The Lipopeptide Antibiotic Daptomycin: Its Interaction with Calcium and Membranes and the Effects of Membrane Lipid Composition on Its Activity

Total Page:16

File Type:pdf, Size:1020Kb

The Lipopeptide Antibiotic Daptomycin: Its Interaction with Calcium and Membranes and the Effects of Membrane Lipid Composition on Its Activity The Lipopeptide Antibiotic Daptomycin: Its Interaction With Calcium And Membranes And The Effects Of Membrane Lipid Composition On Its Activity by Robert Mackay Taylor A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2018 ©Robert Mackay Taylor 2018 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Dr. Richard M. Epand, PhD. Professor Emeritus, McMaster University Biochemistry and Biomedical Sciences Supervisor Dr. Scott D. Taylor, PhD. Professor, University of Waterloo Chemistry Internal Member Dr. Michael Palmer, PhD. M.D., Dr. habil Associate Professor, University of Waterloo Chemistry Internal-external Member Dr. Zoya Leonenko, PhD. Professor, University of Waterloo Physics and Astronomy Other Member(s) Dr. Thorsten Dieckmann, PhD. Associate Professor, University of Waterloo Associate Chair (Graduate Studies and Research) Chemistry Dr. John Honek, PhD. Professor, University of Waterloo Chemistry ii Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Daptomycin (Dap) is a calcium-dependent cyclic lipodepsipeptide antibiotic used clinically to treat infections with pathogenic Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). It targets the cell membrane, which must contain phosphatidylglycerol (PG) for activity. Although Dap was discovered over 30 years ago, its mechanism of action is still debated among researchers. Many action mechanisms have been proposed for Dap. The mechanism that has garnered the most attention involves Dap oligomerization in the cell membrane resulting in the formation of cation-selective pores, which lead to membrane depolarization and cell death. To further investigate this proposed mechanism of action, I here studied the interaction of Dap with calcium, the activity and pore-forming abilities of a Dap dimer, and the effects of membrane lipid composition on Dap-membrane interactions and pore formation. The stoichiometry of calcium to Dap in the presence of liposomes and how calcium concentration affects Dap oligomerization and membrane insertion was investigated using fluorescence spectroscopy and isothermal titration calorimetry. It was shown that Dap interacts with liposomes in two sequential calcium-binding events. The binding of the first calcium ion is suggested to cause oligomer formation of Dap in the membrane. The binding of a second calcium ion is suggested to cause a deeper insertion of this oligomer, followed, potentially, by translocation into the inner leaflet, ultimately forming a functional pore. The effect of Dap pre-oligomerization on antibacterial activity was studied via the synthesis and characterization of a Dap dimer. The dimer was prepared by connecting the N-termini of two Dap monomers via an octadecanedioate linker. It was anticipated that the dimer would decrease the entropic cost associated with oligomer formation. This would promote oligomer formation, thereby enhancing its activity. In contrast to expectation, the activity of the dimer was greatly reduced on vegetative cells yet was able to form cation-selective pores in liposomes. On bacterial L-forms, which lack a cell wall, dimer activity was close to that of the monomer. This suggests that the dimer was unable to cross the cell wall of vegetative cells, thus highlighting the role of the cell wall in Dap resistance. The effect of lipid acyl chain composition on Dap’s ability to interact with, oligomerize, and form pores in membranes was examined. Dap was found to insert into and form oligomers on phosphatidylcholine (PC)/PG liposomes containing either dimyristoyl (DMPC/DMPG), dioleyl iv (DOPC/DOPG) or dipalmitoleoyl (POPC/POPG) acyl chains. DMPC/DMPG lipids were found to support pore formation, while DOPC/DOPG and POPC/POPG lipids did not support pore formation. Only 1-5% of an added oleoyl chained lipid, regardless of head group, was necessary to prevent pore formation in liposomes containing dimyristoyl acyl chains. Permeabilization was regained when the molar concentration of Dap surpassed the molar concentration of the dioleoyl chained lipid present. This indicates a near-stoichiometric dose-response interaction of a dioleoyl chained lipid, DOPC, to Dap. The reason for the reduced permeabilization of Dap on DOPC/DOPG lipids was further investigated. Experiments indicated that the acyl chain unsaturation of dioleoyl chained lipids alone is not sufficient for the inhibitory effect of DOPC/DOPG lipids on Dap; thus, the greater length of oleoyl relative to myristoyl acyl groups appears to be important. Moreover, the inhibitory effect cannot be overcome by extending the N-terminal acyl residue of Dap itself. Overall, the findings in this thesis provide substantial new detail on the mode of action of Dap. They also shed light on mechanisms of bacterial resistance to Dap, and they help to reconcile some of the conflicting findings on Dap activity that were obtained with model membranes differing in lipid composition. v Acknowledgements I wish to express my deepest gratitude and appreciation to my supervisor Dr. Scott D. Taylor and mentor and committee member Dr. Michael Palmer. From day one of this journey, Dr. Scott Taylor has demonstrated the focus and drive needed in research. His constant guidance, support and discussions throughout my degree have been extremely appreciated. Although on paper Dr. Michael Palmer is a committee member of mine, I will always treat him as a supervisor to me. Dr. Palmer is an exceptionally intelligent person, in regards to research, science as a whole and the world outside the lab. I will always be eternally grateful for his support, humbleness, constant reassurance and guidance throughout my time here. Both Dr. Taylor and Dr. Palmer are curious gentlemen that are pushing science and the world of Daptomycin forward. I will always be eternally grateful for being a part of each of their labs. I wish to express gratitude to my committee members, Dr. Thorsten Dieckmann and Dr. John Honek, for their guidance and discussions throughout this degree. I would like to thank my external examiner, Dr. Richard Epand, and my internal-external examiner, Dr. Zoya Leonenko for their acceptance to read and edit this thesis and for their valuable comments and suggestions. Thank you to my family for their endless support and help throughout my career at the University of Waterloo. Thank you to my significant other, Victoria. She has and always will be there for me and love me through it all. Her support and love for me helped me get through when times were tough. Thank you to Dr. John Honek and Anton van der Ven for being the mentors I needed during my undergraduate studies. Their mentorship lead me to a path in research. Their guidance, understanding and fun-loving attitude made me understand the joys and hard work required of research. Thank you to my peers throughout my studies within Dr. Michael Palmer’s and Dr. Scott Taylor’s laboratories, namely (in no particular order): David Beriashvili, Braden Kralt, Brad Scott, Dr. Chuda Lohani, Dr. Tiahua Zhang, Jacob Soley, Michael Noden, Eric Brefo-Mensah, Bowen Zheng. vi Dedication To my loved ones… vii Table of Contents Examining Committee Membership .................................................................................... ii Author’s Declaration ........................................................................................................... iii Abstract ................................................................................................................................ iv Acknowledgements ............................................................................................................. vi Dedication ........................................................................................................................... vii Table of Contents .............................................................................................................. viii List of Figures ..................................................................................................................... xii List of Tables ....................................................................................................................... xv List of Abbreviations ......................................................................................................... xvi Chapter 1 Introduction ......................................................................................................... 1 1.1 Antibiotics .................................................................................................................... 2 1.2 Mechanisms of Action and Resistance of Antibiotics ............................................. 5 1.2.1 Cell Wall ................................................................................................................. 5 1.2.2 Protein Synthesis .................................................................................................... 7 1.2.3 DNA/RNA ............................................................................................................... 8 1.2.4 Cell Membranes
Recommended publications
  • Antibiotic Assay Medium No. 3 (Assay Broth) Is Used for Microbiological Assay of Antibiotics. M042
    HiMedia Laboratories Technical Data Antibiotic Assay Medium No. 3 (Assay Broth) is used for M042 microbiological assay of antibiotics. Antibiotic Assay Medium No. 3 (Assay Broth) is used for microbiological assay of antibiotics. Composition** Ingredients Gms / Litre Peptic digest of animal tissue (Peptone) 5.000 Beef extract 1.500 Yeast extract 1.500 Dextrose 1.000 Sodium chloride 3.500 Dipotassium phosphate 3.680 Potassium dihydrogen phosphate 1.320 Final pH ( at 25°C) 7.0±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 17.5 grams in 1000 ml distilled water. Heat if necessary to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Advice:Recommended for the Microbiological assay of Amikacin, Bacitracin, Capreomycin, Chlortetracycline,Chloramphenicol,Cycloserine,Demeclocycline,Dihydrostreptomycin, Doxycycline, Gentamicin, Gramicidin, Kanamycin, Methacycline, Neomycin, Novobiocin, Oxytetracycline, Rolitetracycline, Streptomycin, Tetracycline, Tobramycin, Trolendomycin and Tylosin according to official methods . Principle And Interpretation Antibiotic Assay Medium is used in the performance of antibiotic assays. Grove and Randall have elucidated those antibiotic assays and media in their comprehensive treatise on antibiotic assays (1). Antibiotic Assay Medium No. 3 (Assay Broth) is used in the microbiological assay of different antibiotics in pharmaceutical and food products by the turbidimetric method. Ripperre et al reported that turbidimetric methods for determining the potency of antibiotics are inherently more accurate and more precise than agar diffusion procedures (2). Turbidimetric antibiotic assay is based on the change or inhibition of growth of a test microorganims in a liquid medium containing a uniform concentration of an antibiotic. After incubation of the test organism in the working dilutions of the antibiotics, the amount of growth is determined by measuring the light transmittance using spectrophotometer.
    [Show full text]
  • Neomycin and Polymyxin B Sulfates and Gramicidin
    NEOMYCIN AND POLYMYXIN B SULFATES AND GRAMICIDIN- neomycin sulfate, polymyxin b sulfate and gramicidin solution/ drops A-S Medication Solutions ---------- Neomycin and Polymyxin B Sulfates and Gramicidin Ophthalmic Solution, USP (Sterile) Rx only DESCRIPTION: Neomycin and Polymyxin B Sulfates and Gramicidin Ophthalmic Solution, USP is a sterile antimicrobial solution for ophthalmic use. Each mL contains: ACTIVES: Neomycin Sulfate, (equivalent to 1.75 mg neomycin base), Polymyxin B Sulfate equal to 10,000 Polymyxin B units, Gramicidin, 0.025 mg; INACTIVES: Sodium Chloride, Alcohol (0.5%), Poloxamer 188, Propylene Glycol, Purified Water. Hydrochloric Acid and/ or Ammonium Hydroxide may be added to adjust pH (4.7-6.0). PRESERVATIVE ADDED: Thimerosal 0.001%. Neomycin Sulfate is the sulfate salt of neomycin B and C, which are produced by the growth of Streptomyces fradiae Waksman (Fam. Streptomycetaceae). It has a potency equivalent of not less than 600 micrograms of neomycin base per milligram, calculated on an anhydrous basis. The structural formulae are: Polymyxin B Sulfate is the sulfate salt of polymyxin B1 and B2 which are produced by the growth of Bacillus polymyxa (Prazmowski) Migula (Fam. Bacillaceae). It has a potency of not less than 6,000 polymyxin B units per milligram, calculated on an anhydrous basis. The structural formulae are: Gramicidin (also called gramicidin D) is a mixture of three pairs of antibacterial substances (Gramicidin A, B and C) produced by the growth of Bacillus brevis Dubos (Fam. Bacillaceae). It has a potency of not less than 900 mcg of standard gramicidin per mg. The structural formulae are: CLINICAL PHARMACOLOGY: A wide range of antibacterial action is provided by the overlapping spectra of neomycin, polymyxin B sulfate, and gramicidin.
    [Show full text]
  • Biological Function of Gramicidin: Studies on Gramicidin-Negative Mutants (Peptide Antibiotics/Sporulation/Dipicolinic Acid/Bacillus Brevis) PRANAB K
    Proc. NatS. Acad. Sci. USA Vol. 74, No. 2, pp. 780-784, February 1977 Microbiology Biological function of gramicidin: Studies on gramicidin-negative mutants (peptide antibiotics/sporulation/dipicolinic acid/Bacillus brevis) PRANAB K. MUKHERJEE AND HENRY PAULUS Department of Metabolic Regulation, Boston Biomedical Research Institute, Boston, Massachusetts 02114; and Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115 Communicated by Bernard D. Davis, October 28,1976 ABSTRACT By the use of a rapid radioautographic EXPERIMENTAL PROCEDURE screening rocedure, two mutants of Bacillus brevis ATCC 8185 that have lost the ability to produce gramicidin have been iso- lated. These mutants produced normal levels of tyrocidine and Bacterial Strains. Bacillus brevis ATCC 8185, the Dubos sporulated at the same frequency as the parent strain. Their strain, was obtained from the American Type Culture Collec- spores, however, were more heat-sensitive and had a reduced tion. Strain S14 is a streptomycin-resistant derivative of B. brevis 4ipicolinic acid content. Gramicidin-producing revertants oc- ATCC 8185, isolated on a streptomycin-gradient plate without curred at a relatively high frequency among tie survivors of mutagenesis. It grows well at 0.5 mg/ml of streptomycin, but prolonged heat treatment and had also regained the ability to produce heat-resistant spores. A normal spore phenotype could growth is retarded by streptomycin at 1.0 mg/ml. Strain B81 also be restored by the addition of gramicidin to cultures of the is a rifampicin-resistant derivative of strain S14, isolated on mutant strain at the end of exponential growth. On the other rifampicin-gradient plates after mutagenesis of spores with hand, the addition of dipicolinic acid could not cure the spore ethyl methanesulfonate (11).
    [Show full text]
  • Topical Antibiotics for Impetigo: a Review of the Clinical Effectiveness and Guidelines
    CADTH RAPID RESPONSE REPORT: SUMMARY WITH CRITICAL APPRAISAL Topical Antibiotics for Impetigo: A Review of the Clinical Effectiveness and Guidelines Service Line: Rapid Response Service Version: 1.0 Publication Date: February 21, 2017 Report Length: 23 Pages Authors: Rob Edge, Charlene Argáez Cite As: Topical antibiotics for impetigo: a review of the clinical effectiveness and guidelines. Ottawa: CADTH; 2017 Feb. (CADTH rapid response report: summary with critical appraisal). ISSN: 1922-8147 (online) Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document.
    [Show full text]
  • Identification Product Identifier Product Name Neomycin Sulfate
    Neomycin Sulfate & Polymyxin B Sulfates & Gramicidin Ophthalmic Solution Safety Data Sheet Section 1: Identification Product identifier Neomycin Sulfate & Polymyxin B Sulfates & Gramicidin Product Name Ophthalmic Solution Product Code AB03409; Core No. 034; NDC 24208-0790-62 Relevant identified uses of the substance or mixture and uses advised against Recommended use Finished Pharmaceutical Product; Indicated for the topical treatment of superficial infections of the external eye and its adnexa caused by susceptible bacteria. Restrictions on use Refer to the product insert and/or prescribing information for restrictions on use and contraindications. Details of the supplier of the safety data sheet Manufacturer Bausch & Lomb 1400 North Goodman Street Rochester, NY 14609 United States bausch.com Telephone (General) 1-800-553-5340 Emergency telephone number Manufacturer 1-800-535-5053 - Infotrac This safety data sheet is written to provide health, safety and environmental information for people handling this formulated product in the workplace. It is not intended to provide information relevant to consumer use of the product. Section 2: Hazard Identification UN GHS According to: UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS) Classification of the substance or mixture UN GHS Skin Sensitization 1B Label elements UN GHS WARNING Hazard statements May cause an allergic skin reaction Precautionary statements Preparation Date: 07/September/1994 Format: GHS Language: English (US) Revision Date: 24/April/2015 UN GHS Page 1 of 10 Neomycin Sulfate & Polymyxin B Sulfates & Gramicidin Ophthalmic Solution Prevention Wash thoroughly after handling. Response IF ON SKIN: Wash with plenty of soap and water. If skin irritation or rash occurs: Get medical advice/attention.
    [Show full text]
  • Antibiotics & Common Infections ABX-2
    - - Summaries: Trial SSTI Related toxicity rare - Evidence/Safety, Q&As/Extras: Nitrofurantion documents/GeriRxFiles-UTI.pdf http://www.rxfiles.ca/rxfiles/uploads/ Adults: UTIinOlder Geri-RxFiles RxFILES EXTRAS FROM lookup/59/2/e10 https://academic.oup.com/cid/article- Infections Tissue Skin &Soft IDSA2014: U.S. TISSUEINFECTIONS SKIN &SOFT assets/files/guidelines/en/1121.pdf https://www.cua.org/themes/web/ UTI Recurrent 2011: CUA 2163(16)34717-X/pdf http://www.jogc.com/article/S1701- UTI Recurrent SOGC 2010: 19April2013.pdf photos/custom/UTI%20Guidelines%20 https://saskpic.ipac-canada.org/ Settings Care UTI inContinuing 2013: SK MOH lookup/52/5/e103 https://academic.oup.com/cid/article- (UTI) Pylonephritis Cystitisand Acute Uncomplicated IDSA2010: U.S. CYSTITIS / UTI http://www.mumshealth.com MUMS Guidelines: http://www.bugsanddrugs.ca/ &Drugs: Bugs CANADIAN LINKS ABX-2 RELATED Skin Abscess: I&D +/- ABX I&D +/-ABX Skin Abscess: Clindamycin vs TMP/SMX vsTMP/SMX Clindamycin GUIDELINES/REFERENCES GUIDELINES/REFERENCES - Antibiotics & Common Infections &CommonInfections Antibiotics Stewardship, Effectiveness, Safety & Clinical Pearls-April2017 & Stewardship, Effectiveness,Safety ( Susceptibility of of Susceptibility 1) CYSTISIS UNCOMPLICATED CAUGHTOUREYE... FROMINSIDE THAT ABX-2: AFEWPEARLS Pad”. “Viral Prescription at allavailable These are friendly postersandthepatient suchasthe“GoneViral?”office/clinic extra supporttools on discussions inSaskatchewan. withproviders discussions detailing our springacademic Our tissue(SSTI)infections. and skin&soft willsupport The newchartsinthisnewsletter cystitis uncomplicated of onthetreatment topic tobringouttheABX-2 excited are We ONABX RxFILES ACADEMIC DETAILING pg9) (see Know youroptions! anaphylaxis). (e.g. allergy mediated atrueIgE will have ___ only “allergy”, penicillin 7) ALLERGY LACTAM BETA cellulitis. of treatment successful inthe essential -often 5) verywell.
    [Show full text]
  • Subpart J—Certain Other Dosage Forms [Reserved] PART
    Pt. 448 21 CFR Ch. I (4±1±96 Edition) (ii) Samples required: Subpart HÐRectal Dosage Forms (a) The oxytetracycline hydro- [Reserved] chloride used in making the batch: 10 packages, each containing approxi- mately 300 milligrams. Subpart IÐ[Reserved] (b) The polymyxin B sulfate used in making the batch: 10 packages, each Subpart JÐCertain Other Dosage containing approximately 300 milli- Forms [Reserved] grams. (c) The batch: A minimum of 30 tab- PART 448ÐPEPTIDE ANTIBIOTIC lets. DRUGS (b) Tests and methods of assayÐ(1) Po- tencyÐ(i) Oxytetracycline content. Pro- Subpart AÐBulk Drugs ceed as directed in § 436.106 of this chap- ter, preparing the sample for assay as Sec. 448.10 Bacitracin. follows: Place a representative number 448.10a Sterile bacitracin. of tablets into a high-speed glass blend- 448.13 Bacitracin zinc. er jar containing sufficient 0.1N hydro- 448.13a Sterile bacitracin zinc. chloric acid to obtain a stock solution 448.15a Sterile capreomycin sulfate. of convenient concentration containing 448.20a Sterile colistimethate sodium. not less than 150 micrograms of oxytet- 448.21 Colistin sulfate. racycline per milliliter (estimated). 448.23 Cyclosporine. Blend for 3 to 5 minutes. Remove an al- 448.25 Gramicidin. iquot of the stock solution and further 448.30 Polymyxin B sulfate. dilute with sterile distilled water to 448.30a Sterile polymyxin B sulfate. the reference concentration of 0.24 448.75 Tyrothricin. microgram of oxytetracycline per mil- liliter (estimated). Subpart BÐOral Dosage Forms (ii) Polymyxin B content. Proceed as 448.121 Colistin sulfate for oral suspension. directed in § 436.105 of this chapter, pre- 448.123 Cyclosporine oral dosage forms.
    [Show full text]
  • Design and Syntheses of Gramicidin S Analogs, Cyclo(-X-Leu-XD
    The Journal of Antibiotics (2011) 64, 583–585 & 2011 Japan Antibiotics Research Association All rights reserved 0021-8820/11 $32.00 www.nature.com/ja NOTE Design and syntheses of gramicidin S analogs, cyclo(-X-Leu-X-D-Phe-Pro-)2 (X¼His, Lys, Orn, Dab and Dap) Makoto Tamaki1, Kenta Fujinuma1, Takuji Harada1, Kazumasa Takanashi1, Mitsuno Shindo2, Masahiro Kimura2 and Yoshiki Uchida2 The Journal of Antibiotics (2011) 64, 583–585; doi:10.1038/ja.2011.43; published online 25 May 2011 Keywords: gramicidin S; polycationic analog; structure-activity relationship; synthesis 1,1¢ 2,2¢ 3,3¢ 4,4¢ 5,5¢ 1–3 Gramicidin S (GS), cyclo(-Val -Orn -Leu -D-Phe -Pro -)2, solid phase peptide synthesis on oxime resin (loading of oxime group: is a potent cyclopeptide antibiotic isolated from Bacillus brevis.Its 0.35 mmol gÀ1 resins) (Scheme 1).8 Yresidue(Y¼His(3-Bom), Lys(Z), secondary structure has been established as an antiparallel b-sheet Orn(Z), Dab(Z) and Dap(Z)) as a C-terminal amino acid residue was conformation with amphiphilicity.4,5 The conformation is charac- used based on the propensity of the biosynthetic precursor of GS teristically featured with the orientation of side chains in such a way to form a conformation highly favorable for head–tail cyclization.2,3 that the charged Orn side chains are situated on one side of the The cyclization-cleavage of H-D-Phe-Pro-Y-Leu-Y-D-Phe-Pro-Y-Leu- molecule and the hydrophobic Val and Leu side chains are situated on Y-oxime from the resin was performed in 1,4-dioxane with 2 equiv the other side.
    [Show full text]
  • Mode of Action of Daptomycin, a Lipopeptide Antibiotic
    Mode of Action of Daptomycin, a Lipopeptide Antibiotic by Jawad Kadhum Muraih A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry (Biochemistry) Waterloo, Ontario, Canada, 2012 © Jawad Kadhum Muraih 2012 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. Jawad K. Muraih iii Abstract Daptomycin is a lipopeptide antibiotic that contains 13 amino acids and an N-terminally at- tached fatty acyl residue. The antibiotic kills Gram-positive bacteria by membrane depolariza- tion. It has long been assumed that the mode of action of daptomycin involves the formation of oligomers on the bacterial cell membrane; however, at the outset of my studies, this had not been experimentally demonstrated. In the work described in this thesis, I have used fluorescence energy transfer (FRET) be- tween native daptomycin and an NBD-labeled daptomycin derivative to demonstrate that the antibiotic indeed forms oligomers on bacterial cell membranes. In a liposome model, oligomer formation depends on calcium and on phosphatidylglycerol (PG). The oligomer forms rapidly and is stable for a length of time longer than required for the bactericidal effect. Through vari- ation of the ratio of FRET donor (native daptomycin) and acceptor (NBD-daptomycin), I have determined that the oligomer consists of approximately 6–7 molecules, or, depending on the structure of the oligomer, possibly up to twice that number.
    [Show full text]
  • And Second-Generation (DR-6180) Lppos Used in This Study
    www.nature.com/scientificreports OPEN Outer membrane and phospholipid composition of the target membrane afect the antimicrobial potential of frst‑ and second‑generation lipophosphonoxins Klára Látrová1, Noemi Havlová1, Renata Večeřová2, Dominik Pinkas1, Kateřina Bogdanová2, Milan Kolář2, Radovan Fišer1, Ivo Konopásek1, Duy Dinh Do Pham3, Dominik Rejman3* & Gabriela Mikušová1* Lipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First‑generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram‑positive bacteria; however they do not exhibit any activity against Gram‑negatives. Second‑ generation LPPOs (LPPO II) also exhibit broadened activity against Gram‑negatives. We investigated the reasons behind this diferent susceptibility of bacteria to the two generations of LPPOs using model membranes and the living model bacteria Bacillus subtilis and Escherichia coli. We show that both generations of LPPOs form oligomeric conductive pores and permeabilize the bacterial membrane of sensitive cells. LPPO activity is not afected by the value of the target membrane potential, and thus they are also active against persister cells. The insensitivity of Gram‑negative bacteria to LPPO I is probably caused by the barrier function of the outer membrane with LPS. LPPO I is almost incapable of overcoming the outer membrane in living cells, and the presence of LPS in liposomes substantially reduces their activity. Further, the antimicrobial activity of LPPO is also infuenced by the phospholipid composition of the target membrane. A higher proportion of phospholipids with neutral charge such as phosphatidylethanolamine or phosphatidylcholine reduces the LPPO permeabilizing potential. Te accelerating occurrence of bacterial resistance to current antibiotics poses a constant threat, because it is widely associated with the failure of antibiotic treatment.
    [Show full text]
  • Prescribing Information Including Patient Medication Information
    PRESCRIBING INFORMATION INCLUDING PATIENT MEDICATION INFORMATION OPTIMYXIN PLUS Gramicidin, Neomycin and Polymyxin B Sulfate Each mL of solution contains Gramicidin 0.025 mg Neomycin 1.75 mg (as neomycin sulfate) and Polymyxin B Sulfate 10 000 units Ophthalmic/Otic USP Antibiotic Sandoz Canada Inc. Date of Preparation: July 1989 110 Rue de Lauzon Date of Revision: March 27, 2019 Boucherville, QC, Canada J4B 1E6 Submission Control Number: 217599 Optimyxin Plus Eye/Ear Solution (Neomycin and Polymyxin B Sulfate and Gramicidin Ophthalmic Solution USP) Antibiotic INDICATIONS Optimyxin Plus is used for the prophylaxis and treatment of eye and ear infections. To reduce the development of drug-resistant bacteria and maintain the effectiveness of OPTIMYXIN PLUS and other antibacterial drugs, OPTIMYXIN PLUS should be used only to treat infections that are proven or strongly suspected to be caused by bacteria. CONTRAINDICATIONS Hypersensitivity to any of the components. The presence of preexisting nerve deafness is a contraindication to the use of any topical aminoglycoside in circumstances where significant systemic absorption could occur. WARNINGS AND PRECAUTIONS The manifestations of sensitization to neomycin are usually itching, reddening and edema of the conjunctiva and eyelid. It may be manifest simply as a failure to heal. During long-term use of neomycin-containing products, periodic examination for such signs is advisable, and the patient should be told to discontinue the product if they are observed. These symptoms subside quickly on withdrawing the medication. Neomycin-containing applications should be avoided for the patient thereafter. Susceptibility/Resistance Development of Drug Resistant Bacteria Prescribing OPTIMYXIN PLUS in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and risks the development of drug- resistant bacteria.
    [Show full text]
  • Electronic Supplementary Information
    Electronic Supplementary Material (ESI) for MedChemComm. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information Gramicidin S-inspired Antimicrobial Cyclodextrin to Disrupt Gram- negative and Gram-positive Bacterial Membranes Hatsuo Yamamura,*a Kana Isshiki,a Yusuke Fujita,a Hisato Kato,b Takashi Katsu,b Kazufumi Masudac Kayo Osawad and Atsushi Miyagawaa a Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466- 8555, Japan. b School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama-shi, Okayama 703-8516, Japan. c Graduate School of Clinical Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama-shi, Okayama 703-8516, Japan. d Department of Biophysics, Kobe University, Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan E-mail: [email protected] Azide CD acylates 2-6 Preparation of azide g-CD propanoate 3 was described. The other derivatives 4-6 were prepared similarly. The acetate 2 was synthesized as described in the lliterature.1 azide g-CD propanoate 3 Octakis-6-azido-g-CD 1 (44.3 mg, 9.64 × 10−5 mol) was reacted with propanoic anhydride (1.61 g, 1.23x10-2 mol) and dimethylaminopyridine (37.6 mg, 3.08x10-4 mol) in dry pyridine (5 cm3) at r.t. for 3 days. Propanoic anhydride (0.80 g, 6.17x10-3 mol) was added and the reaction mixture was stirred for more 3 days and concentrated in vacuo. To the residue, ethyl acetate was added followed by washing with 0.5 M aq.
    [Show full text]