Neomycin and Polymyxin B Sulfates and Gramicidin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activity of Cefepime-Zidebactam Against Multidrug-Resistant (MDR) Gram-Negative Pathogens
antibiotics Article Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens Kenneth S. Thomson 1,* , Sameh AbdelGhani 1,2, James W. Snyder 1 and Gina K. Thomson 1,3 1 Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; [email protected] (S.A.); [email protected] (J.W.S.); [email protected] (G.K.T.) 2 Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt 3 Microbiology Department, University of Louisville Hospital, Louisville, KY 40202, USA * Correspondence: [email protected] Received: 18 February 2019; Accepted: 19 March 2019; Published: 23 March 2019 Abstract: This study compared the activity of cefepime + zidebactam (FEP-ZID) and selected currently available antibacterial agents against a panel of multidrug-resistant (MDR) clinical isolates chosen to provide an extreme challenge for antibacterial activity. FEP–ZID had a very broad and potent in vitro spectrum of activity, and was highly active against many MDR isolates of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. Notably, it inhibited isolates producing carbapenemases of Ambler classes A, B, and D, and P. aeruginosa isolates with multiple resistance mechanisms including combinations of upregulated efflux, diminished or non-functional OprD porins, and AmpC overproduction. Its clinical role will be determined initially by the breakpoints assigned to it, comparison studies with other investigational β-lactamase inhibitor combinations, and ultimately by the developing body of therapeutic outcome data. Keywords: carbapenemase-producing organism; carbapenemase; zidebactam; therapy 1. Introduction Gram-negative multidrug-resistant (MDR) pathogens, particularly carbapenemase-producing organisms (CPOs), cause infections of high mortality that are typically treated with antibiotic combinations that include toxic drugs such as polymyxins and aminoglycosides [1]. -
Antibiotic Assay Medium No. 3 (Assay Broth) Is Used for Microbiological Assay of Antibiotics. M042
HiMedia Laboratories Technical Data Antibiotic Assay Medium No. 3 (Assay Broth) is used for M042 microbiological assay of antibiotics. Antibiotic Assay Medium No. 3 (Assay Broth) is used for microbiological assay of antibiotics. Composition** Ingredients Gms / Litre Peptic digest of animal tissue (Peptone) 5.000 Beef extract 1.500 Yeast extract 1.500 Dextrose 1.000 Sodium chloride 3.500 Dipotassium phosphate 3.680 Potassium dihydrogen phosphate 1.320 Final pH ( at 25°C) 7.0±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 17.5 grams in 1000 ml distilled water. Heat if necessary to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Advice:Recommended for the Microbiological assay of Amikacin, Bacitracin, Capreomycin, Chlortetracycline,Chloramphenicol,Cycloserine,Demeclocycline,Dihydrostreptomycin, Doxycycline, Gentamicin, Gramicidin, Kanamycin, Methacycline, Neomycin, Novobiocin, Oxytetracycline, Rolitetracycline, Streptomycin, Tetracycline, Tobramycin, Trolendomycin and Tylosin according to official methods . Principle And Interpretation Antibiotic Assay Medium is used in the performance of antibiotic assays. Grove and Randall have elucidated those antibiotic assays and media in their comprehensive treatise on antibiotic assays (1). Antibiotic Assay Medium No. 3 (Assay Broth) is used in the microbiological assay of different antibiotics in pharmaceutical and food products by the turbidimetric method. Ripperre et al reported that turbidimetric methods for determining the potency of antibiotics are inherently more accurate and more precise than agar diffusion procedures (2). Turbidimetric antibiotic assay is based on the change or inhibition of growth of a test microorganims in a liquid medium containing a uniform concentration of an antibiotic. After incubation of the test organism in the working dilutions of the antibiotics, the amount of growth is determined by measuring the light transmittance using spectrophotometer. -
Biological Function of Gramicidin: Studies on Gramicidin-Negative Mutants (Peptide Antibiotics/Sporulation/Dipicolinic Acid/Bacillus Brevis) PRANAB K
Proc. NatS. Acad. Sci. USA Vol. 74, No. 2, pp. 780-784, February 1977 Microbiology Biological function of gramicidin: Studies on gramicidin-negative mutants (peptide antibiotics/sporulation/dipicolinic acid/Bacillus brevis) PRANAB K. MUKHERJEE AND HENRY PAULUS Department of Metabolic Regulation, Boston Biomedical Research Institute, Boston, Massachusetts 02114; and Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115 Communicated by Bernard D. Davis, October 28,1976 ABSTRACT By the use of a rapid radioautographic EXPERIMENTAL PROCEDURE screening rocedure, two mutants of Bacillus brevis ATCC 8185 that have lost the ability to produce gramicidin have been iso- lated. These mutants produced normal levels of tyrocidine and Bacterial Strains. Bacillus brevis ATCC 8185, the Dubos sporulated at the same frequency as the parent strain. Their strain, was obtained from the American Type Culture Collec- spores, however, were more heat-sensitive and had a reduced tion. Strain S14 is a streptomycin-resistant derivative of B. brevis 4ipicolinic acid content. Gramicidin-producing revertants oc- ATCC 8185, isolated on a streptomycin-gradient plate without curred at a relatively high frequency among tie survivors of mutagenesis. It grows well at 0.5 mg/ml of streptomycin, but prolonged heat treatment and had also regained the ability to produce heat-resistant spores. A normal spore phenotype could growth is retarded by streptomycin at 1.0 mg/ml. Strain B81 also be restored by the addition of gramicidin to cultures of the is a rifampicin-resistant derivative of strain S14, isolated on mutant strain at the end of exponential growth. On the other rifampicin-gradient plates after mutagenesis of spores with hand, the addition of dipicolinic acid could not cure the spore ethyl methanesulfonate (11). -
Topical Antibiotics for Impetigo: a Review of the Clinical Effectiveness and Guidelines
CADTH RAPID RESPONSE REPORT: SUMMARY WITH CRITICAL APPRAISAL Topical Antibiotics for Impetigo: A Review of the Clinical Effectiveness and Guidelines Service Line: Rapid Response Service Version: 1.0 Publication Date: February 21, 2017 Report Length: 23 Pages Authors: Rob Edge, Charlene Argáez Cite As: Topical antibiotics for impetigo: a review of the clinical effectiveness and guidelines. Ottawa: CADTH; 2017 Feb. (CADTH rapid response report: summary with critical appraisal). ISSN: 1922-8147 (online) Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. -
Farrukh Javaid Malik
I Farrukh Javaid Malik THESIS PRESENTED TO OBTAIN THE GRADE OF DOCTOR OF THE UNIVERSITY OF BORDEAUX Doctoral School, SP2: Society, Politic, Public Health Specialization Pharmacoepidemiology and Pharmacovigilance By Farrukh Javaid Malik “Analysis of the medicines panorama in Pakistan – The case of antimicrobials: market offer width and consumption.” Under the direction of Prof. Dr. Albert FIGUERAS Defense Date: 28th November 2019 Members of Jury M. Francesco SALVO, Maître de conférences des universités – praticien hospitalier, President Université de Bordeaux M. Albert FIGUERAS, Professeur des universités – praticien hospitalier, Director Université Autonome de Barcelone Mme Antonia AGUSTI, Professeure, Vall dʹHebron University Hospital Referee Mme Montserrat BOSCH, Praticienne hospitalière, Vall dʹHebron University Hospital Referee II Abstract A country’s medicines market is an indicator of its healthcare system, the epidemiological profile, and the prevalent practices therein. It is not only the first logical step to study the characteristics of medicines authorized for marketing, but also a requisite to set up a pharmacovigilance system, thus promoting rational drug utilization. The three medicines market studies presented in the present document were conducted in Pakistan with the aim of describing the characteristics of the pharmaceutical products available in the country as well as their consumption at a national level, with a special focus on antimicrobials. The most important cause of antimicrobial resistance is the inappropriate consumption of antimicrobials. The results of the researches conducted in Pakistan showed some market deficiencies which could be addressed as part of the national antimicrobial stewardship programmes. III Résumé Le marché du médicament d’un pays est un indicateur de son système de santé, de son profil épidémiologique et des pratiques [de prescription] qui y règnent. -
Identification Product Identifier Product Name Neomycin Sulfate
Neomycin Sulfate & Polymyxin B Sulfates & Gramicidin Ophthalmic Solution Safety Data Sheet Section 1: Identification Product identifier Neomycin Sulfate & Polymyxin B Sulfates & Gramicidin Product Name Ophthalmic Solution Product Code AB03409; Core No. 034; NDC 24208-0790-62 Relevant identified uses of the substance or mixture and uses advised against Recommended use Finished Pharmaceutical Product; Indicated for the topical treatment of superficial infections of the external eye and its adnexa caused by susceptible bacteria. Restrictions on use Refer to the product insert and/or prescribing information for restrictions on use and contraindications. Details of the supplier of the safety data sheet Manufacturer Bausch & Lomb 1400 North Goodman Street Rochester, NY 14609 United States bausch.com Telephone (General) 1-800-553-5340 Emergency telephone number Manufacturer 1-800-535-5053 - Infotrac This safety data sheet is written to provide health, safety and environmental information for people handling this formulated product in the workplace. It is not intended to provide information relevant to consumer use of the product. Section 2: Hazard Identification UN GHS According to: UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS) Classification of the substance or mixture UN GHS Skin Sensitization 1B Label elements UN GHS WARNING Hazard statements May cause an allergic skin reaction Precautionary statements Preparation Date: 07/September/1994 Format: GHS Language: English (US) Revision Date: 24/April/2015 UN GHS Page 1 of 10 Neomycin Sulfate & Polymyxin B Sulfates & Gramicidin Ophthalmic Solution Prevention Wash thoroughly after handling. Response IF ON SKIN: Wash with plenty of soap and water. If skin irritation or rash occurs: Get medical advice/attention. -
Antibiotics & Common Infections ABX-2
- - Summaries: Trial SSTI Related toxicity rare - Evidence/Safety, Q&As/Extras: Nitrofurantion documents/GeriRxFiles-UTI.pdf http://www.rxfiles.ca/rxfiles/uploads/ Adults: UTIinOlder Geri-RxFiles RxFILES EXTRAS FROM lookup/59/2/e10 https://academic.oup.com/cid/article- Infections Tissue Skin &Soft IDSA2014: U.S. TISSUEINFECTIONS SKIN &SOFT assets/files/guidelines/en/1121.pdf https://www.cua.org/themes/web/ UTI Recurrent 2011: CUA 2163(16)34717-X/pdf http://www.jogc.com/article/S1701- UTI Recurrent SOGC 2010: 19April2013.pdf photos/custom/UTI%20Guidelines%20 https://saskpic.ipac-canada.org/ Settings Care UTI inContinuing 2013: SK MOH lookup/52/5/e103 https://academic.oup.com/cid/article- (UTI) Pylonephritis Cystitisand Acute Uncomplicated IDSA2010: U.S. CYSTITIS / UTI http://www.mumshealth.com MUMS Guidelines: http://www.bugsanddrugs.ca/ &Drugs: Bugs CANADIAN LINKS ABX-2 RELATED Skin Abscess: I&D +/- ABX I&D +/-ABX Skin Abscess: Clindamycin vs TMP/SMX vsTMP/SMX Clindamycin GUIDELINES/REFERENCES GUIDELINES/REFERENCES - Antibiotics & Common Infections &CommonInfections Antibiotics Stewardship, Effectiveness, Safety & Clinical Pearls-April2017 & Stewardship, Effectiveness,Safety ( Susceptibility of of Susceptibility 1) CYSTISIS UNCOMPLICATED CAUGHTOUREYE... FROMINSIDE THAT ABX-2: AFEWPEARLS Pad”. “Viral Prescription at allavailable These are friendly postersandthepatient suchasthe“GoneViral?”office/clinic extra supporttools on discussions inSaskatchewan. withproviders discussions detailing our springacademic Our tissue(SSTI)infections. and skin&soft willsupport The newchartsinthisnewsletter cystitis uncomplicated of onthetreatment topic tobringouttheABX-2 excited are We ONABX RxFILES ACADEMIC DETAILING pg9) (see Know youroptions! anaphylaxis). (e.g. allergy mediated atrueIgE will have ___ only “allergy”, penicillin 7) ALLERGY LACTAM BETA cellulitis. of treatment successful inthe essential -often 5) verywell. -
Rational Design and Synthesis of Modified Teixobactin Analogues: Ng, Vivian; Kuehne, Sarah A; Chan, Weng
University of Birmingham Rational design and synthesis of modified teixobactin analogues: Ng, Vivian; Kuehne, Sarah A; Chan, Weng DOI: 10.1002/chem.201801423 License: Other (please specify with Rights Statement) Document Version Peer reviewed version Citation for published version (Harvard): Ng, V, Kuehne, SA & Chan, W 2018, 'Rational design and synthesis of modified teixobactin analogues: in vitro antibacterial activity against Staphylococcus aureus, Propionibacterium acnes and Pseudomonas aeruginosa', Chemistry: A European Journal. https://doi.org/10.1002/chem.201801423 Link to publication on Research at Birmingham portal Publisher Rights Statement: This is the peer reviewed version of the following article: Ng, V. , Kuehne, S. and Chan, W. (2018), Rational design and synthesis of modified teixobactin analogues: in vitro antibacterial activity against Staphylococcus aureus, Propionibacterium acnes and Pseudomonas aeruginosa. Chem. Eur. J.. Accepted Author Manuscript. doi:10.1002/chem.201801423, which has been published in final form at 10.1002/chem.201801423. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self- Archiving. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. -
Subpart J—Certain Other Dosage Forms [Reserved] PART
Pt. 448 21 CFR Ch. I (4±1±96 Edition) (ii) Samples required: Subpart HÐRectal Dosage Forms (a) The oxytetracycline hydro- [Reserved] chloride used in making the batch: 10 packages, each containing approxi- mately 300 milligrams. Subpart IÐ[Reserved] (b) The polymyxin B sulfate used in making the batch: 10 packages, each Subpart JÐCertain Other Dosage containing approximately 300 milli- Forms [Reserved] grams. (c) The batch: A minimum of 30 tab- PART 448ÐPEPTIDE ANTIBIOTIC lets. DRUGS (b) Tests and methods of assayÐ(1) Po- tencyÐ(i) Oxytetracycline content. Pro- Subpart AÐBulk Drugs ceed as directed in § 436.106 of this chap- ter, preparing the sample for assay as Sec. 448.10 Bacitracin. follows: Place a representative number 448.10a Sterile bacitracin. of tablets into a high-speed glass blend- 448.13 Bacitracin zinc. er jar containing sufficient 0.1N hydro- 448.13a Sterile bacitracin zinc. chloric acid to obtain a stock solution 448.15a Sterile capreomycin sulfate. of convenient concentration containing 448.20a Sterile colistimethate sodium. not less than 150 micrograms of oxytet- 448.21 Colistin sulfate. racycline per milliliter (estimated). 448.23 Cyclosporine. Blend for 3 to 5 minutes. Remove an al- 448.25 Gramicidin. iquot of the stock solution and further 448.30 Polymyxin B sulfate. dilute with sterile distilled water to 448.30a Sterile polymyxin B sulfate. the reference concentration of 0.24 448.75 Tyrothricin. microgram of oxytetracycline per mil- liliter (estimated). Subpart BÐOral Dosage Forms (ii) Polymyxin B content. Proceed as 448.121 Colistin sulfate for oral suspension. directed in § 436.105 of this chapter, pre- 448.123 Cyclosporine oral dosage forms. -
Polymyxin B April 2019 Background Polymyxin B Injection Is Available
Polymyxin B April 2019 Background . Polymyxin B injection is available for inpatient use. This product is being used by the irrigation mode of administration. The proposal is to implement the intravenous route of administration with restrictions for use. Several changes were made to the FDA drug approval process in the 1960s which is after the time (1951) when polymyxin B was originally approved by the FDA.1,2 The approval process for polymyxin B was different than medications that are approved today. Thus, there is a lack of robust clinical trials on polymyxin B’s efficacy, safety and pharmacokinetics. Efficacy Polymyxin B was FDA approved for acute infections caused by susceptible strains of Pseudomonas aeruginosa and for serious infections caused by the following organisms (if susceptible) when other less toxic drugs are ineffective or contraindicated: H. influenzae (meningeal, IT route), Escherichia coli (UTI), Aerobacter (Klebsiella) aerogenes (bacteremia), Klebsiella pneumoniae (bacteremia).3 It should be noted that this drug did not go through the modern drug development process and thus, pharmacokinetic evidence since its approval has indicated that it is not appropriate for UTIs. Guidelines indicate that polymyxin B is the preferred polymyxin therapy for systemic use in invasive infections other than UTIs.5 Safety Polymyxin B has several black box warnings (BBW): administration by the IM and IT routes should only be done in hospitalized patients, nephrotoxicity and neurotoxicity can occur, safe use in pregnancy has not been established, -
Design and Syntheses of Gramicidin S Analogs, Cyclo(-X-Leu-XD
The Journal of Antibiotics (2011) 64, 583–585 & 2011 Japan Antibiotics Research Association All rights reserved 0021-8820/11 $32.00 www.nature.com/ja NOTE Design and syntheses of gramicidin S analogs, cyclo(-X-Leu-X-D-Phe-Pro-)2 (X¼His, Lys, Orn, Dab and Dap) Makoto Tamaki1, Kenta Fujinuma1, Takuji Harada1, Kazumasa Takanashi1, Mitsuno Shindo2, Masahiro Kimura2 and Yoshiki Uchida2 The Journal of Antibiotics (2011) 64, 583–585; doi:10.1038/ja.2011.43; published online 25 May 2011 Keywords: gramicidin S; polycationic analog; structure-activity relationship; synthesis 1,1¢ 2,2¢ 3,3¢ 4,4¢ 5,5¢ 1–3 Gramicidin S (GS), cyclo(-Val -Orn -Leu -D-Phe -Pro -)2, solid phase peptide synthesis on oxime resin (loading of oxime group: is a potent cyclopeptide antibiotic isolated from Bacillus brevis.Its 0.35 mmol gÀ1 resins) (Scheme 1).8 Yresidue(Y¼His(3-Bom), Lys(Z), secondary structure has been established as an antiparallel b-sheet Orn(Z), Dab(Z) and Dap(Z)) as a C-terminal amino acid residue was conformation with amphiphilicity.4,5 The conformation is charac- used based on the propensity of the biosynthetic precursor of GS teristically featured with the orientation of side chains in such a way to form a conformation highly favorable for head–tail cyclization.2,3 that the charged Orn side chains are situated on one side of the The cyclization-cleavage of H-D-Phe-Pro-Y-Leu-Y-D-Phe-Pro-Y-Leu- molecule and the hydrophobic Val and Leu side chains are situated on Y-oxime from the resin was performed in 1,4-dioxane with 2 equiv the other side. -
Synthesis and Structure−Activity Relationships of Teixobactin
Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Special Issue: Antimicrobial Therapeutics Reviews REVIEW Synthesis and structure−activity relationships of teixobactin John A. Karas,1 Fan Chen,1 Elena K. Schneider-Futschik,1,2 Zhisen Kang,1 Maytham Hussein,1 James Swarbrick,1 Daniel Hoyer,1,3,4 Andrew M. Giltrap,5 Richard J. Payne,5 Jian Li,6 and Tony Velkov1 1Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia. 2Lung Health Research Centre, Department of Pharmacology & Therapeutics, the University of Melbourne, Parkville, Victoria, Australia. 3The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia. 4Department of Molecular Medicine, the Scripps Research Institute, La Jolla, California. 5School of Chemistry, the University of Sydney, Sydney, New South Wales, Australia. 6Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia Address for correspondence: Tony Velkov and John A. Karas, Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, VIC 3010, Australia. [email protected] OR [email protected] The discovery of antibiotics has led to the effective treatment of bacterial infections that were otherwise fatal and has had a transformative effect on modern medicine. Teixobactin is an unusual depsipeptide natural product that was recently discovered from a previously unculturable soil bacterium and found to possess potent antibacterial activity against several Gram positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin- resistant Enterococci.