Genetic Diversity of Plathymenia Reticulata Benth. in Fragments of Atlantic Forest in Southeastern Brazil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prosiding Seminar Nasional Biotik 2018 ISBN: 978-602-60401-9-0
Prosiding Seminar Nasional Biotik 2018 ISBN: 978-602-60401-9-0 KEANEKARAGAMAN JENIS TUMBUHAN SPERMATOPHYTA FAMILY FABACEAE DI PEGUNUNGAN DEUDAP PULO ACEH KABUPATEN ACEH BESAR Hariyati1), Mirna Zulmaidar2), Rahmalia Hasanah3) 1-3)Program Studi Pendidikan Biologi FTK UIN Ar-Raniry Banda Aceh Email: [email protected] ABSTRAK Penelitian tentang “Keanekaragaman Jenis Tumbuhan Spermatophyta Family Fabaceae di Pegunungan Deudap Pulo Aceh Kabupaten Aceh Besar” telah dilakukan pada tanggal 15 April 2017. Penelitian ini dilakukan untuk mengetahui keanekaragaman jenis tumbuhan Spermatophyta family Fabaceae di pegunungan Deudap, kecamatan Pulo Aceh, kabupaten Aceh Besar. Metode yang digunakan dalam penelitian ini adalah kombinasi metode transek garis (line transek) dan metode menjelajah. Analisis data dilakukan dengan cara kuantitatif menggunakan rumus indeks keanekaragaman. Hasil penelitian diketahui bahwa terdapat 3 spesies tumbuhan family Fabaceae yang tergolong ke dalam 2 subfamily, yaitu subfamily Faboideae dan Caesalpinioideae. Indeks keanekaragaman jenis tumbuhan Spermatophyta family Fabaceae yang diperoleh adalah 1,0795. Hal ini menunjukkan bahwa keanekaragaman jenis tumbuhanspermatophyta family Fabaceae tergolong sedang. Kata Kunci: Keanekaragaman, Spermatophyta, Fabaceae, Pulo Aceh. PENDAHULUAN amily Fabaceae merupakan anggota pada akar atau batangnya. Jaringan yang dari ordo Fabales yang dicirikan mengandung bakteri simbiotik ini biasanya dengan buah bertipe polong. Family ini menggelembung dan membentuk bintil-bintil. terdistribusi secara luas di seluruh dunia dan Setiap jenis biasanya bersimbiosis pula dengan terdiri atas 18.000 spesies yang tercakup dalam jenis bakteri yang khas pula (Arifin Surya dan 650 genus (Langran, et.al., 2010). Berdasarkan Priyanti, 2016). ciri pada bunga dan biji, ahli botani membagi Desa Deudap merupakan suatu desa di family Fabaceae menjadi tiga subfamily, yaitu kecamatan Pulo Aceh yang kawasannya masih Caesalpinioideae, Faboideae, dan Mimosoideae alami ditandai dengan adanya kekayaan dan (Ariati, et.al., 2001). -
Leguminosae Subfamily Papilionoideae Author(S): Duane Isely and Roger Polhill Reviewed Work(S): Source: Taxon, Vol
Leguminosae Subfamily Papilionoideae Author(s): Duane Isely and Roger Polhill Reviewed work(s): Source: Taxon, Vol. 29, No. 1 (Feb., 1980), pp. 105-119 Published by: International Association for Plant Taxonomy (IAPT) Stable URL: http://www.jstor.org/stable/1219604 . Accessed: 16/08/2012 02:44 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. International Association for Plant Taxonomy (IAPT) is collaborating with JSTOR to digitize, preserve and extend access to Taxon. http://www.jstor.org TAXON 29(1): 105-119. FEBRUARY1980 LEGUMINOSAE SUBFAMILY PAPILIONOIDEAE1 Duane Isely and Roger Polhill2 Summary This paper is an historical resume of names that have been used for the group of legumes whose membershave papilionoidflowers. When this taxon is treatedas a subfamily,the prefix "Papilion-", with various terminations, has predominated.We propose conservation of Papilionoideae as an alternative to Faboideae, coeval with the "unique" conservation of Papilionaceaeat the family rank. (42) Proposal to revise Code: Add to Article 19 of the Code: Note 2. Whenthe Papilionaceaeare includedin the family Leguminosae(alt. name Fabaceae) as a subfamily,the name Papilionoideaemay be used as an alternativeto Faboideae(see Art. 18.5 and 18.6). -
Characteristics of the Stem-Leaf Transitional Zone in Some Species of Caesalpinioideae (Leguminosae)
Turk J Bot 31 (2007) 297-310 © TÜB‹TAK Research Article Characteristics of the Stem-Leaf Transitional Zone in Some Species of Caesalpinioideae (Leguminosae) Abdel Samai Moustafa SHAHEEN Botany Department, Aswan Faculty of Science, South Valley University - EGYPT Received: 14.02.2006 Accepted: 15.02.2007 Abstract: The vascular supply of the proximal, middle, and distal parts of the petiole were studied in 11 caesalpinioid species with the aim of documenting any changes in vascular anatomy that occurred within and between the petioles. The characters that proved to be taxonomically useful include vascular trace shape, pericyclic fibre forms, number of abaxial and adaxial vascular bundles, number and relative position of secondary vascular bundles, accessory vascular bundle status, the tendency of abaxial vascular bundles to divide, distribution of sclerenchyma, distribution of cluster crystals, and type of petiole trichomes. There is variation between studied species in the number of abaxial, adaxial, and secondary bundles, as seen in transection of the petiole. There are also differences between leaf trace structure of the proximal, middle, and distal regions of the petioles within each examined species. Senna italica Mill. and Bauhinia variegata L. show an abnormality in their leaf trace structure, having accessory bundles (concentric bundles) in the core of the trace. This study supports the moving of Ceratonia L. from the tribe Cassieae to the tribe Detarieae. Most of the characters give valuable taxonomic evidence reliable for delimiting the species investigated (especially between Cassia L. and Senna (Cav.) H.S.Irwin & Barneby) at the generic and specific levels, as well as their phylogenetic relationships. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Chronic Treatment with Hydroalcoholic Extract of Plathymenia Reticulata Promotes Islet Hyperplasia and Improves Glycemic Control in Diabetic Rats
ORIGINAL ARTICLE Chronic treatment with hydroalcoholic Official Publication of the Instituto Israelita de Ensino e Pesquisa Albert Einstein extract of Plathymenia reticulata promotes islet hyperplasia and improves ISSN: 1679-4508 | e-ISSN: 2317-6385 glycemic control in diabetic rats Tratamento crônico com extrato hidroalcoólico de Plathymenia reticulata promove hiperplasia de ilhotas e controle glicêmico em ratos diabéticos Fernanda Oliveira Magalhães1, Elizabeth Uber-Bucek1, Patricia Ibler Bernardo Ceron1, Thiago Fellipe Name1, Humberto Eustáquio Coelho1, Claudio Henrique Gonçalves Barbosa1, Tatiane Carvalho1, Milton Groppo2 1 Universidade de Uberaba, Uberaba, MG, Brazil. 2 Universidade de São Paulo, Ribeirão Preto, SP, Brazil. DOI: 10.31744/einstein_journal/2019AO4635 ❚ ABSTRACT Objective: To investigate the anti-hyperglycemic effects of Plathymenia reticulata hydroalcoholic extract and related changes in body weight, lipid profile and the pancreas. Methods: Diabetes was induced in 75 adult male Wistar rats via oral gavage of 65mg/Kg of streptozotocin. Rats were allocated to one of 8 groups, as follows: diabetic and control rats treated with water, diabetic and control rats treated with 100mg/kg or 200mg/kg of plant extract, and diabetic and How to cite this article: control rats treated with glyburide. Treatment consisted of oral gavage for 30 days. Blood glucose Magalhães FO, Uber-Bucek E, Ceron PI, levels and body weight were measured weekly. Animals were sacrificed and lipid profile and Name TF, Coelho HE, Barbosa CH, et al. pancreatic tissue samples analyzed. Statistical analysis consisted of ANOVA, post-hoc Tukey- Chronic treatment with hydroalcoholic Kramer, paired Student’s t and χ2 tests; the level of significance was set at 5%. Results: Extract extract of Plathymenia reticulata promotes islet hyperplasia and improves glycemic gavage at 100mg/kg led to a decrease in blood glucose levels in diabetic rats in the second, third control in diabetic rats. -
Vinhático Plathymenia Reticulata1
Comunicado231 ISSN 1517-5030 Colombo, PR Técnico Julho, 2009 Vinhático Plathymenia reticulata1 Paulo Ernani Ramalho Carvalho2 Foto: Paulo Ernani Ramalho Carvalho. Taxonomia e Nomenclatura Nomes vulgares por Unidades da Federação: em Alagoas, amarelo e amarelo-gengibre; na Bahia, De acordo com o sistema de classificação baseado amarelinho, vinhático e vinhático-do-campo; no no The Angiosperm Phylogeny Group (APG) II Ceará, acende-candeia, amarelo e pau-amarelo; no (2003), a posição taxonômica de Plathymenia Distrito Federal, vinhático-do-campo; no Espírito reticulata obedece à seguinte hierarquia: Santo, em Goiás e no Estado de São Paulo, vinhático; em Mato Grosso, vinhático-do-campo; Divisão: Angiospermae em Mato Grosso do Sul, vinhático e vinhático-do- campo; em Minas Gerais, binhático, vinhático e Clado: Eurosídeas I vinhático-do-campo; no Pará, oiteira, paricazinho, pau-amarelo e pau-de-candeia; em Pernambuco, Ordem: Fabales (Cronquist classifica como Rosales) amarelo e pau-amarelo; no Piauí, acende-candeia e candeia; no Estado do Rio de Janeiro, amarelo e Família: Fabaceae (Cronquist classifica como vinhático; em Santa Catarina, vinhático-do-campo Leguminosae) e vinhático-chamalot; e no Estado de São Paulo, amarelinho, candeia e vinhático-do-campo. Subfamília: Mimosoideae Gênero: Plathymenia Nomes vulgares no exterior: no Paraguai, morosyvo say’ ju. Espécie: Plathymenia reticulata Benth. o nome genérico Plathymenia vem do Primeira publicação: in Journal of Botany, being a Etimologia: second series of the Botanical Miscellany 4(30); grego plathy (largo e chato) + hymenon (envólucro 334. 1841. ou membrana), ou seja, sementes largas e achatadas envoltas por membrana; o epíteto Sinonímia botânica: Plathymenia foliolosa Benth. específicoreticulata se deve às nervuras dispostas (1841); Pirottantha modesta Spegazzini (1916); em rede. -
Redalyc.Genetic Divergence Among Dimorphandra Spp. Accessions Using RAPD Markers
Ciência Rural ISSN: 0103-8478 [email protected] Universidade Federal de Santa Maria Brasil Pombo Sudré, Cláudia; Rodrigues, Rosana; Azeredo Gonçalves, Leandro Simões; Ronie Martins, Ernane; Gonzaga Pereira, Messias; Santos, Marilene Hilma dos Genetic divergence among Dimorphandra spp. accessions using RAPD markers Ciência Rural, vol. 41, núm. 4, abril, 2011, pp. 608-613 Universidade Federal de Santa Maria Santa Maria, Brasil Available in: http://www.redalyc.org/articulo.oa?id=33118724014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência608 Rural, Santa Maria, v.41, n.4, p.608-613, abr, 2011 Sudré et al. ISSN 0103-8478 Genetic divergence among Dimorphandra spp. accessions using RAPD markers Divergência genética entre acessos de Dimorphandra spp. usando marcadores RAPD Cláudia Pombo SudréI* Rosana RodriguesI Leandro Simões Azeredo GonçalvesI Ernane Ronie MartinsII Messias Gonzaga PereiraI Marilene Hilma dos SantosI ABSTRACT incluir duas espécies que são importantes economicamente como fontes de flavonoides para indústria farmacoquímica The genus Dimorphandra has distinguish (D. mollis Benth. e D. gardneriana Tull.), e espécies endêmicas relevance considering either medicinal or biodiversity aspects do Brasil, como a D. jorgei Silva e D. wilsonii Rizz., sendo esta because it includes two species that are economically important ameaçada de extinção. Objetivando avaliar a variabilidade flavonoids sources for pharmachemical industry (D. mollis entre acessos de D. mollis, D. gardneriana e D. wilsonii, foram Benth. and D. gardneriana Tul.), and species endemic to Brazil, realizadas coletas de frutos separados por planta em três estados such as D. -
Three New Legumes Endemic to the Marañón Valley, Perú
KEW BULLETIN VOL. 65: 209–220 (2010) Three new legumes endemic to the Marañón Valley, Perú G. P. Lewis1, C. E. Hughes2,3, A. Daza Yomona4, J. Solange Sotuyo5 & M. F. Simon2,6 Summary. Two new species of legume, Caesalpinia celendiniana and Mimosa lamolina and one new variety, Caesalpinia pluviosa var. maraniona, from the inter-Andean Río Marañón Valley in northern Perú are described and illustrated. These add to the already impressive tally of endemics known from the seasonally dry tropical forests of the Río Marañón Valley, which apparently far exceeds the endemic plant diversity from other nearby inter-Andean dry valleys in Perú and southern Ecuador. Key Words. Caesalpinia, Caesalpinioideae, endemic, Fabaceae, Leguminosae, Mimosa, Mimosoideae, Perú. Introduction Simpson 1998, 1999;Simpson&Lewis2003;Simpson Amongst the seasonally dry tropical forests of the et al. 2003;Lewis2005;Bruneauet al. 2008; Sotuyo et inter-Andean valleys of Perú and adjacent countries, al. unpublished). A number of genera, traditionally the Río Marañón Valley apparently harbours excep- placed in synonymy under Caesalpinia s.l., were tionally high numbers of narrowly restricted endemic reinstated as distinct by Lewis (2005), although not plants (Hensold 1999; Linares-Palomino 2006; all necessary combinations have yet been published Linares-Palomino & Pennington 2007; http://rbg- for the suite of species now considered to belong to web2.rbge.org.uk/dryforest/database.htm). Further- each of the segregate genera. Sotuyo et al. (unpub- more, many of these Marañón Valley endemic species lished) included Hughes 2210 et al. (C. celendiniana) have been discovered and described only within the and Hughes 2215 et al. -
Plant Structure in the Brazilian Neotropical Savannah Species
Chapter 16 Plant Structure in the Brazilian Neotropical Savannah Species Suzane Margaret Fank-de-Carvalho, Nádia Sílvia Somavilla, Maria Salete Marchioretto and Sônia Nair Báo Additional information is available at the end of the chapter http://dx.doi.org/10.5772/59066 1. Introduction This chapter presents a review of some important literature linking plant structure with function and/or as response to the environment in Brazilian neotropical savannah species, exemplifying mostly with Amaranthaceae and Melastomataceae and emphasizing the environment potential role in the development of such a structure. Brazil is recognized as the 17th country in megadiversity of plants, with 17,630 endemic species among a total of 31,162 Angiosperms [1]. The focus in the Brazilian Cerrado Biome (Brazilian Neotropical Savannah) species is justified because this Biome is recognized as a World Priority Hotspot for Conservation, with more than 7,000 plant species and around 4,400 endemic plants [2-3]. The Brazilian Cerrado Biome is a tropical savannah-like ecosystem that occupies about 2 millions of km² (from 3-24° Latitude S and from 41-43° Longitude W), with a hot, semi-humid seasonal climate formed by a dry winter (from May to September) and a rainy summer (from October to April) [4-8]. Cerrado has a large variety of landscapes, from tall savannah woodland to low open grassland with no woody plants and wetlands, as palm swamps, supporting the richest flora among the world’s savannahs-more than 7,000 native species of vascular plants- with high degree of endemism [3, 6]. The “cerrado” word is used to the typical vegetation, with grasses, herbs and 30-40% of woody plants [9-10] where trees and bushes display contorted trunk and branches with thick and fire-resistant bark, shiny coriaceous leaves and are usually recovered with dense indumentum [10]. -
Bauhinia Purpurea Fabaceae
Bauhinia purpurea L. Fabaceae - Caesalpinioideae khairwal, karar, kachan LOCAL NAMES English (purple bauhinia,orchid tree,camel's foot tree,butterfly tree,geranium tree); Hindi (kota,raktakanchan,khairwal,karar,kanchan); Malay (tapak kuda); Nepali (tanki); Spanish (pie de cabra); Thai (sieowaan,sieo dok daeng); Trade name (kachan,karar,khairwal); Vietnamese (m[os]ng b[of] t[is]m) BOTANIC DESCRIPTION Bauhinia purpurea is a small to medium-sized deciduous fast-growing shrub or tree with a round, symmetrical, moderate dense crown to 10 m fruit (David Lee, Professor and Chairperson. tall, young branches becoming glabrous or nearly so (glabrescent). In dry Department of Biological Sciences, Florida forests, the size is much smaller. The bark is pale grey brown, fairly International Unive) smooth to slightly fissured and scaly. The twigs are slender, light green, slightly hairy, and angled, becoming brownish grey. The heart-wood is brown, hard and durable. Leaves simple, alternate, base rounded to shallow-cordate, up to 12 cm x 12 cm, deeply 2-lobed at apex up to 1/3-1/2, ca. 7-12 cm long, and equally wide, margin entire and the surfaces smooth and glabrous, and 9- or 11- nerved at base, the apex lobes rounded or obtuse to subacute, minute stipules 1-2 mm long, petioles puberulous to glabrous, 2.5-3.5 cm long; leaf blades 4.5-11 cm long. flowers (David Lee, Professor and Chairperson. Department of Biological Inflorescence a 6-10-flowered raceme in terminal panicles; flowers Sciences, Florida International Unive) numerous, hypanthium, turbinate, purple to nearly white or at least purple- marked, the flower buds clavate (club-shaped), velvety, ca 3-4 cm long prior to anthesis; fertile stamens 3 or 4, the anthers ca 6 mm long, versatile; ovary superior; corolla of 5 narrow petals and constricted at base, oblanceolate, 3-5cm long, claws 5-10mm long, the banner purple- striate, ca 7 mm wide; calyx tubular, erupted by corolla along one side when flower fully expanding; calyx split into 2 valves with 5 teeth. -
Cork-Containing Barks—A Review
REVIEW published: 19 January 2017 doi: 10.3389/fmats.2016.00063 Cork-Containing Barks—A Review Carla Leite* and Helena Pereira Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal Tree barks are among the less studied forest products notwithstanding their relevant physiological and protective role in tree functioning. The large diversity in structure and chemical composition of barks makes them a particularly interesting potential source of chemicals and bioproducts, at present valued in the context of biorefineries. One of the valuable components of barks is cork (phellem in anatomy) due to a rather unique set of properties and composition. Cork from the cork oak (Quercus suber) has been exten- sively studied, mostly because of its economic importance and worldwide utilization of cork products. However, several other species have barks with substantial cork amounts that may constitute additional resources for cork-based bioproducts. This paper makes a review of the tree species that have barks with significant proportion of cork and on the available information regarding the structural and chemical characterization of their bark. A general integrative appraisal of the formation and types of barks and of cork development is also given. The knowledge gaps and the potential interesting research lines are identified and discussed, as well as the utilization perspectives. Keywords: cork, Quercus suber L., bark, periderm, rhytidome, phellem, suberin Edited by: Pellegrino Musto, National Research Council, Italy INTRODUCTION Reviewed by: Ernesto Di Maio, Trees are externally covered on their stems and branches by the bark that represents 9 to 15% of University of Naples Federico II, the stem volume (Harkin and Rowe, 1971). -
Bauhinia Variegata L
Bauhinia variegata L. Fabaceae - Caesalpinioideae kachnar LOCAL NAMES Bengali (swet-kanchan,rakta-kanchan,rakta-kamhar); Cantonese (kanchivala); English (orchid tree,camel's foot,mountain ebony,Napoleon's hat,paper mulberry,poor man's orchid,bauhinia); Hindi (bogakatra,koliar,raktha- kanchan,mandari,kural,gurial,gwiar,kachnar,padrian); Malay (akbar tapak kerbau,kupu-kupu,kotidaram); Nepali (kachnar,koiralo); Sanskrit (kanchanar,tamrapushpi); Spanish (flamboyán orquídea,palo de orquídeas); Tamil (chemmonadarei,segapumanchorii); Trade name (kachnar); Urdu (kachnal) Flowering tree (Ellis RP) BOTANIC DESCRIPTION Bauhinia variegata is a small to medium-sized deciduous tree with a short bole and spreading crown, attaining a height of up to 15 m and diameter of 50 cm. In dry forests, the size is much smaller. The bark is light brownish grey, smooth to slightly fissured and scaly. Inner bark is pinkish, fibrous and bitter. The twigs are slender, zigzag; when young, light green, slightly hairy, and angled, becoming brownish grey. Leaves have minute stipules 1-2 mm, early caducous; petiole puberulous to glabrous, 3-4 cm; lamina broadly ovate to circular, often broader than Flower (Ellis RP) long, 6-16 cm diameter; 11-13 nerved; tips of lobes broadly rounded, base cordate; upper surface glabrous, lower glaucous but glabrous when fully grown. Flower clusters (racemes) are unbranched at ends of twigs. The few flowers have short, stout stalks and a stalklike, green, narrow basal tube (hypanthium). The light green, fairly hairy calyx forms a pointed 5-angled bud and splits open on 1 side, remaining attached; petals 5, slightly unequal, wavy margined and narrowed to the base; 5 curved stamens; very slender, stalked, curved pistil, with narrow, green, 1-celled ovary, The white flowers of the 'candida' variety.