuresandintherestofthebrain

(BartonandHarvey,2000).Therefore,mammalianbrainevolutioninvolvedsizechanges

concentratedinspecificstructuresandfunctionalsystems(BartonandHarvey,2000).

Onepotentialexplanationisthespatiotemporalmappinghypothesis,whichstates

thatthedemandsofexploitingecologicalresourcesacrosstimeandspaceaccountsfor

cognitivevariationinprimates(Allman,1977;CluttonBrockandHarvey,1980;Milton,

1981). Earlyresearchersfoundinterspecificassociationsbetweenrelativebrainsizeand

homerangesizeandfrugivory,whicharethoughttocorrespondwiththeecological

23

demandsofspatiotemporalmapping(CluttonBrockandHarvey,1980;Harveyetal.,

1980).Similarly,investigatorshaveshownpositiveinterspecificcorrelationsbetween

frugivoryandrelativeneocortexsize(Sawaguchi,1992;Barton,1996).

InarecentcomparativestudyoforangutansfromBorneoandSumatra,Taylor

andvanSchaik(2007)demonstratedthefirstevolutionaryconnectioninprimates betweendietandbrainsize.Theyfoundthatorangutansconfinedtothenortheasternpart

ofBorneo,anareawherefoodsuppliesarefrequentlyscarce,mayhaveevolvedthrough

theprocessofnaturalselectioncomparativelysmaller,accompaniedbyslightly

smallerbodysize,thantheorangutanswhoinhabitthemorefavorableenvironmentof

Sumatra(TaylorandvanSchaik,2007).

Aparticularbrainstructurethathasbeenshowninbirds,batsandhumanstovary

insizeduetoselectiveenvironmentalpressuresisthehippocampus(Krebsetal.,1989;

SafiandDechmann,2005;Maguireetal.,2000).Likemammals,thehippocampal

formationhasbeenimplicatedinspatiallearninginbirds(ColomboandBroadbent,

2000).Numerousstudiesreportedthatfoodhoardingspeciespossesslargerhippocampi

thannonhoardingrelatives,andthatspeciesclassifiedaslargescalehoardershavelarger

hippocampithanmoregeneralizedhoarders(Krebsetal.1989,1990;Sherryetal.,1989;

HealyandKrebs,1992,1996;Hamptonetal.,1995;Basiletal.,1996).

Inaphylogeneticanalysisof55birdspecies,GaramszegiandEens(2004)studied

theinterspecificassociationbetweenfoodhoardingandhippocampussize.After

adjustingforallometriceffects,therelativevolumeofthehippocampusandtherelative

sizeoftheentirebrainwereeachpositivelyrelatedtothedegreeoffoodhoarding

24

specialization;thus,adaptivespecializationtofoodhoardingleadstotheenlargementof

neuralregions(GaramszegiandEens,2004).

Priorstudiesonencephalizationinbatsfoundaninfluenceofdietonbrainsize,

withfrugivorousbatshavinglargerhippocampithananimaleatingbats(Eisenbergand

Wilson,1978;PirlotandJolicoeur,1982;Jolicoeuretal.,1984;HarveyandKrebs,1990;

Bartonetal.,1995;Hutcheonetal.,2002).Inamorerecentstudy,SafiandDechmann

(2005)showthatneuronalcapacitiesinbatslikelycoevolvedwithflightmorphology,

underselectionimposedbyhabitatcomplexity.Usingwingmorphologyasanindirect

measureofthebat’scomplexforaginghabitat,theyexaminedthecorrelationbetween

wingsizeandthebrainstructuresconnectedwithhearing(auditorynuclei),smell

(olfactorybulb)andspatialmemory(hippocampus),whilecontrollingforphylogenyand bodymass(SafiandDechmann,2005).SafiandDechmann(2005)foundasignificant

increaseinsizeofthehippocampuswithincreasingwingarea,evenafteraccountingfor phylogeny.Thus,batswithsmallwingareasthathuntinsectsinopenspaces,havelow

agilityandmaneuverabilityandrelyonspeed,havesmallerhippocampithanspecieswith

largerwingareasthatareslower,butpossesbettermaneuverabilitytoforageincomplex

forestedhabitatsforfruitandanimals(NorbergandRayner,1987;Norberg,1994;Safi

andDechmann,2005).

Finally,inastudyexaminingthehippocampiofhumans,Maguireetal.(2000)

comparedthebrainsoflicensedLondontaxisdriverswithextensivenavigational

experiencetothoseofcontrolsubjectswhodidnotdrivetaxis.Theyfoundtheposterior

hippocampioftaxidriversweresignificantlylargerrelativetothoseofthecontrol

25

subjectsandthatposteriorhippocampalvolumecorrelatedpositivelywiththeamountof

timespentasataxidriver(Maguireetal.,2000).Therefore,thehumanbrainmayhave

thecapacityforlocalplasticchangeinresponsetoenvironmentaldemands,andthe

hippocampusmaybeselectivelypressuredbyenvironmentaldemandstoincreaseor

decrease.

CHAPTER TWO:

METHODS

Hippocampusandmedullaoblongatavolumes(incubicmillimeters)for42 speciesofprimatesweretakenfromStephanetal.(1981),withtheexceptionof Pongo pygmaeus hippocampusandmedullaoblongatavolumes(Sherwoodetal.,2004;

Sherwood,2005).Percentagesofdiettypes,homerangesize(inhectares),activity patternsandhabitatdatawerefoundthroughoutthepublishedliterature(seeTable1for rawdataandcompletelistofsources).

Dietpercentageswerebrokendownintothreecategories—frugivory,folivoryand insectivory.Percentoffrugivorousdietincludedthefeedingtime,foodintakeorstomach contentdevotedtofruit,seedsorgums;percentoffolivorousdietincludedthefeeding time,foodintakeorstomachcontentdevotedtoleaves,stemsandflowers;andpercentof insectivorousdietincludedfeedingtime,foodintakeorstomachcontentdevotedto animalmatter(Chivers,1994).

Primateswereseparatedintotwotypesofactivitypatterns,diurnalornocturnal.

AllprosimiansexceptthelargerofMadagascararenocturnalandallanthropoids except Aotus trivirgatus arediurnal.

26 27

Table 1.Rawdatavaluesforhippocampusandmedullavolumes,homerangeareas, diet,activitypatternsandhabitat Species HV MV HR FR FO IN AP HB Alouatta seniculus 1,2,3,6 1325.00 1840.00 221.36 42.00 53.00 0.00 D A Aotustrivirgatus 1,2,4 539.00 686.00 316.23 65.00 30.00 5.00 N A Atelesgeoffroyi 1,2 1366.00 1834.00 774.60 80.00 20.00 1.00 D A Avahilaniger 1,5,6 476.00 549.00 144.91 25.00 75.00 0.00 N A Callicebus moloch 1,2,4,7,8 588.00 787.00 204.94 65.00 28.00 4.00 D A Callimicogoeldii 1,9,10,11 281.00 460.00 681.91 29.00 0.00 41.00 D S Callithrix jacchus 1,12 221.00 318.00 114.02 100.00 0.00 0.00 D A Cebusalbifrons 1,8 1029.00 1896.00 1224.74 36.00 0.00 64.00 D A Cercocebus albigena 1,2 1485.00 2708.00 2024.85 61.00 5.00 24.00 D A Cercopithecus ascanius 1,13,14 1154.00 1583.00 1095.45 47.70 22.50 16.00 D T Cercopithecus mitis 1,2,6 1366.00 1999.00 374.17 45.00 39.00 10.00 D A Cheirogaleus medius 1,6,15,16 175.00 206.00 200.00 85.00 5.00 10.00 N A

1Stephanetal.,1981 2CluttonBrockandHarvey,1977b 3CrockettandEisenberg,1986 4Sussman,1999 5Ganzornetal.,1985 6Fleagleetal.,1999 7Kinzey,1981 8Terborgh,1983 9Heltneetal.,1981 10 Lee,2001 11 Porter,2001 12 Hubrecht,1984,1985 13 ChapmanandChapman,2000 14 Davis,2002 15 Harveyetal.,1986

28

Table 1 continued Cheirogaleus major 1,6,17 332.00 370.00 200.00 80.00 0.00 20.00 N A Colobusbadius 1,2 1671.00 2007.00 820.37 8.00 78.30 0.00 D A Daubentonia madagascariensis 1,6,10,18,19 1776.00 1517.00 1122.50 50.00 0.00 50.00 N A Erythrocebus patas 1,2,20 1591.00 2616.00 7211.10 44.10 48.30 8.10 D T Galago senegalensis moholi 1,3,6,21,22,23 261.00 254.00 252.98 0.00 48.00 52.00 N A Galagoides demidovii 1,2 152.00 169.00 100.00 29.00 0.00 70.00 N A Gorillagorilla 1,2 4781.00 7509.00 2489.98 2.00 86.00 0.00 D T Hapalemur simus 1,6,10,24 525.00 485.00 787.40 0.50 98.00 0.00 N A Hylobateslar 1,2,25 2673.00 2251.00 650.38 30.00 29.00 11.00 D A Indriindri 1,2 1520.00 1342.00 479.58 41.00 57.00 0.00 D A Lagothrix lagotricha 1,10,12,26 1381.00 1742.00 2738.61 79.00 20.00 0.00 D A fulvus 1,2 752.00 909.00 94.87 25.00 71.00 0.00 D A Lepilemur ruficaudatus 1,6,18 380.00 433.00 100.00 25.00 75.00 0.00 N A Loristardigradus 1,2 191.00 233.00 100.00 15.00 0.00 85.00 N A Macacamulatta 1,2,6 1353.00 1992.00 3872.98 58.00 19.00 23.00 D S

16 Older,1999 17 Cooper,2000 18 Nowak,1999 19 Jansa,1999 20 Isbell,1998 21 BearderandDoyle,1974 22 BearderandMartin,1980 23 Jolly,1972 24 Tan,1999 25 Chivers,1984 26 Stone,2001

29

Table 1 continued Microcebus murinus 1,2,6,10,27 100.00 99.10 44.72 48.00 12.00 40.00 N A Miopithecus talapoin 1,2,28 684.00 1139.00 1095.45 52.00 2.00 43.00 D S Nasalislarvatus 1,29,30 1966.00 2945.00 1118.03 50.00 50.00 0.00 D S Nycticebus coucang 1,3,10,31,32 566.00 528.00 236.64 60.00 0.00 30.00 N A Otolemur crassicaudatus 1,3,18,21 461.00 540.00 264.58 33.00 63.00 4.00 N A Pantroglodytes 1,2 3779.00 5817.00 3464.10 68.00 28.00 4.00 D S Papioanubis 1,2 3398.00 5297.00 4929.50 63.00 7.80 10.00 D S Perodicticus potto 1,2 607.00 680.00 316.23 76.00 0.00 10.00 N A Pithecia monachus 1,12,18,33 834.00 1009.00 331.66 71.00 16.00 0.00 D A Pongopygmaeus 2,34,35,36 2567.00 5172.00 2645.75 59.50 25.00 14.00 D A Propithecus verreauxi 1,2 1043.00 1223.00 275.68 40.00 41.00 0.00 D A Saguinus oedipus 1,10,37,38,39 259.00 345.00 291.55 38.40 18.50 40.00 D A Saimirisciureus 1,8,40 352.00 722.00 1581.14 18.00 0.00 82.00 D A

27 Hladiketal.,1980 28 GautierHion,1973 29 KawabeandMano,1972 30 Bennett,1986 31 Wiens,2002 32 Ballenger,2001 33 Buchananetal.,1981 34 Rijksen,1978 35 Sherwoodetal.,2004 36 Sherwoodetal.,2005 37 Bridgeman,2002 38 Garber,1984 39 CluttonBrockandHarvey,1980

30

Table 1 continued Tarsiusspectrum 1,41 153.00 207.00 100.00 0.00 0.00 100.00 N A Tarsiussyrichta 1,42 138.00 185.00 122.47 0.00 0.00 100.00 N A HV=hippocampusvolume(mm³),MV=medullaoblongatavolume(mm³),HR= homerangearea(m),FR=%frugivorousdiet,FO=%folivorousdiet,IN=% insectivorousdiet,AP=activitypattern(D=diurnal,N=nocturnal)HB=habitat(A =arboreal,S=semiterrestrial,T=terrestrial)

40 BaldwinandBaldwin,1972 41 MackinnonandMackinnon,1980 42 Kubicek,1999

31

Primateswereclassifiedintooneofthreehabitats,arboreal,semiterrestrialand

terrestrial,basedonreportsoftheirbehaviorintheliterature.Arborealprimatesare

definedasthosethatneverorrarelycometotheground;semiterrestrialprimateswere

definedasthosethatregularlycometothegroundfromhigherforestlevelstofeedor

drink;andterrestrialprimatesweredefinedasthosethatneverorrarelyclimbtrees.

Species analyses

UsingSPSSversion13.0(ApacheSoftwareFoundation,2004),hippocampus

volume,medullaoblongatavolumeandhomerangesizewerelogtransformedtoobtain

normaldistribution.Categoricalvariables,suchasactivitypatternsandhabitats,were

recodedforregressionanalyses.Aseparatecolumnforeachcategoricalvariable,

includingdiurnalactivity,nocturnalactivity,arborealhabitat,semiterrestrialhabitatand

terrestrialhabitat,wascreated;theneachvariablewasrecodedforanalysis.Avalueof

1.0wasassignedifthespeciesbelongedtotheparticularactivitypatternorhabitatanda

valueofzerowasassignediftheanimaldidnot(e.g. Daubentonia madagascariensis was

assignedavalueofoneinthenocturnalandarborealcolumnsandavalueofzeroforthe

diurnal,semiterrestrialandterrestrialcolumns).

Thecomparativeneuroanatomicalapproachassumescognitiveability

correspondswithbrainsizeorthesizeofbrainstructuresimplicatedincognitivetasks

(Deaneretal.,2000).However,ratherthanconsideringtheabsolutesizeofthebrainor brainstructures,comparativeneuroanatomicalstudiesscalethesestructuresrelativeto

otherbiologicalvariables,suchasbodyweight.Whilemanypartsofthebody,including

32

thebrain,increasewithoverallbodyweight,acauseandeffectrelationisnotimplied;

rather,bodyweightislikelyasubstitutemeasureforanundefined,underlyingvariable

(HarveyandKrebs,1990).Infact,bodyweightmaynotbeaparticularlysuitable

referencevariableforscalingwiththebrainorvariousbrainstructures(Harveyand

Krebs,1990;Deaneretal.,2000).Bodyweightinprimatescanshowcyclicfluctuations

duetoseasonalandlifehistorypatternsoffatdeposition(CowlishawandDunbar,2000).

Forexample,malesquirrelmonkeysbecomevisuallyheavierduringtheannualmating

season,throughselectiontomaximizecompetitiveabilitycomparedtoothermales

(Boinski,1987).Conversely,duringleanseasonstamarinscanloseaconsiderable

amountofbodymass(Goldizenetal.,1988).Incontrast,brainweightvariesverylittle

duringanadult’slifetime,andtherefore,maycorrelatemorehighlywithanother

morphological,lifehistoryorenvironmentalvariable(HarveyandKrebs,1990).Thus,

twoadditionalvaluesusingthehindbrainstructuremedullaoblongataweregeneratedfor

scalingpurposes:hippocampusvolumeresidualsfromaloglogleastsquaresregression

onmedullaoblongatavolumeandaratiovalueofhippocampusvolumedividedby

medullaoblongatavolume(Sherwoodetal.,2005).Themedullaislocatedinthe

hindbrain,whichservesasanimportantavenueforinformationtravelingfromthe

forebraintothespinalcord(Bearetal.,1996).Thehindbraincontainsneuronsthat

contributetotheprocessingofsensoryinformationandcontrolofvoluntarymovement,

andthemedullacontainsneuronsthatperformseveralsensoryandmotorfunctions

neuronsthatrelaysensoryinformationfromthespinalcord,whereinputsprovide

informationaboutwherethebodyisinspace,tothethalamus(Bearetal.,1996).

33

Todeterminewhetherhippocampusvolumesizecorrelateswithdiet

(frugivorous,folivorous,insectivorous),homerangesize,activitypatterns(diurnal,

nocturnal)orhabitat(arboreal,semiterrestrial,terrestrial),leastsquaresregression

analyseswereconductedforeachoftheabovevariablesandloghippocampusvolume,

hippocampusvolumeresidualsfromaloglogleastsquaresregressionmedullaoblongata

andthehippocampus/medullaoblongatavolumeratio.

Independent contrasts analyses

Statisticalanalysesforcontinuousvariableswerebasedonindependentcontrasts

(Felsenstein,1985;HarveyandPagel,1991;Pagel,1999),generatedwiththesoftware

Mesquiteversion1.11(MaddisonandMaddison,2006)usingthePDAPpackage

(Midfordetal.,2003).Phylogeneticallyindependentcontrastsforcategoricalvariables

weregeneratedusingtheCAICcomputerprogram(PurvisandRambaut,1995).

Independentcontrasts,orthestandardizeddifferencescalculatedbetweensister

taxaateachphylogeneticnode,areestimatesoftheevolutionarychangeinavariable

sincethedivergenceofthesistertaxafromtheircommonancestor(NunnandBarton,

2000).Thus,independentcontrastsprovideawaytotestforthepresenceofan

evolutionaryrelationship.Thisapproachacknowledgesthatspecieshaveacommon

historyrepresentedbyahierarchicalandbranchedphylogeny.

Independentcontrastsprovidesomeadvantagesoverspeciesanalysis.ICsareless

affectedbygradeshifts(Felsenstein,1985;Ridley,1989;Garlandetal.,1993;Price,

1997;PurvisandWebster,1999).Gradeshiftsoccurwhenagroupofspeciessharesa

34

characterstatethroughcommonancestrythatproducesashiftintherelationshipbetween

themainvariableswithoutachangeintheirslope(Garlandetal.,1992).However,with

independentcontrastsasingledatapointrepresentingthenodewherethegradeshiftis

locatedwillproducelessbiasthanmultipledatapointsinaspeciesanalysis(Garlandet

al.,1992).Therefore,contrastsanalysesmaybemoreappropriatethanspeciesanalyses.

Inaddition,priorresearchhasshownthatcontrastsanalysesresultsarelessproneto

greaterthanexpectedTypeIandIIerrorratesthanresultsfromspeciesanalysis(Martins

andGarland,1991;Purvisetal.,1994;DiazUriarteandGarland,1996,1998;Harvey

andRambaut,1998).Finally,independentcontrastsreducethechanceofobtaininga

falsecorrelation,asaresultofrelatedspeciessharingsimilartraitsduetotheir phylogeny.

Analysesof42primatespecieswerecompletedataspecieslevel.Inallbutfour

cases,onlyonespecieswasusedforeachgenus.Thefourgenerathatcontainedtwo

specieswere Cercopithecus , Cheirogaleus , Galago (and Galagoides) and Tarsius .A

specieslevelphylogenetictreewascreatedinMesquiteusingthegenuslevelphylogeny

ofprimatesinGoodmanetal.(2005)(seeFigure7).Becausethetreecontainedfoursoft polytomies,anadditionalfourdegreesoffreedomweresubtracted(PurvisandGarland,

1993;GarlandandDiazUriarte,1999).Sinceexactbranchlengthswereunknown,each branchwassetequallytothearbitraryvalueof1.0(Garlandetal.,1992).

Thesameloghippocampusvolume,hippocampusvolumeand

hippocampus/medullaoblongatavolumeratiovaluesusedinthespeciesanalysesalso

wereutilizedinthecontrastanalyses.Plotsoftheabsolutevaluesofthestandardized

35

independentcontrastsversusthestandarddeviationshowednocorrelationforall

variablesanalyzedinthisstudy,suggestingthatthearbitrarilyequalizedbranchlengths

standardizedthecontrasts(DiazUriarteandGarland,1996,1998).UsingpositivizedY

contrastversusXcontrastplotsforallcontinuousvariables,theindividualeffectof

frugivorous,folivorousandinsectivorousdietandhomerangesizeonloghippocampus

volume,hippocampusvolumeresidualsandthehippocampus/medullaoblongatavolume

ratiowasinvestigatedusingtheMesquitePDAPpackage(Garlandetal.,1992;Midford

etal.,2006;MaddisonandMaddison,2006).Regressionswereforcedthroughtheorigin

(PurvisandRambaut,1995).Allstatisticaltestsweretwotailed.

UsingtheBRUNCHalgorithmofCAIC,categoricalvariables,includingdiurnal

andnocturnalactivitypatternsandarboreal,semiterrestrial,andterrestrialhabitats,were

testedagainstloghippocampusvolume,hippocampusvolumeresidualsfromaloglog

leastsquaresregressionmedullaoblongataandthehippocampus/medullaoblongata

volumeratio.Uniquelettercodeswereassignedtoeachbranchoftheprimate phylogenetictree,andbranchlengthsweresettobeequal.

36

Figure 7.Primatephylogenetictree(Source:Goodmanetal.,2005)

CHAPTER THREE:

RESULTS

Percentage of Frugivorous Diet

Forbothspeciesanalysisandindependentcontrastsanalysis,thereisnota significantcorrelationbetweenpercentageoffrugivorousdietandhippocampusvolume regardlessofthemethodusedforsizeadjustment(seeTable2;seeFigures8through10).

Table 2.Correlationvaluesforhippocampusvolume(mm 3)andpercentageof frugivorousdietin42primatespecies. Species Data df b r r² F t pb Loghippocampus volume 41 0.007 0.171 0.029 1.210 1.100 0.278 Hippocampusresidual frommedulla 41 0.000 0.036 0.001 0.053 0.230 0.819 Hippocampus/medulla ratio 41 0.000 0.073 0.005 0.214 0.463 0.646 Independent Contrasts a df b r r² F t pb Loghippocampus volume 36 0.005 0.222 0.049 2.080 1.442 0.755 Hippocampusresidual frommedulla 36 0.000 0.071 0.005 0.204 0.451 1.000 Hippocampus/medulla ratio 36 0.000 0.082 0.002 0.111 0.333 1.000 aNumberofcontrasts=41(UsingMesquite) bTwotailed

37 38

Figure 8.Plotofloghippocampusvolumecontrastsversuspercentageoffrugivorous dietpositivizedcontrasts.Regressionlinesthroughorigin:Blackisordinaryleast squares.Greenismajoraxis.Redisreducedmajoraxis.

Figure 9.Plotofhippocampusvolumeresidualcontrasts(fromaloglogleastsquares regressiononmedullaoblongatavolume)versuspercentageoffrugivorousdiet positivizedcontrasts.Regressionlinesthroughorigin:Blackisordinaryleastsquares. Greenismajoraxis.Redisreducedmajoraxis.

39

Figure 10.Plotofhippocampus/medullaoblongatavolumeratiocontrastsversus percentageoffrugivorousdietpositivizedcontrasts.Regressionlinesthroughorigin: Blackisordinaryleastsquares.Greenismajoraxis.Redisreducedmajoraxis.

Percentage of Folivorous Diet

Inthespeciesanalysis,percentageoffolivorousdietissignificantly,positively

correlatedwithhippocampusvolume,usingboththelogvalueandthesizecorrected

hippocampusvolumeresidualfrommedullaoblongatavolume(seeTable3).Whena

ratioofhippocampusandmedullaoblongatavolumesisutilized,theresultisborderline

nonsignificant(p=0.058).Conversely,intheindependentcontrastsanalysis,thereisnot

asignificantrelationshipbetweenhippocampusvolumeandpercentageoffolivorousdiet

regardlessofthemethodusedforsizeadjustment(seeFigures11through13).

40

Table 3.Correlationvaluesforhippocampusvolume(mm 3)andpercentageof folivorousdietin42primatespecies. Species Data df b r r² F t pb Loghippocampusvolume 41 0.011 0.329 0.108 4.866 2.206 0.033 Hippocampusresidual frommedulla 41 0.002 0.353 0.124 5.685 2.384 0.022 Hippocampus/medulla ratio 41 0.000 0.294 0.087 3.795 1.948 0.058 Independent Contrasts a df b r r² F t p b Loghippocampusvolume 36 0.005 0.202 0.040 1.709 1.307 0.211 Hippocampusresidual frommedulla 36 0.001 0.148 0.022 0.906 0.951 0.348 Hippocampus/medulla ratio 36 0.000 0.143 0.020 0.835 0.913 0.871 aNumberofcontrasts=41(UsingMesquite) bTwotailed

Figure 11.Plotofloghippocampusvolumecontrastsversuspercentageoffolivorous dietpositivizedcontrasts.Regressionlinesthroughorigin:Blackisordinaryleast squares.Greenismajoraxis.Redisreducedmajoraxis.

41

Figure 12.Plotofhippocampusvolumeresidualcontrasts(fromaloglogleastsquares regressiononmedullaoblongatavolume)versuspercentageoffolivorousdietpositivized contrasts.Regressionlinesthroughorigin:Blackisordinaryleastsquares.Greenismajor axis.Redisreducedmajoraxis.

Figure 13. Plotofhippocampus/medullaoblongatavolumeratiocontrastsversus percentageoffolivorousdietpositivizedcontrasts.Regressionlinesthroughorigin:Black isordinaryleastsquares.Greenismajoraxis.Redisreducedmajoraxis.

42

Percentage of Insectivorous Diet

Percentageofinsectivorousdietsignificantlyandnegativelycorrelateswith

hippocampusvolume,exceptwhenusingaratioofhippocampusandmedullaoblongata

volume(p>0.10)inspeciesanalysis(seeTable4).Evenaftercontrollingforphylogeny,

theeffectofinsectivorousdietremainssignificant,exceptwhenusingthe

hippocampus/medullaoblongatavolumeratio(p=0.07)asasizeadjustmentmeasure

(seeFigures14through16).

Table 4.Correlationvaluesforhippocampusvolume(mm 3)andpercentageof insectivorousdietin42primatespecies. Species Data df b r r² F t pb Loghippocampus volume 41 0.019 0.552 0.305 17.514 4.185 0.000 Hippocampusresidual frommedulla 41 0.002 0.359 0.129 5.910 2.431 0.020 Hippocampus/medulla ratio 41 0.000 0.240 0.058 2.441 1.562 0.126 Independent Contrasts a df b r r² F t p b Loghippocampus volume 36 0.013 0.509 0.259 14.040 3.747 0.004 Hippocampusresidual frommedulla 36 0.002 0.329 0.108 4.860 2.204 0.059 Hippocampus/medulla ratio 36 0.000 0.282 0.079 3.459 1.859 0.255 aNumberofcontrasts=41(UsingMesquite) bTwotailed

43

Figure 14. Plotofloghippocampusvolumecontrastsversuspercentageofinsectivorous dietpositivizedcontrasts.Regressionlinesthroughorigin:Blackisordinaryleast squares.Greenismajoraxis.Redisreducedmajoraxis.

Figure 15. Plotofhippocampusvolumeresidualcontrasts(fromaloglogleastsquares regressiononmedullaoblongatavolume)versuspercentageofinsectivorousdiet positivizedcontrasts.Regressionlinesthroughorigin:Blackisordinaryleastsquares. Greenismajoraxis.Redisreducedmajoraxis.

44

Figure 16.Plotofhippocampus/medullaoblongatavolumeratiocontrastsversus percentageofinsectivorousdietpositivizedcontrasts.Regressionlinesthroughorigin: Blackisordinaryleastsquares.Greenismajoraxis.Redisreducedmajoraxis.

Home Range

Thespeciesvalueofloghippocampusvolumeshowsasignificant,positive correlationwithhomerange(seeTable5),explainingalmost60percentofvariance.

Whencontrollingformedullaoblongatavolumeusingthehippocampusresidual,home rangesizewasnotsignificantlycorrelatedwithhippocampusvolume.Surprisingly, whenaratioofhippocampusvolumeandmedullaoblongatavolumewasusedforscaling purposes,asignificant,negativecorrelationwasfound(p<0.05).

Whenaccountingforphylogeny,thelogvalueofhippocampusvolumewas significantlycorrelatedwithhomerangesize,whilethesizeadjustedresidualwas borderlinesignificant(p=0.059)andtheratiovalueshowedanonsignificant relationship(seeFigures17through19).

45

Table 5.Correlationvaluesforhippocampusvolume(mm 3)andhome rangearea(ha)in42primatespecies. b Species Data df b r r² F t p Log hippocampus volume 41 0.601 0.769 0.591 57.850 7.606 0.000 Hippocampus residualfrom medulla 41 0.027 0.167 0.028 1.148 1.072 0.290 Hippocampus /medullaratio 41 0.009 0.358 0.128 5.881 2.425 0.020 Independent a b Contrasts df b r r² F t p Log hippocampus volume 36 0.360 0.528 0.278 15.475 3.933 0.000 Hippocampus residualfrom medulla 36 0.028 0.149 0.022 0.912 0.955 0.059 Hippocampus /medullaratio 36 0.001 0.063 0.003 0.160 0.400 0.255 a b Numberofcontrasts=41(UsingMesquite) Twotailed

46

Figure 17. Plotofloghippocampusvolumecontrastsversusloghomerangepositivized contrasts.Regressionlinesthroughorigin:Blackisordinaryleastsquares.Greenismajor axis.Redisreducedmajoraxis.

Figure 18. Plotofhippocampusvolumeresidualcontrasts(fromaloglogleastsquares regressiononmedullaoblongatavolume)versusloghomerangepositivizedcontrasts. Regressionlinesthroughorigin:Blackisordinaryleastsquares.Greenismajoraxis.Red isreducedmajoraxis.

47

Figure 19. Plotofhippocampus/medullaoblongatavolumeratiocontrastsversuslog homerangepositivizedcontrasts.Regressionlinesthroughorigin:Blackisordinaryleast squares.Greenismajoraxis.Redisreducedmajoraxis.

Diurnal Activity Pattern

Usingspeciesanalysis,adiurnalactivitypatternwassignificantlycorrelated

(p<.05)withhippocampusvolume(seeTable6).Speciesdataforthe hippocampus/medullaoblongatavolumeratioalsoshowedasignificantcorrelation, though,thesizeadjustedresidualofhippocampusvolumeshowedonlyborderline significance(p=0.063)with.Whencontrollingforphylogeny,therelationship wasnotsignificant.

48

Table 6.Correlationvaluesforhippocampusvolume(mm 3)anddiurnal activityin42primatespecies. Species Data df b r r² F t pb Log hippocampus volume 41 1.276 0.630 0.397 26.324 5.131 0.000 Hippocampu sresidual frommedulla 41 0.119 0.289 0.084 3.647 1.910 0.063 Hippocampu s/medulla ratio 41 0.030 0.482 0.233 12.120 3.481 0.001 Independent Contrasts a df F p b Hippocampu sresidual frommedulla 4 0.200 0.687 aUsingCAICbrunchalgorithm bTwotailed

Nocturnal Activity Pattern

Similartodiurnalactivityanalyses,nocturnalactivityissignificantlycorrelated usingspeciesvaluesforloghippocampusvolumeandforthehippocampus/medulla oblongataratio(seeTable7).However,intheindependentcontrastsanalysis, hippocampusvolumeresidualwasnotsignificantlycorrelatedwithnocturnalactivity.

49

Table 7.Correlationvaluesforhippocampusvolume(mm 3)andnocturnal activityin42primatespecies. Species Data df b r r² F t pb Log hippocampus volume 41 1.279 0.623 0.388 25.412 5.041 0.000 Hippocampu sresidual frommedulla 41 0.093 0.223 0.050 2.096 1.448 0.155 Hippocampu s/ medullaratio 41 0.025 0.407 0.165 7.928 2.816 0.008 Independent Contrasts a df F p b Hippocampu sresidual frommedulla 4 0.080 0.801 aUsingCAICbrunchalgorithm bTwotailed

Arboreal Habitat

Speciesanalysisforloghippocampusvolumeandhippocampus/medulla oblongatavolumeratioshowedasignificantcorrelationwitharborealism.However, whencorrectedforphylogeny,asignificantcorrelationwasnotfoundwithresidual hippocampusvolume(seeTable8).

50

Table 8.Correlationvaluesforhippocampusvolume(mm 3)andarboreal habitatin42primatespecies. Species Data df b r r² F t pb Log hippocampus volume 41 1.010 0.422 0.178 8.651 2.941 0.005 Hippocampus residual frommedulla 41 0.122 0.250 0.062 2.666 1.633 0.110 Hippocampus/ medullaratio 41 0.026 0.357 0.128 5.858 2.420 0.020 Independent Contrasts a df F p b Hippocampus residual frommedulla 6 0.560 0.486 aUsingCAICbrunchalgorithm bTwotailed

Semi-Terrestrial Habitat

Semiterrestrialhabitatisnotsignificantlycorrelatedinthespeciesanalysiswith loghippocampusvolumeorthesizeadjustedresidual;however,the hippocampus/medullaoblongatavolumeratiodoesdemonstrateasignificant,negative correlationwithsemiterrestrialhabitat(seeTable9).Thehippocampusvolumeresidual doesnotsignificantlycorrelatewithsemiterrestrialismwhenusingindependent contrasts.

51

Table 9.Correlationvaluesforhippocampusvolume(mm 3)andsemiterrestrial habitatin42primatespecies. Species Data df b r r² F t pb Loghippocampusvolume 41 0.767 0.273 0.074 3.217 1.794 0.080 Hippocampusresidual frommedulla 41 0.134 0.234 0.055 2.321 1.524 0.135 Hippocampus/ medullaratio 41 0.027 0.312 0.097 4.304 2.075 0.045 Independent Contrasts a df F p b Hippocampusresidual frommedulla 5 0.200 0.678 aUsingCAICbrunchalgorithm bTwotailed

Terrestrial Habitat

Terrestrialismissignificantlycorrelatedwithloghippocampusvolumeatthe specieslevel(p=0.053).However,whensizeadjustedresidualsandratiosareusedin bothspeciesdataandindependentcontrastsanalyses,hippocampusvolumeisnot significantlycorrelatedwithterrestrialhabitat(seeTable10).

Table 10:Correlationvaluesforhippocampusvolume(mm 3)andterrestrialhabitat in42primatespecies. Species Data df b r r² F t pb Loghippocampusvolume 41 1.150 0.301 0.091 3.989 1.997 0.053 Hippocampusresidual frommedulla 41 0.062 0.080 0.006 0.258 0.508 0.614 Hippocampus/medulla ratio 41 0.017 0.146 0.021 0.871 0.933 0.356 Independent Contrasts a df F p b Hippocampusresidual frommedulla 3 0.340 0.621 aUsingCAICbrunchalgorithm bTwotailed

CHAPTER FOUR:

DISCUSSION DietandHippocampusVolume Relativebrainsizehasbeenshowntobegreaterinfrugivorousmammalspecies

thaninfolivorousspecies(StephanandPirlot,1970;CluttonBrockandHarvey,1980;

Harveyetal.,1980;Maceetal.,1981).Onespecificbrainstructure,thehippocampus,

canvaryinsizeduetoselectiveenvironmentalpressures,suchasdietoraneedfor

spatialmemory,inbirds,batsandhumans(Krebsetal.,1989;SafiandDechmann,2005;

Maguireetal.,2000).Thus,theexpectationinthisstudywasthatprimateswithahigher percentageoffrugivoryintheirdietshouldhavelargerhippocampithanthosewitha

higherpercentageoffolivoryorinsectivoryintheirdiet(CluttonBrockandHarvey,

1980;Harveyetal.,1980;SafiandDechmann,2005).Thisisthefirstsuchstudythat

examinestherelationshipbetweenhippocampusvolumesizeanddietinprimates.

Surprisingly,originalresultsshowedthathippocampusvolumesizeisnot

correlatedwithafrugivorousdietinprimates.Thismaybeduetopotentialexceptionsto

therulethatprimateswithmainlyinsectivorousdietstendtobesmallerbodied,while

thosewithlargerbodymasstypicallyhaveamorefolivorousdiet(KayandSimons,

1980).Uniquely,frugivorescanbesplitintotwogroups,thesmallerbodiedfrugivorous

52 53

insectivoreandthelargerbodiedfrugivorousfolivore.Indeed,whenplottinglogbody

massagainstpercentageoffrugivorousdiet(seeFigure20),outliersincluded

Cheirogaleus, Microcebus, Galagoides and Callithrix ,whichfallintothefrugivorous

insectivoredietcategory,smallinbodymassyethaveahighpercentageoffrugivoryin

theirdiet.Totestthisideafurther,theoutlyingspecieswereremovedandaleastsquares

regressionanalysiswasrun.Asignificant,positivecorrelationwasfoundbetweenlog

hippocampusvolumeandpercentageoffrugivorousdiet(p=0.007,b=0.016,t=2.857,

r=0.435),andbetweenthesizeadjustedhippocampusvolumeresidualfrommedulla

oblongatavolumeandpercentageoffrugivorousdiet(p=0.016,b=0.014,t=2.524,r=

0.392).Evenafteraccountingforphylogenythroughindependentcontrasts,asignificant, positivecorrelationwasfoundusingboththelogvalue(p=0.018,b=0.011,t=2.779,r

=0.435)andsizecorrectedresidualofhippocampusvolume(p=0.009,b=0.012,t=

3.050,r=0.468)andfrugivorousdiet.Thus,primateswithfrugivorousfolivorousdiets

havesignificantlylargerhippocampalvolumesizethanprimateswithprimarily

frugivorousinsectivorous,folivorousorinsectivorousdiets.Presumably,thisisdueto

theideathatfrugivorousprimatesneedincreasedspatialmemoryskillstolocatetree

speciesthatproduceripefruitversusthemorereadilyavailablefoodsupplyusedby

folivorousorinsectivorousprimates.

54

Figure 20.Plotoflogbodymass(g)versuspercentageoffrugivorousdiet.

55

Atfirstglance,primateswithahighlyfolivorousdietshowasignificantincrease

inhippocampusvolume;however,whenphylogenywascontrolledfor,percentageof

folivorousdietdidnotsignificantlycontributetoanincreaseinhippocampusvolume

size.Asbrainvolumeincreaseswithbodymass,andhippocampusvolumeincreaseswith brainvolume,suchadifferencebetweenthespeciesanalysisandindependentcontrasts

analysisislikelyduetofolivorousspeciesbeinglargerbodiedthaninsectivorousor

frugivorousanimals(KayandSimons,1980).Thusinthisstudy,folivorousdiethadno

effectonprimatehippocampalsize.

Perhapsthemostinterestingandunexpectedresultwasthathippocampusvolume

sizedecreasessignificantlyasthepercentageofaprimate’sinsectivorousdietincreases,

whichwasfoundinbothspeciesandindependentcontrastanalysesforloghippocampus

volumeandthehippocampusresidualfrommedullaoblongatavolume.Thusifa primate’sdietishighlyinsectivorous,itwillhaveasmallerhippocampusthan

frugivorousorfolivorousspecies.

Manyinsectspecies,suchasDiaspididaeandApionidae,occuratrelativelyhigh

densitiesunlikewidelydistributedfruitandseedresources(FernandesandPrice,1988;

Marquis,1991;Priceetal.,1995).Ifafoodsourceisdenseyetlimitedtoasmallarea,

thereislessenvironmentalpressuretoincreasespatialmemoryabilities.Consequently, primateswithhighlyinsectivorousdietstendtohavesignificantlysmallerhippocampus

size.Inaddition,smallbodied,insectivorousspecieshavesmallerhomerangesizes,

whichmayrequirelessspatialmemoryskillsandthussmallerhippocampusvolumesizes

(CluttonBrockandHarvey,1977a;CluttonBrockandHarvey,1977b).Another

56

explanationforthesmallerhippocampalsizeininsectivorousprimatesmaybebasedon

theideathatmostinsectivorousspeciesarenocturnalandrelyheavilyonauditorycuesto

locatefastmovingprey(Dominyetal.,2001).Duetoaselectiveincreaseinauditory

areas,insectivorousprimatesmighthavesignificantlysmallerhippocampalsizeasa

result.Inaddition,thenegativecorrelationbetweeninsectivorousdietandhippocampus

volumemayexplainwhyfrugivorousinsectivoresaffectthecorrelationbetween

frugivorousdietandhippocampusvolumeabove.Essentially,theincreaseinfrugivorous primates’hippocampusvolumemaybeequalizedbythedecreaseininsectivorous primates’hippocampusvolume.Onewaytoaddresstheaboveissueinfutureresearchis

tobreakthedietcategoriesdownfurtherintofolivores,frugivoreinsectivores,frugivore

folivores,insectivoresandgumivores.

Hence,myanalysessupporttheideathatdietcaninfluencehippocampusvolume

sizeinprimates.Frugivorousprimates,withtheexceptionofthosethatsupplementtheir

dietwithinsects,haverelativelylargerhippocampalsizethanfolivorousand

insectivorousprimates.Unexpected,though,wastheresultthatinsectivorousprimates

havesignificantlysmallerhippocampalsizethanfrugivorousandfolivorousprimates.

HomeRangeandHippocampusVolume

Diettypeinfluenceshomerangesize(Haskelletal.,2002;Ottavianietal.,2006)

andislinkedgreatlytothespatialdistributionofresources.Theinfluenceofdieton

homerangesizehasbeenconfirmedinmammals(HarestadandBunnell,1979;Harvey

andCluttonBrock,1981;GittlemanandHarvey,1982;MaceandHarvey,1983;

57

Lindstedtetal.,1986;Ottavianietal.,2006)andbirds(Schoener,1968;Bakerand

Mewaldt,1979;MaceandHarvey,1983).

Inprimates,primarilyfrugivorousspecieshavelargerhomerangesfortheirbody

sizethanthoseoffolivorousandinsectivorousspecies(CluttonBrockandHarvey,

1977b;MaceandHarvey,1983;NunnandBarton,2000).Studiesofgorillasubspecies

haveshownthatwesternandGrauer’s,whichhaveamorefrugivorousdietthanVirunga

gorillas,havelargerhomeranges(Yamagiwaetal.,1994,1996;DoranandMcNeilage,

2001;Goldsmith,1999;Remis,1997;Tutin,1996).Thisisduetofruittypicallybeing

moresparselydistributedthanthemoredenselybasedfoodresourcesofleavesand

insects;yetthegreaterenergeticgainsoffruitmakeitpossibleforanimalstoinvestin

travelandsearchtimeforfruit.

Ashomerangesizeincreases,brainsizeincreasesinprimates,thushippocampus

sizeshouldincreaseaswelldue,inpart,toitsroleinspatialmemory(CluttonBrockand

Harvey,1977b;CluttonBrockandHarvey,1980;Harveyetal.,1980).Asresources becomemorewidelydistributed,aneedforgreaterspatialmemoryabilitiesexists.

Therefore,hippocampusvolumesizemaybeselectivelyincreasedduetoan

environmentalpressureforincreasedspatialmemoryskills.Indeed,itappears

hippocampusvolumesignificantlyincreasesashomerangesizedoesinprimates,though

resultswereborderlinesignificantwhenaccountingforphylogenyandcontrollingfor

medullaoblongatavolume.

Onereasonforsuchresultsmaybethevariabilityinmethodologiesusedto

determinespecieshomerangesize.Inparticular,thespatialandtemporalscalesutilized

58

andthemethodusedtodefinehomerangeareimportant(RobbinsandMcNeilage,2003).

Studiesofprimatestendtousethegridsquaremethodtoestimatehomerangesize.

However,unlessresearchersobservegroupmovementsextensively,thegridcellmethod

canproduceanunderestimateofhomerangesize,becauseoftengroupsarenotobserved

inmanygridswithintheirhomerange(ChapmanandWrangham,1993;Harrisetal .,

1990;SingletonandvanSchaik,2001;Sterlingetal.,2000).Onthetemporalscale,most

researchersuseonly 1to2yearsofdatatoestimatehomerangesize,but,inasevenyear

studyofhabitatusepatternsbyKarisokegorillas,Watts(1998)foundhomerangesizeto beconsiderablylargerthanannualyearlyranges.Inaddition,variationinhomerange

sizeataspecieslevelcanbecausedbygeographicrange(DinizFilhoandTorres,2002;

Olifiersetal.,2004),climaticvariation(FisherandOwens,2000),latitude(Harestadand

Bunnell,1979;Lindstedtetal.,1986;Olifiersetal.,2004)andsocialorganization

(Damuth,1981;GittlemanandHarvey,1982).

Finally,sincesuchastrongcorrelationexistsbetweendiet,bodysizeandhome

rangesize,thefivefrugivorousinsectivorespeciesoutliers(n=5)foundwhenplotting

logbodymassversuspercentageoffrugivorousdietwereremoved(seeFigure25)anda

leastsquaresregressionwasrunusingspeciesandindependentcontrastsanalyses.

Resultsshowedahighlysignificant,positivecorrelationbetweenloghomerangesize

andlogandsizeadjustedhippocampusvolumesizeevenafteraccountingforphylogeny

(seeTable11).Thus,myanalysissupportsthehypothesisthatprimateswithlargerhome

rangesrequirebetterspatialmemoryskills,andconsequently,haveincreasedhippocampi

thanprimateswithsmallerhomeranges.

59

Table 11.Correlationvaluesforhippocampusvolume(mm 3)andhome rangearea(ha)in37primatespeciesexcludingfrugivorousinsectivores. Species Data df r t pb Loghippocampusvolume 36 0.706 5.860 0.000 Hippocampusresidualfrom medulla 36 0.714 6.027 0.000 Hippocampus/medullaratio 36 0.336 2.109 0.042 Independent Contrasts a df r t p b Loghippocampusvolume 30 0.507 3.380 0.002 Hippocampusresidualfrom medulla 30 0.508 3.389 0.024 Hippocampus/medullaratio 30 0.108 0.626 0.162 aNumberofcontrasts=34(UsingMesquite) bTwotailed

ActivityPatternsandHippocampusVolume

Comparativebrainsizeinprimatesdoesnotsignificantlydifferbetweennocturnal anddiurnalspecies(CluttonBrockandHarvey,1980).Inaddition,usingonlyspatial memorycues,bothdiurnalandnocturnalprimatespecieshavebeenshownto successfullyrelocatefoodrewards(BiccaMarquesandGarber,2004).Thoughnocturnal primatesrequiredlongerexposuretothetestsettingthandiurnalprimates,thislikelyis duetoanatomicaldifferencesbetweenvisualsystemsinnocturnalanddiurnalprimates

(BiccaMarquesandGarber,2004).Forexample,corticalvisualareasandpathways, includingbothV1andnonV1neocortexwhichcontainmanyhighervisualandsensory processingareasandmakeupapproximately50percentofneocortexsize,arelargerin diurnalprimatesthaninnocturnalprimates(VanEssenetal.,1992;Barton,1996,1998;

Druryetal.,1996).Thus,itwasexpectedthatsincediurnalandnocturnalprimatesshow

60

nosignificantdifferencesincomparativebrainsizeortheabilitytousespatialmemoryin

foraging,thereshouldbenodifferenceinhippocampalsizeaswell(CluttonBrockand

Harvey,1980;BiccaMarquesandGarber,2004).

Inthespeciesanalysisofthisstudy,diurnalactivitywasshowntosignificantly

increaseloghippocampusvolumesize;however,whencontrollingformedullaoblongata

volume,adiurnalactivitypatternresultedinasignificantdecreaseinhippocampus

volumesize.Theeffectwasexactlytheoppositewhenexaminingthecorrelationbetween

nocturnalactivityandloghippocampusvolumesize.Anocturnalactivitypatternresulted

inasignificantdecreaseinhippocampusvolumesizewithspeciesdata,butwhen

utilizingthesizeadjustedratio,nocturnalactivityproducedasignificantincreasein

hippocampusvolumesize.

Perhaps,theseresultsareduetotheuniqueabilityofprimatespatialviewcells,

whichmaintaintheirspatialpropertiesforperiodsofseveralminutesinthedark

(Robertsonetal.,1998).Locatedinthehippocampus,thesespatialviewcellsmay providenocturnalprimateswithasomewhatequalizingabilitytolocatefoodresources usingtheirspatialmemoryabilitiesincombinationwitholfaction.Ontheotherhand, diurnalprimatesdependheavilyontheirhighlydevelopedvisualandeyemovement controlsystems,whichcanexploreandrememberinformationaboutwhatispresentat locationsintheenvironmentwithouthavingtovisitthoseplaces,toprovidespatialcues tothehippocampus(Rolls,1999).Thus,diurnalprimateshavesmallerhippocampus volumesizeandmaycompensatewiththeirsignificantlylargerprimaryvisualareainthe brainthannocturnalanimals.

61

Inaddition,Barton(1998)hasdemonstratedthatthelargersizeofolfactorybrain

structuresandpossiblyauditorystructuresinnocturnalspecieshasoffsetthesmallersize

oftheirvisualstructures(Bartonetal.1995);therefore,activitytiming,unlikediet,isnot

consistentlyassociatedwithoverallbrainsizedifferences.Moreover,BartonandHarvey

(1995)foundnegativecorrelationsinvisualandolfactorysystemswithinnocturnal

strepsirhinesandwithindiurnalhaplorhines,suggestingactivitypatternsarenottheonly

ecologicalvariableassociatedwiththeevolutionofthesesystems.Variationmaybedue

totheideathatsomestrepsirhinesarenotstrictlynocturnalordiurnal;rather,theyfall

intothecategoryofcathemeral,whereanimalsareactiveduringdaytimeandnighttime

(EngqvistandRichard,1991;Wright,1992).

Inbothinstanceswhenusingindependentcontrasts,asignificantcorrelationwas

notfoundbetweenthehippocampusresidualfrommedullaoblongatavolumeanddiurnal

ornocturnalactivitypatterns.Whenancestryisincluded,neitherdiurnalornocturnal

activitypatternshaveasignificanteffectonhippocampusvolumesize.Thuswhen

appropriatelyscalinghippocampusvolumewithmedullavolumeandaccountingfor

ancestry,mydatasupportsthehypothesisthatnocturnalanddiurnalprimatesdonothave

significantlydifferenthippocampusvolumesizes.

HabitatsandHippocampusVolume

Relativebrainsizehasbeenfoundtopositivelycorrelatewitharborealityin

Peromyscus andDidelphidae(Lemen,1980;EisenbergandWilson,1978).Also, arborealitywasfoundtobeabetterpredictorthanterrestrialityofbrainsizeinastudy

62

examining33speciesofNorthAmericanSciurids;arborealsquirrelshadsignificantly

largerbrainsfortheirbodysizethanterrestrialsquirrels(Meier,1983).Additionally,

arborealityinvolvesmorecomplicatedforagingtasksthanterrestrialism,suchas positioningforaccessandmanipulationoffooditems(Russon,2002).Forexample,

chimpanzeeshavemoredifficultycrackingnutswithstonesandhuntingarboreallythan

terrestrially(BoeschandBoesch,1981,1984;BoeschandBoeschAchermann,2000).As

arborealpositioninginvolvesdeterminingpositionsofself,itreliesmainlyonspatial

abilities(Russon,2002).Sincearborealprimatesviewspaceinamorethreedimensional

mannerthanterrestrialprimates,theymayrelymoreheavilyonspatialabilitiesthan

terrestrialprimates(Russon,2002).Therefore,arborealprimatesshouldhavelarger

hippocampalsizethanterrestrialprimates.

Inthecurrentstudy,arborealprimatesshowedasignificantdecreaseinlog

hippocampusvolume,butaftercontrollingformedullaoblongatavolumesize,a

significantincreasewasshown.Thismayduetotheoverallincreaseinarborealprimates’ brainsize,whichislikelyduetoanincreaseinvisualcortexareas.Semiterrestrial primatesonlydisplayedasignificantdecreaseinhippocampusvolumesizewhenusing

thesizeadjustedhippocampus/medullaoblongatavolumeratio.However,whenusing

loghippocampusvolumeandhippocampusresidualsfrommedullaoblongatavolume,a

significantcorrelationwasnotfoundwithsemiterrestrialhabitat.Interrestrialprimates,

loghippocampusvolumeincreasedsignificantly,butwhensizeadjustedresidualsand

ratioswereutilized,hippocampusvolumedecreasedwithterrestrialhabitat,thoughnot

significantly.

63

Whencontrollingforphylogeny,anonsignificantcorrelationwasfoundbetween

allthreehabitattypesandhippocampusvolumeresiduals.Thus,phylogenyseemstobea

majorfactorinthecorrelationbetweenhabitatandhippocampusvolumeand,my

hypothesisthatarborealprimatesshouldhavelargerhippocampusvolumesizethansemi

terrestrialorterrestrialprimateswasnotsupportedinasignificantmanner.Habitathasno

effectonhippocampalsize.

Afewfactorsthatmayhaveinfluencedtheseresultsarethecorrelationbetween bodysize,homerangesizeandhabitat,theabilitytolearninathreedimensional

environment,andthedifferenceincomparativebrainsizebetweenarborealmammals

versusarborealprimates.Terrestrialprimatespeciestendtobelargerbodiedthan

arborealprimates(CluttonBrockandHarvey,1977a;CluttonBrockandHarvey,1977b).

Gorillasareterrestrialandhavemuchlargerdailyhomerangesthanarborealorangutans

(Goodall,1977;Rodman,1984).Thus,terrestrialanimalslikelyrequirestrongerspatial

memoryskillstonavigatetheirlargerhomerangesthanarborealprimates,whichhave

smallerhomeranges.Thismayequalizeanyhippocampaldifferencesbetweenterrestrial

andarborealprimates.Additionally,humans,whoevolvedasterrestrialcreatures,were placedinagravityfreeenvironmentandabletolearnandperformtasksinathree

dimensionalenvironment(Omanetal.,2000).Therefore,itmightbepossiblefor

terrestrialprimatestoadaptincertaininstancesandviewspacethreedimensionally,even

whentheyareaccustomedtoviewingspacetwodimensionally.Finally,whilesmall

mammalsdemonstratedasignificant,positivecorrelationbetweencomparativebrainsize

64

andarborealism,primatesdidnotdemonstratethesamesignificantresult(Harveyetal.,

1980).

CHAPTER FIVE: CONCLUSION Thisstudyaddstoagrowingbodyofresearchinsupportofthemosaictheoryof cognitiveevolution,whichsuggeststhatbrainsevolvedthroughselectiononspecific neuralstructures(Krebs,1990;HarveyandKrebs,1990;HealyandGuilford,1990;

BartonandDean,1993;DeVoogdetal.,1993;Bartonetal.,1995).Whileprevious researchhasshownselectiononspecificbrainstructuressuchasneocortexsizeand cerebellumsizeinprimates,thisisthefirstsuchstudytodemonstrateaselective environmentalpressureonprimatehippocampusvolumesize(Bartonetal.,1995;Barton andHarvey,2000).

Originalresultsshowedthathippocampusvolumesizewasnotcorrelatedwitha frugivorousdietinprimates;however,oncefrugivorousinsectivoreoutlierswere removed,hippocampusvolumewasfoundtoincreaseinprimateswithahighly frugivorousdiet.Conversely,primarilyinsectivorousprimateshavesmallerhippocampi thanfolivorousorfrugivorousprimates.Inaddition,ashomerangesizeincreases,so doeshippocampusvolumesizeinprimates.Activitypatternsandhabitathadnoeffecton primatehippocampusvolumesize.

65 66

Futuredirectionsforthisresearchmayincludemorespecificecological categories,acomparisonbetweencongenericgroups,examiningcorrelationsbetween ecologicalvariablesandparticularhippocampalneurons,differentscalingmeasures, determiningwhetherdifferencesexistduetosexualdimorphism,andconductinga multipleregressionanalysis.Feedingcategoriescouldbefurtherbrokendowninto frugivorousinsectivores,frugivorousfolivores,folivores,insectivoresandgumivores; cathemeralitymaybeaddedasanactivitypatterncategory.Also,correlationand independentcontrastanalysescouldberuntodeterminesimilaritiesanddifferences betweencongenericgroups.Inaddition,correlationsbetweenthenumberofCA3and

CA1neuronsinthehippocampus,whichareresponsibleforinputfromthedentategyrus, andecologicalvariablescouldbeanalyzed.Insteadofusingmedullaoblongatavolume forsizeadjustments,thehippocampuscouldbescaledwithtelencephalonvolumeor medialtemporallobevolumes.Anotheravenuetobeexploredwouldbewhether differencesinhippocampalsizeexistbetweenfemalesandmalesofthesamespecies.

Finally,variouspotentialpredictorsofrelativehippocampussize,suchasfrugivorous diet,insectivorousdietandhomerangesize,shouldbeanalyzedsimultaneouslyusinga multipleregressionmodeltodeterminewhichvariableisthestrongestpredictor.

REFERENCES

Allman,J. 1977Evolutionofthevisualsystemintheearlyprimates.ProgressinPsychobiology andPhysiologicalPsychology7:1–53. Amaral,D.G. 1987Memory:Anatomicalorganizationofcandidatebrainregions. In Handbookof Physiology.V.B.Mountcastle,ed.Pp.211–294.Washington,D.C.:American PhysiologicalSociety. ApacheSoftwareFoundation 2004SPSSversion13.0studentversion.URL:http://www.apache.org Baker,M.C.,andL.R.Mewaldt 1979Theuseofspacebywhitecrownedsparrows:Juvenileandadultranging patternsandhomerangeversusbodysizecomparisonsinanaviangranivore community.BehavioralEcologyand6:45–52. Baldwin,J.D.,andJ.Baldwin 1972Theecologyandbehaviourofsquirrelmonkeys( Saimiri oerstedi )inanatural forestWesternPanama.FoliaPrimatologica18:161 –184. Ballenger,L. 2001Nycticebuscoucang.Animaldiversityweb.URL: http://animaldiversity.ummz.umich.edu/site/accounts/information/Nycticebus_coucan g.html Barton,R.A. 1996Neocortexsizeandbehavioralecologyinprimates.ProceedingsoftheRoyal Society,LondonB:BiologicalSciences263:173–177. Barton,R.A. 1998Visualspecializationandbrainevolutioninprimates.ProceedingsoftheRoyal Society,LondonB:BiologicalSciences265:1933–1937.

67 68

Barton,R.A.andP.Dean 1993Comparativeevidenceindicatingneuralspecializationforpredatorybehaviour inmammals.ProceedingsoftheRoyalSociety,LondonB:BiologicalSciences254: 63–68. Barton,R.A.,andP.H.Harvey 1995Evolutionaryradiationofvisualandolfactorybrainsystemsinprimates,bats andinsectivores.PhilosophicalTransactionsoftheRoyalSociety,LondonB: BiologicalSciences348:381–392. Barton,R.A.,andP.H.Harvey 2000Mosaicevolutionofbrainstructureinmammals.Nature405(6790):1055–1058. Barton,R.A.,A.Purvis,andP.H.Harvey 1995Evolutionaryradiationofvisualandolfactorybrainsystemsinprimates,bats andinsectivores.PhilosophicalTransactionsoftheRoyalSociety,LondonB: BiologicalSciences348:381–392. Basil,J.A.,A.C.Kamil,andR.P.Balda 1996DifferencesinhippocampalvolumeamongfoodstoringCorvids.Brain, BehaviorandEvolution47:156–164. Bear,M.F.,B.W.Connors,andM.A.Paradiso 1996Neuroscience:Exploringthebrain.Pp514–545.Baltimore,MD:Williamsand Wilkins. Bearder,S.K.,andG.A.Doyle 1974EcologyofbushbabiesGalagosenegalensisandGalagocrassicaudatuswith somenotesontheirbehaviourinthefield. In ProsimianBiology.R.D.Martin,G.A. Doyle,andA.C.Walker,eds.London:Duckworth. Bearder,S.K.,andR.D.Martin 1980Thesocialorganizationofanocturnalprimaterevealedbyradiotracking. In A HandbookonBiotelemetryandRadiotracking.C.J.AmlanerandD.W.Macdonald, eds.Pp633–649.Oxford:PergamonPress. Bennett,E.L. 1986Environmentalcorrelatesofrangingbehaviourinthebandedlangur, Presbytis melalophos .FoliaPrimatologica47:26–38. BiccaMarques,J.C.,andP.A.Garber 2004Useofspatial,visual,andolfactoryinformationduringforaginginwild nocturnalanddiurnalanthropoids:Afieldexperimentcomparing Aotus, Callicebus, and Saguinus .AmericanJournalofPrimatology62:171–187.

69

Bird,L.R.,W.A.Roberts,B.Abroms,K.A.Kit,andC.Crupi 2003Spatialmemoryforfoodhiddenbyrats( Rattus norvegicus )ontheradialmaze: Studiesofmemoryforwhere,whatandwhen.JournalofComparativePsychology 117:176–187. Boesch,C.,andH.Boesch 1981Sexdifferencesintheuseofnaturalhammersbywildchimpanzees:A preliminaryreport.JournalofHumanEvolution10:585–593. Boesch,C.,andH.Boesch 1984Possiblecausesofsexdifferencesintheuseofnaturalhammersbywild chimpanzees.JournalofHumanEvolution13:415–440. Boesch,C.,andBoeschAchermann,H. 2000TheChimpaneesoftheTaїForest:BehaviouralEcologyandEvolution.Oxford, UK:OxfordUniversityPress. Boinski,S. 1987Matingpatternsinsquirrelmonkeys:Implicationsforseasonalsexual dimorphism.BehavioralEcologyandSociobiology21:13–21. Bourlière,F. 1985Primatecommunities:Theirstructureandroleintropicalecosystems.Folia Primatologica:InternationalJournalofPrimatology6:1–26. Bridgeman,B. 2002Saguinusoedipus.Animaldiversityweb.URL: http://animaldiversity.ummz.umich.edu/site/accounts/information/Saguinus_oedipus. html Buchanan,D.B.,R.A.Mittermeier,andM.G.M.vanRoosmalen 1981Thesakimonkeys,genusPithecia. In EcologyandBehaviourofNeotropical Primates,Volume1.A.H.CoimbraFilhoandR.A.Mittermeier,eds.RiodeJaneiro: AcademiaBrasilieradeCiências. Cahusac,P.,Y.Miyashita,andE.T.Rolls 1989Responsesofhippocampalformationneuronsinthemonkeyrelatedtodelayed spatialresponseandobjectplacememorytasks.BehavioralBrainResearch33(3): 229–240. Chapman,C.,andL.Chapman 2000Constraintsongroupsizeinredcolobusandredtailedguenons:Examiningthe generalityoftheecologicalconstraintsmodel.InternationalJournalofPrimatology 21(4)565–595.

70

Chapman,C.A.,andR.W.Wrangham 1993RangeuseoftheforestchimpanzeesofKibale:Implicationsforthe understandingofchimpanzeesocialorganization.AmericanJournalofPrimatology 31:263–273. CharlesDominique,P. 1975anddiurnality:Anecologicalinterpretationofthesetwomodesof lifebyananalysisofthehighervertebratefaunaintropicalforestecosystems. In Phylogenyoftheprimates:Aninterdisciplinaryapproach.W.P.LuckettandF.S. Szalay,eds.Pp.68–88.NewYork:PlenumPress. Chivers,D.J. 1984AsummaryoffeedingandranginginGibbons. In TheLesserApes: EvolutionaryandBehaviouralBiology.H.Preuschoft,D.Chivers,W.Brockelman, andN.Creel,eds.EdinburghUniversityPress. Chivers,D.J. 1994Functionalanatomyofthegastrointestinaltract. In Colobinemonkeys:Their ecology,behaviourandevolution.A.G.DaviesandJ.F.Oates,ed.Pp205–228. Cambridge:CambridgeUniversityPress. Clayton,N.S.,andA.Dickinson 1998Episodiclikememoryduringcacherecoverybyscrubjays.Nature395:272– 274. CluttonBrock,T.H.,andP.H.Harvey 1977aPrimateecologyandsocialorganisation.JournalofZoology,London183:1– 39. 1977bSpeciesdifferencesinfeedingandrangingbehaviourinprimates. In Primate ecology:Studiesoffeedingandrangingbehaviourinlemurs,monkeysandapes.T. H.CluttonBrock,ed.London:AcademicPress. CluttonBrock,T.H.,andP.H.Harvey 1980Primates,brainsandecology.JournalofZoology,London190:309–323. Cohen,N.J.,andH.Eichenbaum 1993Memory,amnesiaandthehippocampalsystem.Cambridge,MA:MITPress. Colombo,M.,andN.Broadbent 2000Istheavianhippocampusafunctionalhomologueofthemammalian hippocampus?NeuroscienceandBiobehavioralReviews24:465–484.

71

Cooper,A. 2000Cheirogaleusmajor.Animaldiversityweb.URL: http://animaldiversity.ummz.umich.edu/site/accounts/information/Cheirogaleus_majo r.html Cowlishaw,G.,andR.Dunbar 2000Primateconservationbiology.Chicago:TheUniversityofChicagoPress. Crockett,C.,andJ.Eisenberg 1986Howlers:Variationsingroupsizeanddemography. In Primatesocieties.B.L. Smuts,D.L.Cheney,R.M.Seyfarth,R.W.Wrangham,andT.T.Struhsaker,eds.Pp 54–68.Chicago:TheUniversityofChicagoPress. Damuth,J. 1981Populationdensityandbodysizeinmammals.Nature290:699–700. Davis,S. 2002Cercopithecusascanius.Animaldiversityweb.URL: http://animaldiversity.ummz.umich.edu/site/accounts/information/Cercopithecus_asca nius.html Deaner,R.O.,C.L.Nunn,andC.P.vanSchaik 2000Comparativetestsofprimatecognition:Differentscalingmethodsproduce differentresults.Brain,BehaviorandEvolution55(1):44–52. DeVoogd,T.J.,J.R.Krebs,S.D.Healy,andA.Purvis 1993Relationsbetweensongrepertoiresizeandthevolumeofbrainnucleirelatedto song:Comparativeevolutionaryanalysesamongstoscinebirds.Proceedingsofthe RoyalSociety,LondonB:BiologicalSciences254:75–82. DiazUriarte,R.,andT.Garland 1996Testinghypothesesofcorrelatedevolutionusingphylogeneticallyindependent contrasts:SensitivitytodeviationsfromBrownianmotion.SystematicBiology45: 27–47. DiazUriarte,R.,andT.Garland 1998Effectsofbranchlengtherrorsontheperformanceofphylogenetically independentcontrasts.SystematicBiology47:654–672. DinizFilho,J.A.,andN.M.Torres 2002RapoporteffectinSouthAmericanCarnivora(Mammalian):Nullmodesunder geometricandphylogeneticconstraints.BrazilianJournalofBiology62:437–444.

72

Dominy,N.J.,P.W.Lucas,D.Osorio,andN.Yamashita 2001Thesensoryecologyofprimatefoodperception.EvolutionaryAnthropology 10:171–186. Doran,D.M.,andA.McNeilage 2001Subspecificvariationingorillabehavior:Theinfluenceofecologicalandsocial factors. In Mountaingorillas:ThreedecadesofresearchatKarisoke.M.M.Robbins, P.Sicotte,andK.J.Stewart,eds.Pp123–149.Cambridge:CambridgeUniversity Press. Drury,H.A.,D.C.vanEssen,C.H.Anderson,C.W.Lee,T.A.Coogan,andJ.W. Lewis 1996Computerizedmappingsofthecerebralcortex:Amultiresolutionflattening methodandasurfacebasedcoordinatesystem.JournalofCognitiveNeuroscience8: 1–28. Eichenbaum,H.,A.Fagan,P.Mathews,andN.J.Cohen 1988Hippocampalsystemdysfunctionandodordiscriminationlearninginrats: Impairmentorfacilitationdependingonrepresentationaldemands.Behavioral Neuroscience102:331–339. Eichenbaum,H.,N.J.Fortin,C.Ergorul,S.P.Wright,andK.L.Agster 2005Episodicrecollectioninanimals:“Ifitwalkslikeaduckandquackslikea duck…”.LearningandMotivation36(2):190–207. Eisenberg,J.F. 1981Themammalianradiations.Chicago:UniversityofChicagoPress. Eisenberg,J.F.,andD.E.Wilson 1978RelativebrainsizeandfeedingstrategiesintheChiroptera.Evolution32:740– 751. Emmons,L.H.,A.GautierHion,andG.Dubost 1983CommunitystructureofthefrugivorousfolivorousforestmammalsofGabon. JournalofZoology,London199:209–222. Engqvist,A.,andA.Richard 1991Dietasapossibledeterminantofcathemeralactivitypatternsinprimates.Folia Primatologica57:169–172. Feigenbaum,J.D.,andE.T.Rolls 1991Allocentricandegocentricspatialinformationprocessinginthehippocampal formationofthebehavingprimate.Psychobiology19:21–40.

73

Felsenstein,J. 1985Phylogeniesandthecomparativemethod.AmericanNaturalist125:1–15. Fenton,A.A.,G.Csizmadia,andR.U.Muller 2000Conjointcontrolofhippocampalplacecellfiringbytwovisualstimuli.I.The effectsofmovingthestimulionfiringfieldpositions.JournalofGeneralPhysiology 116:191–209. Ferbinteanu,J.,andN.L.Shapiro 2003Perspectiveandretrospectivememoryencodinginthehippocampus.Neuron 40:1227–1239. Fernandes,G.W.,andP.W.Price 1988Biogeographicalgradientsingallingspeciesrichnesstestsofhypotheses. Oecologia76:161–167. Finlay,B.L.,andR.B.Darlington 1995Linkedregularitiesinthedevelopmentandevolutionofmammalianbrains. Science268(5217):1578–1584. Fisher,D.O.,andI.P.F.Owens 2000Femalehomerangesizeandtheevolutionofsocialorganizationinmacropod marsupials.JournalofAnimalEcology69:1083–1098. Fleagle,J.G.,C.H.Janson,andK.E.Reed 1999Primatecommunities.Cambridge:CambridgeUniversityPress. Fortin,N.J.,K.L.Agster,andH.B.Eichenbaum 2002Criticalroleofthehippocampusinmemoryforsequencesofevents.Nature Neuroscience5(5):458–462. Fujii,T.,M.Moscovitch,andL.Nadel 2000Memoryconsolidation,retrogradeamnesiaandthetemporallobe.In Handbook ofneuropsychology.F.Boller,J.Grafman,andL.Cermak,eds.Pp223–250. Amsterdam:Elsevier. Gaffan,D. 1987Amnesia,personalmemoryandthehippocampus:Experimental neuropsychologicalstudiesinmonkeys. In Cognitiveneurochemistry.S.Stahl,S. Iverson,andE.Goodman,eds.Pp46–56.Oxford:OxfordUniversityPress. Gaffan,D. 1994Scenespecificmemoryforobjects:Amodelofepisodicmemoryimpairmentin monkeyswithfornixtransection.JournalofCognitiveNeuroscience6:305–320.

74

Gaffan,D. 1998Idiotheticinputintoobjectplaceconfigurationasthecontributiontomemoryof themonkeyandhumanhippocampus:Areview.ExperimentalBrainResearch. ExperimentelleHirnforschung.ExperimentationCerebrale123(12):201209. Gaffan,D.,andR.C.Saunders 1985Runningrecognitionofconfiguralstimulibyfornixtransectedmonkeys. QuarterlyJournalofExperimentalPsychology37B:61–71. Ganzhorn,J.U.,J.P.Abraham,andM.RazananhoeraRakotomalala 1985Someaspectsofthenaturalhistoryandfoodselectionof Avahi laniger . Primates26(4):452–463. Garamszegi,L.Z.,andM.Eens 2004Theevolutionofhippocampusvolumeandbrainsizeinrelationtofood hoardinginbirds.EcologyLetters7(12):1216–1224. Garber,P.A. 1984ProposednutritionalimportanceofplantexudatesinthedietofthePanamanian tamarin, Saguinus oedipus geoffoyi .InternationalJournalofPrimatology5(1):1–15. Garland,T.,A.W.Dickerman,C.M.Janis,andJ.A.Jones 1993Phylogeneticanalysisofcovariancebycomputersimulation.Systematic Biology42:265–292. Garland,T.,P.H.Harvey,andA.R.Ives 1992Proceduresfortheanalysisofcomparativedatausingphylogenetically independentcontrasts.SystematicBiology41:18–32. Garland,T.,andR.DiazUriarte 1999Polytomiesandphylogeneticallyindependentcontrasts:Examinationofthe boundeddegreesoffreedomapproach.SystematicBiology48:547–558. GautierHion,A. 1973SocialandecologicalfeaturesoftheTalapoinmonkey–comparisonswith sympatriccercopithecines. In ComparativeEcologyandBehaviourofPrimates, ProceedingsofaConferenceHeldattheZoologicalSocietyLondon,November 1971.R.MichaelandJ.Crook,eds.LondonandNewYork:AcademicPress. GeorgesFrancois,P.,E.Rolls,andR.G.Robertson 1999Spatialviewcellsintheprimatehippocampus:Allocentricviewnothead directionoreyepositionorplace.CerebralCortex9(3):197212.

75

Gittleman,J.L.,andP.H.Harvey 1982Carnivorehomerangesize,metabolicneedsandecology.BehavioralEcology andSociobiology10:57–63. Goldizen,A.W.,J.Terborgh,F.Cornejo,D.T.Porras,andR.Evans 1988Seasonalfoodshortage,weightlossandthetimingofbirthsinsaddleback tamarins( Saguinus fuscicollis ).JournalofAnimalEcology57:893–901. Goldsmith,M.L. 1999Ecologicalconstraintsontheforagingeffortofwesterngorillas( Gorilla gorilla gorilla )atBaiHokou,CentralAfricanRepublic.InternationalJournalofPrimatology 20:1–23. Goodall,A.G. 1977Feedingandrangingbehaviourofamountaingorillagroup( Gorilla gorilla beringei )intheTshibindaKhauziregion(Zaire). In Primateecology:Studiesof feedingandrangingbehaviourinlemurs,monkeysandapes.T.H.CluttonBrock,ed. Pp.450–478.London:AcademicPress. Goodman,M.,L.I.Grossman,andD.E.Wildman 2005Movingprimategenomicsbeyondthechimpanzeegenome.TrendsinGenetics 21:511–517. Hampton,R.R.,B.M.Hampstead,andE.A.Murray 2005Rhesusmonkeys(Macacamulatta)demonstraterobustmemoryforwhatand where,butnotwhen,inanopenfieldtestofmemory.LearningandMotivation36(2): 245–259. Hampton,R.R.,D.F.Sherry,S.J.Shettleworth,M.Khurgel,andG.Ivy 1995Hippocampalvolumeandfoodstoringbehaviorarerelatedinparids.Brain, BehaviorandEvolution45:54–61. Harestad,J.B.S.,andF.Bunnell 1979Homerangeandbodyweight:Areevaluation.Ecology60:389–402. Harris,S.,W.J.Cresswell,P.G.Forde,W.J.Trewhella,T.Woollard,andS.Wray 1990Homerangeanalysisusingradiotrackingdata—areviewofproblemsand techniquesparticularlyasappliedtothestudyofmammals.MammalReview20:97– 123. Harvey,P.H.,andT.H.CluttonBrock 1981Primatehomerangesizeandmetabolicneeds.BehavioralEcologyand Sociobiology8:151–155.

76

Harvey,P.H.,T.H.CluttonBrock,andG.M.Mace 1980Brainsizeandecologyinsmallmammalsandprimates.Proceedingsofthe NationalAcademyofSciencesUSA77:4387–4389. Harvey,P.H.,andJ.R.Krebs 1990Comparingbrains.Science249:140–146. Harvey,P.H.,R.D.Martin,andT.H.CluttonBrock 1986Lifehistoriesincomparativeperspective. In Primatesocieties.B.L.Smuts,D. L.Cheney,R.M.Seyfarth,R.W.Wrangham,andT.T.Struhsaker,eds.Pp181–196. Chicago:TheUniversityofChicagoPress. Harvey,P.H.,andM.D.Pagel 1991Thecomparativemethodinevolutionarybiology.Oxford:OxfordUniversity Press. Harvey,P.H.,andA.Rambaut 1998Phylogeneticextinctionratesandcomparativemethodology.Proceedingsofthe RoyalSociety,LondonB:BiologicalSciences265:1691–1696. Haskell,J.P.,M.E.Ritchie,andH.Olff 2002Fractalgeometrypredictsvaryingbodysizescalingrelationshipsformammal andbirdhomeranges.Nature418:527–530. Healy,S.D.,andT.Guilford 1990Olfactorybulbsizeandnocturnalityinbirds.Evolution44:339–346. Healy,S.D.,andJ.R.Krebs 1992Delayedmatchingtosamplebymarshtitsandgreattits.QuarterlyJournalof ExperimentalPsychologyB45:33–47. Healy,S.D.,andJ.R.Krebs 1996FoodstoringandthehippocampusinParidae.Brain,BehaviorandEvolution 47:195–199. Held,J.R.,J.Baumgartner,A.Kilbride,R.W.Byrne,andM.Mendl 2005Foragingbehaviorindomesticpigs( Sus scrofa ):Rememberingandprioritizing foodsitesofdifferentvalue.AnimalCognition8(2):114–121. Heltne,P.G.,J.F.Wojick,andA.G.Pook 1981Goeldi’smonkey,genusCallimico. In EcologyandBehaviourofNeotropical Primates,Volume1.A.H.CoimbraFilhoandR.A.Mittermeier,eds.RiodeJaneiro: AcademiaBrasilieradeCiencias.

77

Hladik,C.M.,P.CharlesDominique,andJ.J.Petter 1980Feedingstrategiesoffivenocturnalprosimiansinthedryforestofthewest coastofMadagascar. In NocturnalMalagasyPrimates:Ecology,Physiologyand Behavior.P.CharlesDominique,ed.London:AcademicPress. Hölscher,C.,W.Jacob,andH.Mallot 2004Learnedassociationofallocentricandegocentricinformationinthe hippocampus.ExperimentalBrainResearch158(2):233–240. Hubrecht,R.C. 1984Fieldobservationsongroupsizeandcompositionofthecommonmarmoset (Callithrix jacchus jacchus )atTacapura,Brazil.Primates25:13–21. Hubrecht,R.C. 1985Homerangesizeanduseandterritorialbehaviourinthecommonmarmoset, CallithrixjacchusjacchusattheTacapurafieldstation,Recife,Brazil.International JournalofPrimatology6:533–550. Hutcheon,J.M.,J.W.Kirsch,andT.Garland 2002Acomparativeanalysisofbrainsizeinrelationtoforagingecologyand phylogenyintheChiroptera.Brain,BehaviorandEvolution60:165–180. Isbell,L.A. 1998Dietforasmallprimate:Insectivoryandgummivoryinthelargepatasmonkey (Erythrocebus patas pyrrhonotus ).AmericanJournalofPrimatology45:381–398. Jacobs,L.F.,S.J.C.Gaulin,D.F.Sherry,andG.E.Hoffman 1990Evolutionofspatialcognition:Sexspecificpatternsofspatialbehaviorpredict hippocampalsize.ProceedingsoftheNationalAcademyofSciencesUSA87:6349– 6352. Jansa,S. 1999Daubentoniamadagascariensis.Animaldiversityweb.URL: http://animaldiversity.ummz.umich.edu/site/accounts/information/Daubentonia_mada gascariensis.html Jolly,A. 1972TheEvolutionofPrimateBehaviour.NewYork:Macmillan. Jolicoeur,P.,P.Pirlot,G.Baron,andH.Stephan 1984BrainstructureandcorrelationpatternsinInsectivora,Chiroptera,andprimates. SystematicZoology33:14–29.

78

Kawabe,M.,andT.Mano 1972EcologyandbehaviourofthewildproboscismonkeyNasalislarvatus,inSabah, Malaysia.Primates13:213–228. Kay,R.F.,andE.L.Simons 1980TheecologyofOligoceneAfricanAnthropoidea.InternationalJournalof Primatology1:21–37. Kinzey,W.G. 1981Thetitimonkeys,genusCallicebus. In EcologyandBehaviourofNeotropical Primates,Volume1.A.H.CoimbraFilhoandR.A.Mittermeier,eds.RiodeJaneiro: AcademiaBrasilieradeCiências. Krebs,J.R. 1990Foodstoringbirds:Adaptivespecializationinbrainandbehaviour? PhilosophicalTransactionsoftheRoyalSociety,LondonB:BiologicalSciences329: 153–160. Krebs,J.R.,S.D.Healy,andS.J.Shettleworth 1990SpatialmemoryofParidae:Comparisonofastoringandanonstoringspecies, thecoaltit, Parus ater ,andthegreattit, P. major .AnimalBehaviour39:1127–1137. Krebs,J.R.,D.F.Sherry,S.D.Healy,V.A.Perry,andA.L.Vaccarino 1989Hippocampalspecializationoffoodstoringbirds.ProceedingsoftheNational AcademyofSciencesUSA86:1388–1392. Kubicek,C. 1999Tarsiussyrichta.Animaldiversityweb.URL: http://animaldiversity.ummz.umich.edu/site/accounts/information/Tarsius_syrichta.ht ml Lee,P.C. 2001Comparativeprimatesocioecology.Cambridge:CambridgeUniversityPress. Lemen,C. 1980RelationshipbetweenrelativebrainsizeandclimbingabilityinPeromyscus. JournalofMammalogy61:360–364. Lindstedt,S.L.,B.J.Miller,andS.W.Buskirk 1986Homerange,timeandbodysizeinmammals.Ecology67:413–418. Ludvig,N.,H.M.Tang,H.Eichenbaum,andB.C.Gohil 2003Spatialmemoryperformanceoffreelymovingsquirrelmonkeys.Behavioural BrainResearch140(12):175–183.

79

Mace,G.M.,andP.H.Harvey 1983Energeticconstraintsonhomerangesize.AmericanNaturalist121:120–132. Mace,G.M.,P.H.Harvey,andT.H.CluttonBrock 1981Brainsizeandecologyinsmallmammals.JournalofZoology,London193: 333–354. Mackinnon,J.,andK.Mackinnon 1980Thebehaviourofwildspectraltarsiers.InternationalJournalofPrimatology1: 361 –379. Maddison,W.P.,andD.R.Maddison 2006Mesquite:Amodularsystemforevolutionaryanalysis.Version1.11.URL: http://mesquiteproject.org . Maguire,E.A.,D.G.Gadian,I.S.Johnsrude,C.D.Good,J.Ashburner,R.S.J. Frackowiak,andC.D.Frith 2000Navigationrelatedstructuralchangeinthehippocampioftaxidrivers. ProceedingsoftheNationalAcademyofSciencesUSA97:4398–4403. Manns,J.R.,R.O.Hopkins,andL.R.Squire 2003Semanticmemoryandthehumanhippocampus.Neuron38:127–133. Manns,J.R.,andL.R.Squire 2002Themedialtemporallobeandmemoryforfactsandevents.In Handbookof memorydisorders.A.Baddeley,M.Kopelman,andB.Wilson,eds.Pp81–89.New York:JohnWileyandSons. Markus,E.J.,Y.L.Qin,B.Leonard,W.E.Skaggs,B.L.McNaughton,andC.A.Barnes 1995Interactionsbetweenlocationandtaskaffectthespatialanddirectionalfiringof hippocampalneurons.JournalofNeuroscience16:823–835. Marquis,R.J. 1991Herbivorefaunaof Piper (Piperaceae)inaCostaRicanwetforest:Diversity, specificityandimpact. In Plantanimalinteractions:Evolutionaryecologyintropical andtemperateregions.P.W.Price,T.M.Lewinson,G.W.Fernandes,andW.W. Benson,eds.Pp179–208.NewYork:Wiley. Marr,D. 1971Simplememory:Atheoryforarchiocortex.PhilosophicalTransactionsofthe RoyalSociety,LondonB:BiologicalSciences262:23–81.

80

Martins,E.P.,andT.Garland 1991Phylogeneticanalysesofthecorrelatedevolutionofcontinuouscharacters:A simulationstudy.Evolution45:534–557. McNaughton,B.L.,C.A.Barnes,andJ.O’Keefe 1983Thecontributionsofposition,directionandvelocitytosingleunitactivityinthe hippocampusoffreelymovingrats.ExperimentalBrainResearch52:41–49. Meier,P.T. 1983RelativebrainsizewithintheNorthAmericanSciuridae.Journalof Mammalogy64:642–647. Menzel,C.R.,E.S.SavageRumbaugh,andE.W.Menzel 2002Bonobo(Pan paniscus )spatialmemoryandcommunicationina20hectare forest.FoliaPrimatolica:InternationalJournalofPrimatology23(3):601–619. Midford,P.E.,T.GarlandJr.,andW.P.Maddison 2003PDAPpackage:AtranslationofthePDTREEapplicationofGarlandetal.’s phenotypicdiversity.URL: www.mesquiteproject.org/pdap_mesquite/index Milton,K. 1981Distributionpatternsoftropicalplantfoodsasanevolutionarystimulusto primatementaldevelopment.AmericanAnthropologist83:534–548. Mishkin,M. 1982Amemorysysteminthemonkey.PhilosophicalTransactionsoftheRoyal Society,LondonB:BiologicalSciences298:85–92. Miyashita,Y.,E.T.Rolls,P.M.Cahusac,H.Niki,andJ.D.Feigenbaum 1989Activityofhippocampalformationneuronsinthemonkeyrelatedtoa conditionalspatialresponsetask.JournalofNeurophysiology61:669–678. Muller,R.,J.Kubie,E.Bostock,J.Taube,andG.Quirk 1991Spatialfiringcorrelatesofneuronsinthehippocampalformationoffreely movingrats. In Brainandspace.J.Paillard,ed.Pp296–333.Oxford:Oxford UniversityPress. Nadel,L.,andH.Eichenbaum 1999Introductiontothespecialissueonplacecells.Hippocampus9:341–345. Norberg,U.M. 1994Wingdesign,flightperformance,andhabitatuseinbats. In Ecological Morphology.P.C.WainwrightandS.M.Reilly,eds.Pp.205–239.Chicago:The UniversityofChicagoPress.

81

Norberg,U.M.,andJ.M.V.Rayner 1987Ecologicalmorphologyandflightinbats(Mammalia,Chiroptera):Wing adaptations,flightperformance,foragingstrategyandecholocation.Philosophical TransactionsoftheRoyalSociety,LondonB:BiologicalSciences316:337–419. Nowak,R.M. 1999Walker’sprimatesoftheworld.Baltimore,MD:JohnsHopkinsUniversity Press. Nunn,C.L.,andR.A.Barton 2000Allometricslopesandindependentcontrasts:AcomparativetestofKleiber's lawinprimaterangingpatterns.AmericanNaturalist156(5):519–533. O’Keefe,J. 1979Areviewofhippocampalplacecells.ProgressinNeurobiology13:419–439. O’Keefe,J. 1984Spatialmemorywithinandwithoutthehippocampalsystem. In Neurobiology ofthehippocampus.W.Seifert,ed.Pp375–403.London:AcademicPress. O’Keefe,J.,andJ.Dostrovsky 1971Thehippcampusasaspatialmap:Preliminaryevidencefromunitactivityinthe freelymovingrat.BrainResearch34:171–175. O’Keefe,J.,andL.Nadel 1978Thehippocampusasacognitivemap.Oxford:ClarendonPress. Older,K. 1999Cheirogaleusmedius.Animaldiversityweb.URL: http://animaldiversity.ummz.umich.edu/site/accounts/information/Cheirogaleus_medi us.html Olifiers,N.,M.V.Vieira,andC.E.V.Grellet 2004Geographicrangeandbodysizeinneotropicalmarsupials.GlobalEcologyand Biogeography13:439–444. Ottaviani,D.,S.C.Cairns,M.Oliverio,andL.Boitani 2006BodymassasapredictivevariableofhomerangesizeamongItalianmammals andbirds.JournalofZoology269:317–330. Pagel,M.D. 1999Inferringthehistoricalpatternsofbiologicalevolution.Nature401:877–884.

82

Parkinson,J.,E.Murray,andM.Mishkin 1988Aselectivemnemonicrollforthehippocampusinmonkeys:Memoryforthe locationofobjects.JournalofNeuroscience8:4059–4167. Pirlot,P.,andP.Jolicoeur 1982CorrelationsbetweenmajorbrainregionsinChiroptera.Brain,Behaviorand Evolution20:172–181. Pirlot,P.,andH.Stephan 1970EncephalisationinChiroptera.CanadianJournalofZoology48:433–442. Pitchford,A.C.L. 1986Thescalingofprimaterangingparameters.MasterofSciencethesis,Biological Anthropology,UniversityCollegeLondon. Porter,L.M. 2001Socialorganization,reproductionandrearingstrategiesof Callimico goeldii : Newcluesfromthewild.FoliaPrimatologica72:69–79. Price,T. 1997Correlatedevolutionandindependentcontrasts.PhilosophicalTransactionsof theRoyalSociety,LondonB:BiologicalSciences352:519–529. Price,P.W.,I.R.Diniz,andH.C.Morais 1995Theabundanceofinsectherbivorespeciesinthetropics:Thehighlocal richnessorrarespecies.Biotropica27:468–478. Purvis,A.,andT.Garland 1993Polytomiesincomparativeanalysisofcontinuouscharacters.Systematic Biology42:569575. Purvis,A.,J.L.Gittleman,andH.K.Luh 1994Truthorconsequences:Effectsofphylogeneticaccuracyontwocomparative methods.JournalofTheoreticalBiology167:293–300. Purvis,A.,andA.Rambaut 1995Comparativeanalysisbyindependentcontrasts(CAIC):AnAppleMacintosh applicationforanalyzingcomparativedata.ComputerApplicationsintheBiosciences 11:247–251. Purvis,A.,andA.J.Webster 1999Phylogeneticallyindependentcomparisonsandprimatephylogeny. In Comparativeprimatesocioecology.P.C.Lee,ed.Pp44–70.Cambridge:Cambridge UniversityPress.

83

Redish,A.D.,F.P.Battaglia,M.K.Chawla,A.D.Ekstrom,G.L.Gerrard,P.Lipa,E.S. Rosenzweig,P.F.Worley,J.F.Guzowski,B.L.McNaughton,andC.A.Barnes 2001Independenceoffiringcorrelatesofanatomicallyproximatehippocampal pyramidalcells.JournalofNeuroscience21:RC134. Remis,M.J. 1997RangingandgroupingpatternsofawesternlowlandgorillagroupatBaiHokou, CentralAfricanRepublic.AmericanJournalofPrimatology43:111–133. Ridley,M. 1989Whynottousespeciesincomparativetests.JournalofTheoreticalBiology 136:361–364. Rijksen,H.D. 1978AfieldstudyonSumatranorangutans(PongopygmaeusabeliiLesson1827) ecology,behaviourandconservation.Dissertation,H.VeenmanandB.V.Zonen, UniversityofWageningen,TheNetherlands. Robbins,M.M.,andA.McNeilage 2003HomerangeandfrugivorypatternsofmountaingorillasinBwindiImpenetrable NationalPark,Uganda.InternationalJournalofPrimatology24:467–491. Roberts,W.A.,andS.Roberts 2002Twotestsofthestuckintimehypothesis.JournalofGeneralPsychology129: 415–429. Robertson,R.G.,E.T.Rolls,andP.GeorgesFrançois 1998Spatialviewcellsintheprimatehippocampus:Effectsofremovalofview details.JournalofNeurophysiology79(3):1145–1156. Rodman,P.S. 1984Foragingandsocialsystemsoforangutansandchimpanzees. In Adaptationsfor foraginginnonhumanprimates.P.S.RodmanandJ.G.H.Cant,eds.Pp134–159. NewYork:ColumbiaUniversityPress. Rolls,E.T. 1989Functionsofneuronalnetworksinthehippocampusandneocortexinmemory. In Neuralmodelsofplasticity:Experimentalandtheoreticalapproaches.J.H.Byrne andW.O.Berry,eds.Pp240–265.SanDiego:AcademicPress. Rolls,E.T. 1996Atheoryofhippocampalfunctioninmemory.Hippocampus6:601–620.

84

Rolls,E.T. 1999Spatialviewcellsandtherepresentationofplaceintheprimatehippocampus. Hippocampus9(4):467–480. Rolls,E.T.,Y.Miyashita,P.Cahusac,R.Kesner,H.Niki,J.Feigenbaum,andL.Bach 1989Hippocampalneuronsinthemonkeywithactivityrelatedtotheplaceinwhich astimulusisshown.JournalofNeuroscience9(6):1835–1845. Rolls,E.T.,R.Robertson,andP.GeorgesFrançois 1997Spatialviewcellsintheprimatehippocampus.TheEuropeanJournalof Neuroscience9(8):1789–1794. Rolls,E.T.,andM.O’Mara 1993Neurophysiologicalandtheoreticalanalysisofhowthehippocampusfunctions inmemory. In Brainmechanismsofperceptionandmemory:Fromneuronto behavior.T.Ono,L.Squire,M.Raichle,D.Perrett,andM.Fukuda,eds.Pp.276– 300.NewYork:OxfordUniversityPress. Rolls,E.T.,andM.O'Mara 1995Viewresponsiveneuronsintheprimatehippocampalcomplex.Hippocampus 5(5):409–424. Rolls,E.T.,andS.M.Stringer 2005Spatialviewcellsinthehippocampus,andtheiridiotheticupdatebasedonplace andheaddirection.NeuralNetworks18:1229–1241. Rolls,E.T.,S.M.Stringer,andT.P.Trappenberg 2002Aunifiedmodelofspatialandepisodicmemory.ProceedingsoftheRoyal Society,LondonB:BiologicalSciences269:1087–1093. Rolls,E.T.,andA.Treves 1998Neuralnetworksandbrainfunction.Oxford:OxfordUniversityPress. Rolls,E.T.,A.Treves,R.Robertson,P.GeorgesFrançois,andS.Panzeri 1998Informationaboutspatialviewinanensembleofprimatehippocampalcells. JournalofNeurophysiology79(4):1797–1813. Rolls,E.T.,andJ.Z.Xiang 2005Rewardspatialviewrepresentationsandlearningintheprimatehippocampus. JournalofNeuroscience25(26):6167–6174. Rolls,E.T.,J.Z.Xiang,andL.Franco 2005Object,spaceandobjectspacerepresentationsintheprimatehippocampus. JournalofNeurophysiology94:833–844.

85

Rosenberger,A.L. 1992EvolutionoffeedingnichesinNewWorldmonkeys.AmericanJournalof PhysicalAnthropology88(4):525–562. Russon,A.E. 2002Returnofthenative:Cognitionandsitespecificexpertiseinorangutan rehabilitation.InternationalJournalofPrimatology23(3):461–478. Safi,K.,andD.K.N.Dechmann 2005Adaptationofbrainregionstohabitatcomplexity:Acomparativeanalysisin bats(Chiroptera).ProceedingsoftheRoyalSociety,LondonB:BiologicalSciences 272:179–186. Sawaguchi,T. 1992Thesizeoftheneocortexinrelationtoecologyandsocialstructureinmonkeys andapes.FoliaPrimatologica:InternationalJournalofPrimatology58:131–145. Schoener,T.W. 1968Sizeoffeedingterritoriesamongbirds.Ecology49:123–141. Scoville,W.B.,andB.Milner 1957Lossofrecentmemoryafterbilateralhippocampallesions.Journalof Neurology,NeurosurgeryandPsychiatry 20:11–21. Shapiro,M.,andH.Eichenbaum 1999Hippocampusasamemorymap:Synapticplasticityandmemoryencodingby hippocampalneurons.Hippocampus9:365–384. Sherry,D.,A.L.Vaccarino,K.Buckenham,andR.S.Herz 1989Thehippocampalcomplexoffoodstoringbirds.Brain,BehaviorandEvolution 34:308–317. Sherwood,C.C.,M.R.Cranfield,P.T.Mehlman,A.A.Lilly,J.A.Garbe,C.A. Whittier,F.B.Nutter,T.R.Rein,H.J.Bruner,R.L.Holloway,C.Y.Tang,T.P. Naidich,B.N.Delman,H.D.Steklis,J.M.Erwin,andP.R.Hof 2004Brainstructurevariationingreatapes,withattentiontothemountaingorilla (Gorilla beringei beringei ).AmericanJournalofPrimatology63(3):149–164. Sherwood,C.C.,P.R.Hof,R.L.Holloway,K.Semendeferi,P.J.Gannon,H.D.Frahm, andK.Zilles 2005Evolutionofthebrainstemorofacialmotorsysteminprimates:Acomparative studyoftrigeminal,facialandhypoglossalnuclei.JournalofHumanEvolution2005 48(1):45–84.

86

Singleton,I.,andC.P.vanSchaik 2001OrangutanhomerangesizeanditsdeterminantsinaSumatranswampforest. InternationalJournalofPrimatology22:877–911. Smith,M.L.,andB.Milner 1981Theroleoftherighthippocampusintherecallofspatiallocation. Neuropsychologia19:781–793. Smuts,B.L.,D.L.Cheney,R.M.Seyfarth,R.W.Wrangham,andT.T.Struhsaker 1986Primatesocieties.Chicago:TheUniversityofChicagoPress. Squire,L.R.,andS.M.Zola 1996Structureandfunctionofdeclarativeandnondeclarativememorysystems. ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica 93:13515–13522. Squire,L.R.,andS.M.Zola 1998Episodicmemory,semanticmemoryandamnesia.Hippocampus8:205–211. Squire,L.R.,andS.M.ZolaMorgan 1991Themedialtemporallobememorysystem.Science253(5026):1380–1386. Stephan,H.,R.Bauchot,andO.J.Andy 1970Dataonsizeofthebrainandofvariousbrainpartsininsectivoresandprimates. In Theprimatebrain:Advancesinprimatology.C.R.NobackandW.Montague,eds. Pp289–297.NewYork:AppletonCenturyCrofts. Stephan,H.,H.Frahm,andG.Baron 1981Newandreviseddataonvolumeofbrainstructuresininsectivoresand primates.FoliaPrimatologica:InternationalJournalofPrimatology35:1–29. Sterling,E.J.,N.Nguyen,andP.J.Fashing 2000Spatialpatterninginnocturnalprosimians:Areviewofmethodsandrelevance tostudiesofsociality.AmericanJournalofPrimatology51:3–19. Stone,I. 2001Lagothrixlagotricha.Animaldiversityweb.URL: http://animaldiversity.ummz.umich.edu/site/accounts/information/Lagothrix_lagotric ha.html Sussman,R.W. 1999Primateecologyandsocialstructure.NeedhamHeights,MA:PearsonCustom Publishing.

87

Suzuki,W. 2003Declarativeversusepisodic:Twotheoriesputtothetest.Neuron38(1):5–7. Suzuki,W. 2003Episodicmemorysignalsintherathippocampus.Neuron40(6):1055–1056. Suzuki,W. 2006Encodingnewepisodesandmakingthemstick.Neuron50(1):19–21. Suzuki,W.,andD.G.Amaral 1994Perirhinalandparahippocampalcorticesofthemacaquemonkey:Cortical afferents.JournalofComparativeNeurology350(4):497–533. Suzuki,W.,andD.G.Amaral 1994Topographicorganizationofthereciprocalconnectionsbetweenthemonkey entorhinalcortexandtheperirhinalandparahippocampalcortices.Journalof Neuroscience14(3Pt2):1856–1877. Tan,C.L. 1999Groupcomposition,homerangesizeanddietofthreesympatricbamboolemur species(Genus Hapalemur )inRanomafanaNationalPark,Madagascar.International JournalofPrimatology20(4):547–566. Taylor,A.B.,andC.P.vanSchaik 2007VariationinbrainsizeandecologyinPongo.JournalofHumanEvolution 52(1):59–71. Terborgh,J. 1983FiveNewWorldPrimates:AStudyinComparativeEcology.NewJersey: PrincetonUniversityPress. Tolman,E.C. 1948Cognitivemapsinratsandmen.PsychologicalReview55:189–208. Treves,A.,andE.T.Rolls 1992Computationalconstraintssuggesttheneedfortwodistinctinputsystemstothe hippocampalCA3network.Hippocampus2:189–199. Treves,A.,andE.T.Rolls 1994Acomputationalanalysisoftheroleofthehippocampusinmemory. Hippocampus4:374–391.

88

Tutin,C.E.G. 1996RangingandsocialstructureoflowlandgorillasintheLopéReserve,Gabon. In Greatapesocieties.W.C.McGrew,L.F.Marchant,andT.Nishida,eds.Pp58–70. Cambridge:CambridgeUniversityPress. VanEssen,D.C.,C.H.Anderson,andD.J.Felleman 1992Informationprocessingintheprimatevisualsystem:Anintegratedsystems perspective.Science255:419–423. VanHoesen,G.W. 1982Theparahippocampalgyrus:Newobservationsregardingitscortical connectionsinthemonkey.TrendsinNeuroscience5:345–350. VarghaKhadem,F.,D.G.Gadian,K.E.Watkins,A.Connelly,W.VanPaesschen,and M.Mishkin 1997Differentialeffectsofearlyhippocampalpathologyonepisodicandsemantic memory.Science277:376–380. Watanabe,T.,andH.Niki 1985Hippocampalunitactivityanddelayedresponseinthemonkey.BrainResearch 325:241–254. Watts,D.P. 1998Longtermhabitatusebymountaingorillas( Gorilla gorilla beringei ).1. Consistency,variation,andhomerangesizeandstability.InternationalJournalof Primatology19:651–680. Whishaw,I.Q.,andL.E.Jarrard 1996Evidenceforextrahippocampalinvolvementinplacelearningandhippocampal involvementinpathintegration.Hippocampus6(5):513–524. Whishaw,I.Q.,J.E.McKenna,andH.Maaswinkel 1997Hippocampallesionsandpathintegration.CurrentOpinioninNeurobiology 7(2):228–234. Whishaw,I.Q.,andJ.A.Tomie 1997Perseverationonplacereversalsinspatialswimmingpooltasks:further evidenceforplacelearninginhippocampalrats.Hippocampus7(4):361–370. Wiens,F. 2002.Behaviorandecologyofwildslowlorises( Nycticebus coucang ).Ph.D. dissertation,DepartmentofBiology,ChemistryandGeosciences,Bayreuth University.

89

Wilson,M.A.,andB.L.McNaughton 1993Dynamicsofthehippocampalensemblecodeforspace.Science261:1055– 1058. Wright,P.C. 1992Primateecology,rainforestconservationandeconomicdevelopment:Buildinga nationalparkinMadagascar.EvolAnthropol1:29–33. Yamagiwa,J.,T.Maruashi,T.Yumoto,andN.Mwanza 1996DietaryandrankingoverlapinsympatricgorillasandchimpancésinKahuzi BiegaNationalPark,Zaire. In Greatapesocieties.W.C.McGrew,L.F.Marchant, andT.Nishida,eds.Pp82–98.Cambridge:CambridgeUniversityPress. Yamagiwa,J.,N.Mwanza,andT.Maruashi 1994SeasonalchangeinthecompositionofthedietofEasternLowlandGorillas. Primates35:1–14.