Review of Chemiluminescence As an Optical Diagnostic Tool for High Pressure Unstable Rockets Tristan Latimer Fuller Purdue University
Total Page:16
File Type:pdf, Size:1020Kb
Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations January 2015 Review of Chemiluminescence as an Optical Diagnostic Tool for High Pressure Unstable Rockets Tristan Latimer Fuller Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Recommended Citation Fuller, Tristan Latimer, "Review of Chemiluminescence as an Optical Diagnostic Tool for High Pressure Unstable Rockets" (2015). Open Access Theses. 1176. https://docs.lib.purdue.edu/open_access_theses/1176 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated 1/15/2015 PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Tristan L. Fuller Entitled REVIEW OF CHEMILUMINESCENCE AS AN OPTICAL DIAGNOSTIC TOOL FOR HIGH PRESSURE UNSTABLE ROCKETS For the degree of Master of Science in Chemical Engineering Is approved by the final examining committee: William E. Anderson Chair Robert P. Lucht Stephen D. Heister Carson D. Slabaugh To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): William E. Anderson Approved by: Weinong W. Chen 7/24/2015 Head of the Departmental Graduate Program Date REVIEW OF CHEMILUMINESCENCE AS AN OPTICAL DIAGNOSTIC TOOL IN HIGH PRESSURE UNSTABLE COMBUSTORS A Thesis Submitted to the Faculty of Purdue University by Tristan L. Fuller In Partial Fulfillment of the Requirements for the Degree of Master of Science August 2015 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS I would like to thank Professors Anderson and Lucht for giving me guidance throughout this project. Michael Bedard and Swanand Sardeshmukh contributed greatly in the development of the optical model, so I would like to give them my sincerest thanks. I would also like to thank my colleagues Carson Slabaugh, Zach Hallum, Cheng Huang, Rohan Gejji and Matt Wierman for their help towards the finer details of this project and their effort towards assisting me with presentation of the material. Finally I would like to thank my parents for their support, for I would not have the opportunity to work on this project if it were not for them. Thank you. iii TABLE OF CONTENTS Page LIST OF FIGURES ................................................................................................................. vii ABSTRACT ............................................................................................................................ xvi 1. INTRODUCTION ............................................................................................................. 1 1.1 Background ...................................................................................................................... 1 1.2 Objectives ........................................................................................................................ 2 1.3 Thesis Chapters Rundown ............................................................................................... 3 2. REVIEW ........................................................................................................................... 4 2.1 Ideal Gases ....................................................................................................................... 4 2.2 Combustion Instability and High Pressure Systems ........................................................ 6 2.2.1 Combustion Instabilities [4] ..................................................................................... 6 2.2.2 Screeching – Thermoacoustic Combustion Instabilities .......................................... 7 2.2.3 Heat Release Modes ................................................................................................. 8 2.3 Chemiluminescence and Chemistry ................................................................................ 9 2.3.1 Chemistry Mechanisms ............................................................................................ 9 2.3.2 Elementary Reactions [5] ......................................................................................... 9 2.3.3 Collision Theory ..................................................................................................... 10 2.3.4 Free Radicals .......................................................................................................... 12 2.3.5 Reaction Kinetics ................................................................................................... 13 iv Page 2.3.6 Exothermic Reactions ............................................................................................ 16 2.4 Detailed Chemical Kinetics Models .............................................................................. 17 2.4.1 GRI Mech 3.0 ......................................................................................................... 17 2.4.2 Reduced Chemical Kinetics Models ...................................................................... 18 2.4.3 Lifetimes of Chemiluminecence and Excited Species ........................................... 19 2.4.4 Chemical Kinetic Mechanism Augmentation for Excited Species ........................ 20 2.5 Use of Chemiluminescent Species in Reacting Flow .................................................... 21 2.5.1 Chemiluminescent Species Mechanism Models .................................................... 21 2.5.2 Chemiluminescent Species as Possible Quantifiable Markers of Flame Properties ......................................................................................................................................... 29 2.6 Spectroscopy .................................................................................................................. 32 2.6.1 Optics ..................................................................................................................... 32 2.6.2 Structure of Internal Energy Modes of Molecules ................................................. 39 2.6.3 Emission, Absorption and Stimulated Emission .................................................... 50 2.6.4 Spectra of Emissions .............................................................................................. 60 2.7 Specific Spectroscopic Data Regarding OH and CH .................................................... 62 3. APPROACH ................................................................................................................... 64 3.1 Experimental Setup........................................................................................................ 64 3.2 Optical Model ................................................................................................................ 67 3.2.1 Physical Mechanisms in Model .............................................................................. 68 3.2.2 Model Construction ................................................................................................ 76 3.2.3 Normalized Spectrum Line Profile Estimation ...................................................... 92 v Page 3.2.4 Numerical Considerations ...................................................................................... 96 3.3 Summary of Assumptions and Constants ...................................................................... 97 3.4 Model Verification Process ......................................................................................... 100 3.4.1 Example of Analytical Absorption Calculation ................................................... 100 3.4.2 Model Sensitivity ................................................................................................. 103 3.4.3 Error Estimates ..................................................................................................... 109 4. VERIFICATION DATA ............................................................................................... 111 4.1 Effect of Line Broadening on Signal Strength ............................................................ 111 4.2 Sensitivity Study .......................................................................................................... 113 4.2.1 Transmissivity with Respect to Number Density ................................................. 113 4.2.2 Sensitivity to Optical Path Length ....................................................................... 116 4.2.4 Sensitivity to Doppler Linewidth (Temperature) ................................................. 121 4.3 Error Estimation .......................................................................................................... 124 4.3.1 Data Initialisation from CFD ................................................................................ 124 4.3.2 Uncorrected Emission .......................................................................................... 125 4.3.3 Resultant Emission and Absorption ..................................................................... 127 4.3.4 Example Calculation of Error Propagation .......................................................... 129 5. RESULTS ....................................................................................................................