Short Update on Dysbaric Osteonecrosis: Concepts and Decompression Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heat Stroke Heat Exhaustion
Environmental Injuries Co lin G. Ka ide, MD , FACEP, FAAEM, UHM Associate Professor of Emergency Medicine Board-Certified Specialist in Hyperbaric Medicine Specialist in Wound Care The Ohio State University Wexner Medical Center The Most Dangerous Drug Combination… Accidental Testosterone Hypothermia and Alcohol! The most likely victims… Photo: Ralf Roletschek 1 Definition of Blizzard Hypothermia of Subnormal T° when the body is unable to generate sufficient heat to sustain normal functions Core Temperature < 95°F 1979 (35°C) Most Important Temperatures Thermoregulation 95°F (35° C) Hyper/Goofy The body uses a Poikilothermic shell to maintain a Homeothermic core 90°F (32°C) Shivering Stops Maintains core T° w/in 1.8°F(1°C) 80°F (26. 5°C) Vfib, Coma Hypothalamus Skin 65°F (18°C) Asystole Constant T° 96.896.8-- 100.4° F 2 Thermoregulation The 2 most important factors Only 3 Causes! Shivering (10x increase) Decreased Heat Production Initiated by low skin temperature Increased Heat Loss Warming the skin can abolish Impaired Thermoregulation shivering! Peripheral vasoconstriction Sequesters heat Predisposing Predisposing Factors Factors Decreased Production Increased Loss –Endocrine problems Radiation Evaporation • Thyroid Conduction* • Adrenal Axis Convection** –Malnutrition *Depends on conducting material **Depends on wind velocity –Neuromuscular disease 3 Predisposing Systemic Responses CNS Factors T°< 90°F (34°C) Impaired Regulation Hyperactivity, excitability, recklessness CNS injury T°< 80°F (27°C) Hypothalamic injuries Loss of voluntary -
Environmental Injuries
Environmental Injuries Colin G. Kaide, MD, FACEP, FAAEM, UHM Associate Professor of Emergency Medicine Board-Certified Specialist in Hyperbaric Medicine Specialist in Wound Care The Ohio State University Wexner Medical Center 1 The Most Dangerous Drug Combination… Testosterone and Alcohol! The most likely victims… Photo: Ralf Roletschek Accidental Hypothermia 2 Blizzard of 1979 Definition of Hypothermia Subnormal T° when the body is unable to generate sufficient heat to sustain normal functions Core Temperature < 95°F (35°C) 3 Most Important Temperatures 95°F (35° C) Hyper/Goofy 90°F (32°C) Shivering Stops 80°F (26.5°C) Vfib, Coma 65°F(18F (18°C) AtlAsystole Thermoregulation The body uses a Poikilothermic shell to maintain a Homeothermic core Maintains core T° w/in 1.8°F(1°C) Hypothalamus Skin CttTConstant T° 96. 8- 100.4° F 4 Thermoregulation The 2 most important factors Shivering (10x increase) Initiated by low skin temperature Warming the skin can abolish shivering! Peripheral vasoconstriction Sequesters heat Only 3 Causes! Decreased Heat Production Increased Heat Loss Impaired Thermoregulation 5 Predisposing Factors Decreased Production –Endocrine problems • Thyroid • Adrenal Axis –Malnutrition –Neuromuscular disease Predisposing Factors Increased Loss RRditiadiation Evaporation Conduction* Convection** *DDdepends on cond dtitilucting material **Depends on wind velocity 6 Predisposing Factors Impaired Regulation CNS injury Hypothalamic injuries Peripheral Injury Atherosclerosis Neuropathy Interfering Agents Systemic Responses CNS -
Dysbarism - Barotrauma
DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA. -
Delayed Treatment of Decompression Sickness with Short, No-Air-Break Tables: Review of 140 Cases
REVIEW ARTICLE Delayed Treatment of Decompression Sickness with Short, No-Air-Break Tables: Review of 140 Cases Paul Cianci and John B. Slade,Jr. CIANCI P, SLADE JR JB. Delayed treatment of decompression sick- increasing frequency, often having dived very provoc- ness with short, no-air-break tables: review of 140 cases. Aviat Space ative profiles, many suffering from severe DCS, and Environ Med 2006; 77:1003–8. Introduction: Most cases of decompression sickness (DCS) in the U.S. with long delays to treatment. are treated with hyperbaric oxygen using U.S. Navy Treatment Tables 5 In 1963 and 1964, the Navy Experimental Dive Unit and 6, although detailed analysis shows that those tables were based on received reports of 133 cases of DCS in which the stan- limited data. We reviewed the development of these protocols and offer dard USN tables at the time were used (28). Full relief an alternative treatment table more suitable for monoplace chambers did not result in 24% of initial recompressions. When that has proven effective in the treatment of DCS in patients presenting to our facility. Methods: We reviewed the outcomes for 140 cases of outcomes using USN Tables 3 and 4 were analyzed, a DCS in civilian divers treated with the shorter tables at our facility from 47% incidence of failure of the first treatment was January 1983 through December 2002. Results: Onset of symptoms noted. However, there were no instances of treatment averaged 9.3 h after surfacing. At presentation, 44% of the patients failure when DCS had occurred following rigid USN demonstrated mental aberration. -
Download PDF File
Int Marit Health 2020; 71, 1: 71–77 10.5603/IMH.2020.0014 www.intmarhealth.pl ORIGINAL ARTICLE Copyright © 2020 PSMTTM ISSN 1641–9251 Temporary and permanent unfitness of occupational divers. Brest Cohort 2002–2019 from the French National Network for Occupational Disease Vigilance and Prevention (RNV3P) Richard Pougnet1, 2, 3, Laurence Pougnet2, 4, 5, Jean-Dominique Dewitte1, 2, 3, Brice Loddé1, 2, 6, David Lucas1, 2, 6 1Centre for Professional and Environmental Pathologies (Centre de Ressource en Pathologie Professionnelle et Environnementale CRPPE), Brest University Hospital (CHRU), Brest, France 2French Society for Maritime Medicine, France 3Laboratory for Studies and Research in Sociology (LABERS), EA 3149, Faculty of Humanities and Social Science (Faculté de Lettres et Sciences Sociales), Victor Segalen, European University of Brest, Brest, France 4Medical Laboratory, HIA Clermont-Tonnerre, CC41 BCRM Brest, Brest, France 5Host-Pathogen Interaction Study Group (Groupe d’Étude des Interactions Hôte-Pathogène GEIHP), EA 3142, European University of Brest, Brest, France 6Optimization of Physiological Regulations (ORPHY), EA 4324, Faculty of Science and Technology, European University of Brest, Brest, France ABstract Background: In France, the monitoring of professional divers is regulated. Several learned societies (French Occupational Medicine Society, French Hyperbaric Medicine Society and French Maritime Medicine Society) have issued follow-up recommendations for professional divers, including medical follow-up. Medical de- cisions could be temporary unfitness for diving, temporary fitness with monitoring, a restriction of fitness, or permanent unfitness. The aim of study was to point out the causes of unfitness in our centre. Materials and methods: The divers’ files were selected from the French National Network for Occupatio- nal Disease Vigilance and Prevention (RNV3P). -
University of Hawaii Diving Safety Program Appendix 1 Application for Visiting Scientific Diver Authorization for EMPLOYEES of GOVERNMENT AGENCIES and INSTITUTIONS
University of Hawaii Diving Safety Program Appendix 1 Application for Visiting Scientific Diver Authorization FOR EMPLOYEES OF GOVERNMENT AGENCIES AND INSTITUTIONS Section 1. Applicant Information Date: Applicant Name: Date of Birth: Sex: Position: Faculty / Staff / Post-Doc / Student Employee / Student / Volunteer / Other: Work Address: Home Phone: Daytime Phone: Email: Cell Phone: Are you a currently active scientific diver in a scientific diving program with which UH recognizes a reciprocal diving agreement? Yes / No (circle one) If YES, complete Application pages 1-4, and include a letter of reciprocity from your home institution’s Diving Officer. Name of Institution: AAUS Member? Yes / No Diving Safety Officer Name: Phone: DSO Address: Email: If NO, please complete all pages, including Application Section 2. Diving History, and return with (1) copies of all referenced certifications, (2) a copy of a diving medical clearance based on an AAUS-level diving medical exam, done within the last year, and (3) evidence of personal scuba equipment service done within the last year. Planned Activity Information: Describe Proposed Diving under UH auspices: Initial depth range: Expected activities (check all that apply): biology/ecology collecting engineering geology oceanography aquaculture archaeology science edu. Equip. placement/monitoring field school attendee (identify course, dates): Sponsor Information: Sponsoring UH Dept./Program: Phone: Dept. Address: Dept. Sponsor Name: Position: UH Sponsor Certification: I certify that this individual has a need to participate in scientific diving activity under University auspices for research or educational purposes, and agree to serve as a contact person and/or coordinator between him/her and the Diving Safety Program, should the need arise. -
The Effects of Hyperbaric Exposure on Bone Cell Activity in The
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1995 The effects of hyperbaric exposure on bone cell activity in the rat : implications for the pathogenesis of dysbaric osteonecrosis Stephanie Anne Kapfer Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Kapfer, Stephanie Anne, "The effects of hyperbaric exposure on bone cell activity in the rat : implications for the pathogenesis of dysbaric osteonecrosis" (1995). Yale Medicine Thesis Digital Library. 2764. http://elischolar.library.yale.edu/ymtdl/2764 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. YALE MEDICAL LIBRARY 3 9002 08676 1070 THE EFFECTS OF HYPERBARIC EXPOSURE ON BONE CELL ACTIVITY IN THE RAT; IMPLICATIONS FOR THE PATHOGENESIS OF DYSBARIC OSTEONECROSIS Stephanie Anne YALE UNIVERSITY CUSHING/WHITNEY MEDICAL LIBRARY Permission to photocopy or microfilm processing of this thesis for the purpose of individual scholarly consultation or reference is hereby granted by the author. This permission is not to be interpreted as affecting publication of this work or otherwise placing it in the -
Cardiovascular Responses to Diving in the Turtle, Pseudemys Scripta Stuart Keith Ware Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1980 Cardiovascular responses to diving in the turtle, Pseudemys scripta Stuart Keith Ware Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Sciences Commons, Physiology Commons, and the Veterinary Physiology Commons Recommended Citation Ware, Stuart Keith, "Cardiovascular responses to diving in the turtle, Pseudemys scripta " (1980). Retrospective Theses and Dissertations. 6813. https://lib.dr.iastate.edu/rtd/6813 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. -
Power Equation for Predicting the Risk of Central Nervous System Oxygen Toxicity at Rest
fphys-11-01007 August 17, 2020 Time: 14:44 # 1 ORIGINAL RESEARCH published: 17 August 2020 doi: 10.3389/fphys.2020.01007 Power Equation for Predicting the Risk of Central Nervous System Oxygen Toxicity at Rest Ben Aviner1, Ran Arieli1,2* and Alexandra Yalov3 1 The Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel, 2 Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel, 3 HP – Indigo Division, Nes Ziona, Israel Patients undergoing hyperbaric oxygen therapy and divers engaged in underwater activity are at risk of central nervous system oxygen toxicity. An algorithm for predicting CNS oxygen toxicity in active underwater diving has been published previously, but not for humans at rest. Using a procedure similar to that employed for the derivation of our active diving algorithm, we collected data for exposures at rest, in which subjects breathed hyperbaric oxygen while immersed in thermoneutral water at 33◦C(n = 219) Edited by: or in dry conditions (n = 507). The maximal likelihood method was employed to solve for Costantino Balestra, Haute École Bruxelles-Brabant the parameters of the power equation. For immersion, the CNS oxygen toxicity index 2 10:93 (HE2B), Belgium is KI = t × PO2 , where the calculated risk from the Standard Normal distribution 0:5 2 12:99 Reviewed by: is ZI = [ln(KI ) – 8.99)]/0.81. For dry exposures this is KD = t × PO2 , with risk Enrico M. Camporesi, 0:5 ZD = [ln(KD ) – 11.34)]/0.65. We propose a method for interpolating the parameters at USF Health, United States Thijs Wingelaar, metabolic rates between 1 and 4.4 MET. -
Key Words for Diving and Hyperbaric Medicine
2 Index to Diving and Hyperbaric Medicine for 2009, Volume 39 KEY WORDS FOR DIVING AND HYPERBARIC MEDICINE Abalone Data Gasinduced osmosis Abstracts Deaths Gas solubility Accidents Decompression General interest Adolescents Decompression illness Genitourinary tract Aerobic capacity Decompression sickness Gleanings (from medical journals) Age Deep diving Haematology Air DES – Diver Emergency Service Health Air embolism Diabetes Health status Allergy DIMS Health surveillance Altitude Disabilities Health surveys Anaesthesia Disability Hearing Antarctica Disabled diver Helium pharmacokinetics Arterial gas embolism Diver numbers Hip arthroplasty Ascent Diving History Asthma Diving accidents Human skin equivalent Autobiography Diving at work Hyperbaric facilities Autopsy Diving deaths Hyperbaric oxygen Aviation Diving industry Hyperbaric oxygen therapy Barotrauma Diving organisations Hyperbaric oxygenation Bell diving Diving reflex Hyperbaric research Beta blockade Diving research Hypercapnia Biology Diving safety memos Hyperthermia (see Thermal problems) Blood pressure Diving scholars Hyperventilation Blood substitutes Diving tables Hypothermia (see Thermal problems) Blood sugar level Diving theory (see Physiology) Hypoxia Book reviews Doppler Ice Brain injury Drowning Immersion Breathhold diving Drugs Immunosuppression Bronchial provocation testing Drysuit Incidents Bubbles Dysbaric osteonecrosis Infectious diseases Buccal pumping Ear barotrauma Inflammation Buddies Ear infection Injuries Buoyancy Echocardiography Inner ear Calciphylaxis Ecology -
Decompression Sickness in Inside Attendants
SECTION VI 643 CHAPTER 2 DECOMPRESSION SICKNESS IN INSIDE ATTENDANTS PAUL J. SHEFFIELD AND CHRISTY J. PIRONE WHAT IS DECOMPRESSION SICKNESS? Decompression Sickness (DCS) Defined: DCS is an illness that occurs when environmental pressure is reduced sufficiently to cause gases that are dissolved in body tissues to evolve as bubbles. Primarily consisting of nitrogen, the bubbles evolve from solution when the inside attendant surfaces too fast for the body to compensate. Patients do not have the problem because the oxygen they breathe during hyperbaric oxygen treatment elimi- nates the nitrogen from their bodies. Signs and Symptoms of DCS: Bubbles that cause DCS can form in all parts of the body and the anatomic location accounts for the variety of signs and symptoms. (1) DCS can manifest itself from minor to life-threatening symptoms. Minor skin itching or tingling usually passes within 20 to 30 min- utes, and no treatment is necessary, all other forms of DCS are treated in the hyperbaric chamber with immediate compression and hyperbaric oxygen. “Bends pain” seen in about 90% of cases, may appear anywhere in the body, but is more frequent in legs or arms that were exercised during the exposure. Neurologic symptoms involving the brain or spinal cord occur in about 25% of cases, and are manifested by a wide variety of symptoms but mainly by headache, numbness, paralysis of an arm or leg, loss of sensation, vertigo, visu- al distortions or blindness, and extreme fatigue. Chokes is a rare but life-threat- ening respiratory disorder caused by gas emboli in the lungs, and manifested by wheezing, chest pain, or troublesome cough. -
Diving and Hyperbaric Medicine
Diving and Hyperbaric Medicine The Journal of the South Pacific Underwater Medicine Society (Incorporated in Victoria) A0020660B and the European Underwater and Baromedical Society Volume 42 No. 3 September 2012 HBOT does not improve paediatric autism Diver Emergency Service calls: 17-year Australian experience Methods of monitoring CO2 in ventilated patients compared Australasian Workshop on deep treatment tables for DCI ‘Bubble-free’ diving – do bent divers listen to advice? Diving-related fatalities in Australian waters in 2007 ISSN 1833 3516 Print Post Approved ABN 29 299 823 713 PP 331758/0015 Diving and Hyperbaric Medicine Volume 42 No. 3 September 2012 PURPOSES OF THE SOCIETIES To promote and facilitate the study of all aspects of underwater and hyperbaric medicine To provide information on underwater and hyperbaric medicine To publish a journal and to convene members of each Society annually at a scientific conference SOUTH PACIFIC UNDERWATER EUROPEAN UNDERWATER AND MEDICINE SOCIETY BAROMEDICAL SOCIETY OFFICE HOLDERS OFFICE HOLDERS President President Mike Bennett <[email protected]> Peter Germonpré <[email protected]> Past President Vice President Chris Acott <[email protected]> Costantino Balestra <[email protected]> Secretary Immediate Past President Karen Richardson <[email protected]> Alf Brubakk <[email protected]> Treasurer Past President Shirley Bowen <[email protected]> Noemi Bitterman <[email protected]> Education Officer Honorary Secretary David Smart <[email protected]>