www.geotecnia.unb.br/gpfees

Summer Term 2015 Hochschule Munchen Fakultat Bauingenieurwesen

Anchored (Tie Back) Retaining Walls and Nailing in Brazil www.geotecnia.unb.br/gpfees

2/60 LAYOUT

 Details and Analysis of Anchored Walls

 Details and Analysis of

 Examples of Executive Projects

www.geotecnia.unb.br/gpfees

3/60

ANCHORED “CURTAIN” WALLS (Tie Back Walls) www.geotecnia.unb.br/gpfees

4/60 Introduction Details: • Earth retaining structures with active anchors • A.J. Costa Nunes pioneer work in 1957 • 20 – 30 cm thick concrete wall face tied back • Ascending or descending construction methods • Niche excavation • ACTIVE anchor

4 www.geotecnia.unb.br/gpfees

5/60

Excavation Procedure www.geotecnia.unb.br/gpfees

6/60 www.geotecnia.unb.br/gpfees

7/60 Molding Joints www.geotecnia.unb.br/gpfees

8/60 www.geotecnia.unb.br/gpfees

9/60 www.geotecnia.unb.br/gpfees

10/60 www.geotecnia.unb.br/gpfees

11/60 www.geotecnia.unb.br/gpfees

12/60 Stability Analysis

Verification of failure modes:

• Toe

(NSPT < 10) • Bottom failure • Wedge or generalized failure: limit equilibrium analyses • Excessive deformations • Anchor stability and punching • Structural failure • Construction failures (e.g. during excavation) www.geotecnia.unb.br/gpfees

13/60 www.geotecnia.unb.br/gpfees

14/60 www.geotecnia.unb.br/gpfees

15/60 Stability Analysis Methodologies Wedge Method: • Kranz (1953) is the pioneer • One or two wedges • Ranke and Ostermeyer (1968) German Method • Nunes and Velloso (1963) Brazilian Method • Hoek and Bray (1981) www.geotecnia.unb.br/gpfees

16/60 Kranz (1953) Method: •FS in relation to each anchor •FS= max allowable / actual anchor load

Clayton et al (2001) www.geotecnia.unb.br/gpfees

17/60

Hoek and Bray (1981) Method: •Simple geometries •Homogeneous •FS by vertical and horizontal equilibrium www.geotecnia.unb.br/gpfees

18/60 www.geotecnia.unb.br/gpfees

19/60 Pre-design Charts: • Safety Factor = 1.5 • Surcharge q = 20 kPa • Unit Weight = 18 kN/m3 • Preliminary analyses www.geotecnia.unb.br/gpfees

20/60 Nunes and Velloso (1963) Method: •FS for an existing Culmann wedge But modified to have •FS in relation to vector Cohesion Instable  StableForces

TECNOSOLO (1964) Original Report 3310

20 www.geotecnia.unb.br/gpfees

21/60 www.geotecnia.unb.br/gpfees

22/60

22 Example www.geotecnia.unb.br/gpfees

23/60 Stability Analysis Methodologies Complex Cases: • Numerical or analytical tool • Limit equilibrium approach • Non homogeneous soils • Complex load and geometries

www.geotecnia.unb.br/gpfees

24/60

Bishop (1955)

Geoslope Slopew www.geotecnia.unb.br/gpfees

25/60

Anchor Spacing: •Counterbalance Instability x Stability Forces •Anchor force to yield general FS > 1.5 •Length > “critical” plane

Micropiles •Whenever there is low capacity soils at wall base www.geotecnia.unb.br/gpfees

26/60 Surcharge www.geotecnia.unb.br/gpfees

27/60 Stresses and Deformation Analysis

Tools: • User friendly numerical FEM programs • Distinctive models • Laboratory parameters • Pre and post processors www.geotecnia.unb.br/gpfees

28/60 Example: •Águas Claras Site – Fed. District, Brazil •Porous over soft soil •Close to train rail •15 m height and 4 anchor layers

•Staged analyses •Laboratory parameters •Mohr Coulomb model www.geotecnia.unb.br/gpfees

29/60

SOIL NAILING www.geotecnia.unb.br/gpfees

30/60 Introduction Basics of Design: • Reinforcement of soil with thin elements: nails • Pre-bored sub horizontal hole, with grout • Originated from shotcrete flexible support in • Active zone is formed around excavation • Started in Brazil in 1970 and France 1972 (sol cloué) • PASSIVE anchors = “nails” www.geotecnia.unb.br/gpfees

31/60 Experience and Construction Method Experience: • High and successful experience in Brazil • Use for man made, residual and saprolitic slopes in Hong Kong • Not suitable for very loose or soft clays Construction: • Similar as tieback walls: top – down excavation stages (1-2 m) • Vertical or inclined slopes – depends on • Installation of nails, mesh, drains and shotcrete www.geotecnia.unb.br/gpfees

32/60 Installation of Nails: • After driving or drilling • Short nails (3 m) by hand hammers • Corrosion protection aspects • Driving is not adequate with boulders • Common drilling with 50-100mm ´s • 20-32 mm steel bars • > 100 kPa lateral • Pneumatic drill rigs are used • Light drill rigs are desired www.geotecnia.unb.br/gpfees

33/60 Construction Details Nail Head: • With or without steel plate and wrenches • Small torque of 5 kN is incorporated as residual load • Inclinations of 10-20 degrees • Embeddement in a cast-in-place concrete niche • Grounting with or without (gravity head) pressures

Geocompany (2009) www.geotecnia.unb.br/gpfees

34/60

Souza et al. (2005) www.geotecnia.unb.br/gpfees

35/60 Slope Facing: • Shotcrete is applied through dry or wet mix • Thickness of 50-150 mm • One or two steel meshes • Steel reinforced shotcrete (SFRS) is also used: fibers 30-50 mm lingth, 0.5 mm dia. dosage 35-60 kg/m3 good for slope irregularities • Vegetation combined with nails

35 www.geotecnia.unb.br/gpfees

36/60

Details: • Wall

www.geotecnia.unb.br/gpfees

37/60 Details: • Nail

www.geotecnia.unb.br/gpfees

38/60

Details: • Injection

www.geotecnia.unb.br/gpfees

39/60

Details: • Frontal Spacing

www.geotecnia.unb.br/gpfees

40/60 Comparisons With Tieback Walls: • Generally do not use prestressed active anchors • Uses passive low prestressed nails (5-10 kN) • Load transference by friction along entire length • Very low loads on shotcrete facing compared to tieback walls • Inclined or vertical facings • Length of nails 60-120% of height (shorter than walls)

40 www.geotecnia.unb.br/gpfees

41/60

With Reinforced Walls: • Top-down versus upwards construction sequence • Distinct displacement patterns (0.1 - 0.3 % of height)

www.geotecnia.unb.br/gpfees

42/60 Advantages Economy: • Cost effective technique, as low as 50% of a tieback wall

Rate of Construction: • Fast rate specially with SFRS shotcrete

Deformation: • 0.1 – 0.3% of height at top of wall for designed structures

Flexibility: • Deformation can be controlled with combined use of anchors

Reliability: • Already proved in residual and saprolitic soils in Brazil • Increases stability in unsupported slopes with weak surfaces

42

www.geotecnia.unb.br/gpfees

43/60 Limitations Displacements: • May render unacceptable deformations close to structures

Construction: • Needs temporary stability of excavated face

Geology: • Risky solution for weak materials or very height walls

Durability : • Corrosion protection of nail is fundamental

Testing and post-execution intervention: • Generally not possible with nails. • Post execution corrective injection is still not widely used

43

www.geotecnia.unb.br/gpfees

44/60 Analysis of Nailed Structures

Theoretical Methods: • Several approaches and simplifications • Active and passive zones • Global Limit Eq. (slice) analysis with nail effects • Circular, bilinear, linear surfaces • Tension only or with bending effects in nails • Constant or variable soil-nail interface friction • Winkler type analysis for nail or force vectors • Single or multiple surfaces – FS optimization

www.geotecnia.unb.br/gpfees

45/60 www.geotecnia.unb.br/gpfees

46/60 www.geotecnia.unb.br/gpfees

47/60 Effect of Injection Phases www.geotecnia.unb.br/gpfees

48/60

Modified after Souza et al. (2005) www.geotecnia.unb.br/gpfees

49/60 Computer Programs Benchmark Tests: • Comparative comparisons are made • Talren is the most widely used • Prosper is a research tool • Clouage and Nixesc are french softwares • Rstabl adopts Bishop and Janbu´s method

49 www.geotecnia.unb.br/gpfees

50/60

Results: • Influence of bending is rather small • Janbu´s method tends to yield lower SF´s • Few differences between methodologies

www.geotecnia.unb.br/gpfees

51/60 Nailing Software (Czech Republic):

• Good experience and successful results in Brasília porous clay • Nice research and design tool • User friendly www.geotecnia.unb.br/gpfees

52/60 www.geotecnia.unb.br/gpfees

53/60

Geometry of structure Structure load Bending moment Shear force Length of structure = 3.20m Max. M = 4.32kNm/m Max. Q = 11.14kN/m -6.87 0.50 3.43 -6.87 6.87 1.00

-3.43 -6.81 6.87 1.00

Cut1 4.32 -10.71 11.14 0.70 21.08

0 4.00 0 25.00 -5.00 0 5.00 -25.00 0 25.00 [m] [kPa] [kNm/m] [kN/m] www.geotecnia.unb.br/gpfees

54/60 Examples

Icaraí Beach, Niteroi-RJ: • 25mm  bars in 90 mm holes – 150 mm shotcrete, inclined 75° – 1.5 m spacings (H:V) and two steel meshes

54

www.geotecnia.unb.br/gpfees

55/60

Railway, São Paulo-SP: • 25mm  bars in 75 mm holes – 50 mm shotcrete, inclined 75° – 2.5m x 2.0m (H:V)

55 www.geotecnia.unb.br/gpfees

56/60

Ortigão et al. (1993) www.geotecnia.unb.br/gpfees

57/60 Executive Design Project

Cindacta Project – Friburgo-RJ www.geotecnia.unb.br/gpfees

58/60 Tie Back Wall

Active Anchor

Passive Anchor

Soil Nailing

Cindacta Project – Friburgo-RJ www.geotecnia.unb.br/gpfees

59/60

Tie Back Wall

Soil Nailing

Cindacta Project – Friburgo-RJ www.geotecnia.unb.br/gpfees

60/60 REFERENCES

• Ortigão & Sayão (2004). Handbook of Slope Stabilisation, Springer, New York, 478 p.

• Hunt, R. E. (1986). Techniques and Practices, McGraw Hill, New York, 729 p.

• Personal pictures.

• Internet pages.

• Executive Design projects from ACRosa Engenharia de Consultoria Ltda., Rio de Janeiro, Brazil.