Adhesion of <I>Asaia</I> <I>Bogorensis</I> To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asaia Bogorensis Gen. Nov., Sp. Nov., an Unusual Acetic Acid Bacterium in the Α-Proteobacteria
International Journal of Systematic and Evolutionary Microbiology (2000) 50, 823–829 Printed in Great Britain Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria Yuzo Yamada,1 Kazushige Katsura,1 Hiroko Kawasaki,2 Yantyati Widyastuti,3 Susono Saono,3 Tatsuji Seki,2 Tai Uchimura1 and Kazuo Komagata1 Author for correspondence: Yuzo Yamada. Tel\Fax: j81 54 635 2316. 1 Laboratory of General and Eight Gram-negative, aerobic, rod-shaped and peritrichously flagellated strains Applied Microbiology, were isolated from flowers of the orchid tree (Bauhinia purpurea) and of Department of Applied Biology and Chemistry, plumbago (Plumbago auriculata), and from fermented glutinous rice, all Faculty of Applied collected in Indonesia. The enrichment culture approach for acetic acid bacteria Bioscience, Tokyo was employed, involving use of sorbitol medium at pH 35. All isolates grew University of Agriculture, Sakuragaoka 1-1-1, well at pH 30 and 30 SC. They did not oxidize ethanol to acetic acid except for Setagaya-ku, one strain that oxidized ethanol weakly, and 035% acetic acid inhibited their Tokoyo 156-8502, Japan growth completely. However, they oxidized acetate and lactate to carbon 2 The International Center dioxide and water. The isolates grew well on mannitol agar and on glutamate for Biotechnology, Osaka agar, and assimilated ammonium sulfate for growth on vitamin-free glucose University, Yamadaoka 2-1, Suita, Osaka 565-0871, medium. The isolates produced acid from D-glucose, D-fructose, L-sorbose, Japan dulcitol and glycerol. The quinone system was Q-10. DNA base composition 3 Research and ranged from 593to610 mol% GMC. -
Anti-Adhesion Activity of Mint (Mentha Piperita L.) Leaves Extract Against Beverage Spoilage Bacteria Asaia Spp
Biotechnology and Food Sciences Research article Anti-adhesion activity of mint (Mentha piperita L.) leaves extract against beverage spoilage bacteria Asaia spp. Hubert Antolak,* Agata Czyżowska, Dorota Kręgiel Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland *[email protected] Abstract: The production of a functional beverage, supplemented with fruit flavourings meets the problem of microbiological contamination. The most frequent source of such spoilage is the bacteria from the relatively newly discovered genus Asaia. It causes changes in organoleptic properties, creating turbidity, haziness and distinctive sour odour as well as biofilm on production lines which are responsible for secondary contamination of products. For this reason, new methods using natural preservatives are being developed to minimize this microbiological contamination. The application of some plant extracts as an additives in functional beverages production is presumed to have a beneficial effect on reducing adhesive abilities of the bacteria. The aim of this research was to investigate the effects of mint leaves extract on the Asaia lannensis and Asaia bogorensis adhesive abilities to polystyrene. The bacterial adhesion was analysed by means of plate count method and luminometric tests. Additionally, plant extract was subjected to high performance liquid chromatography (HPLC) analysis, in order to check polyphenols content. Results indicates that 10% (v/v) addition of mint extract significantly reduced Asaia spp. adhesion to polystyrene. Due to the presence of bioactive compounds in the used extract, it can be used as an additive to increase microbiological stability as well as health promoting values of beverages. Keywords: Asaia spp., mint extract, anti-adhesive properties, functional beverages. -
Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera
Microbiol. Cult. Coll. June 2003. p. 13 ─ 21 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera Koei Hamana1)*,Azusa Sakamoto1),Satomi Tachiyanagi1), Eri Terauchi1)and Mariko Takeuchi2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa-machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan 2)Institute for Fermentation, Osaka, 17 ─ 85, Juso-honmachi 2 ─ chome, Yodogawa-ku, Osaka, 532 ─ 8686, Japan Cellular polyamines of 41 newly validated or reclassified alpha proteobacteria belonging to 20 genera were analyzed by HPLC. Acetic acid bacteria belonging to the new genus Asaia and the genera Gluconobacter, Gluconacetobacter, Acetobacter and Acidomonas of the alpha ─ 1 sub- group ubiquitously contained spermidine as the major polyamine. Aerobic bacteriochlorophyll a ─ containing Acidisphaera, Craurococcus and Paracraurococcus(alpha ─ 1)and Roseibium (alpha-2)contained spermidine and lacked homospermidine. New Rhizobium species, including some species transferred from the genera Agrobacterium and Allorhizobium, and new Sinorhizobium and Mesorhizobium species of the alpha ─ 2 subgroup contained homospermidine as a major polyamine. Homospermidine was the major polyamine in the genera Oligotropha, Carbophilus, Zavarzinia, Blastobacter, Starkeya and Rhodoblastus of the alpha ─ 2 subgroup. Rhodobaca bogoriensis of the alpha ─ 3 subgroup contained spermidine. Within the alpha ─ 4 sub- group, the genus Sphingomonas has been divided into four clusters, and species of the emended Sphingomonas(cluster I)contained homospermidine whereas those of the three newly described genera Sphingobium, Novosphingobium and Sphingopyxis(corresponding to clusters II, III and IV of the former Sphingomonas)ubiquitously contained spermidine. -
Asaia, a Versatile Acetic Acid Bacterial Symbiont, Capable of Cross-Colonizing Insects of Phylogenetically
Environmental Microbiology (2009) 11(12), 3252–3264 doi:10.1111/j.1462-2920.2009.02048.x Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and ordersemi_2048 3252..3264 Elena Crotti,1§ Claudia Damiani,2§ Massimo Pajoro,3§ malaria mosquito vector Anopheles stephensi, is also Elena Gonella,3§ Aurora Rizzi,1 Irene Ricci,2 present in, and capable of cross-colonizing other Ilaria Negri,3 Patrizia Scuppa,2 Paolo Rossi,2 sugar-feeding insects of phylogenetically distant Patrizia Ballarini,4 Noura Raddadi,1,3† genera and orders. PCR, real-time PCR and in situ Massimo Marzorati,1‡ Luciano Sacchi,5 hybridization experiments showed Asaia in the body Emanuela Clementi,5 Marco Genchi,5 of the mosquito Aedes aegypti and the leafhopper Mauro Mandrioli,6 Claudio Bandi,7 Guido Favia,2 Scaphoideus titanus, vectors of human viruses Alberto Alma3 and Daniele Daffonchio1* and a grapevine phytoplasma respectively. Cross- 1Dipartimento di Scienze e Tecnologie Alimentari e colonization patterns of the body of Ae. aegypti, Microbiologiche, Università degli Studi di Milano, 20133 An. stephensi and S. titanus have been documented Milan, Italy. with Asaia strains isolated from An. stephensi 2Dipartimento di Medicina Sperimentale e Sanità or Ae. aegypti, and labelled with plasmid- or Pubblica, Università degli Studi di Camerino, 62032 chromosome-encoded fluorescent proteins (Gfp and Camerino, Italy. DsRed respectively). Fluorescence and confocal 3Dipartimento di Valorizzazione e Protezione delle microscopy showed that Asaia, administered with the Risorse Agroforestali, Università degli Studi di Torino, sugar meal, efficiently colonized guts, male and female 10095 Turin, Italy. reproductive systems and the salivary glands. -
Genome Features of Asaia Sp. W12 Isolated from the Mosquito Anopheles Stephensi Reveal Symbiotic Traits
G C A T T A C G G C A T genes Article Genome Features of Asaia sp. W12 Isolated from the Mosquito Anopheles stephensi Reveal Symbiotic Traits Shicheng Chen 1,* , Ting Yu 2, Nicolas Terrapon 3,4 , Bernard Henrissat 3,4,5 and Edward D. Walker 6 1 Department of Clinical and Diagnostic Sciences, School of Health Sciences, Oakland University, 433 Meadowbrook Road, Rochester, MI 48309, USA 2 Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] 3 Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), UMR 7257, 13288 Marseille, France; [email protected] (N.T.); [email protected] (B.H.) 4 Institut National de la Recherche Agronomique (INRA), USC AFMB, 1408 Marseille, France 5 Department of Biological Sciences, King Abdulaziz University, Jeddah 21412, Saudi Arabia 6 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-248-364-8662 Abstract: Asaia bacteria commonly comprise part of the microbiome of many mosquito species in the genera Anopheles and Aedes, including important vectors of infectious agents. Their close association with multiple organs and tissues of their mosquito hosts enhances the potential for paratransgenesis for the delivery of antimalaria or antivirus effectors. The molecular mechanisms involved in the interactions between Asaia and mosquito hosts, as well as Asaia and other bacterial members of the mosquito microbiome, remain underexplored. Here, we determined the genome sequence of Asaia strain W12 isolated from Anopheles stephensi mosquitoes, compared it to other Asaia species associated Citation: Chen, S.; Yu, T.; Terrapon, with plants or insects, and investigated the properties of the bacteria relevant to their symbiosis N.; Henrissat, B.; Walker, E.D. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Asaia Spp., Acetic Acid Bacteria Causing the Spoilage of Non-Alcoholic Beverages
Kvasny prumysl (2019) 65:1-5 https://doi.org/10.18832/kp2019.65.1 Research Institute of Brewing anf Malting, Plc. Asaia spp., acetic acid bacteria causing the spoilage of non-alcoholic beverages Iveta Šístková*, Iveta Horsáková, Mariana Hanková, Helena CížkovᡠDepartment of Food Preservation, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic *Corresponding author :[email protected] Abstract After a general introduction and introduction to acetic acid bacteria, this work focuses on the genus Asaia, which causes sensory defects in non-alcoholic beverages. Asaia representatives have strong adhesive properties for materials used in the food industry, where they subsequently form biofilms and are highly resistant to chemical preservatives. After the basic characteristics of the genus Asaia and its influence on humans, the main part of the paper deals with microbial contami- nation of beverages by these bacteria. The paper summarizes the knowledge of the influence of packaging materials on the development of defects in beverages and the use of natural bioactive substances and plant extracts as an alternative to maintaining the microbiological stability of beverages. Key words: Asaia spp., soft drinks, sensory defect 1. Introduction and succinic acids, acetaldehyde and ketone compounds. Final products depend on the type of bacteria and the Acetic acid bacteria (AAB) get their name because of growth conditions (Juvonen et al., 2011). No glycolysis is their ability to oxidize ethanol to acetic acid (except the performed due to the lack of phosphofructokinase enzyme. Asaia genus), which is used in the industry for the pro- AAB were isolated from plants, fruits, fermented foods duction of vinegar and other compounds such as L-ascorbic and beverages, or insects (Crotti et al., 2010). -
Research Article Rodents As Hosts of Pathogens and Related Zoonotic Disease Risk Handi DAHMANA1, 2, Laurent GRANJON3, Christop
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 February 2020 doi:10.20944/preprints202002.0153.v1 Peer-reviewed version available at Pathogens 2020, 9, 202; doi:10.3390/pathogens9030202 1 Research article 2 Rodents as hosts of pathogens and related zoonotic disease risk 3 4 Handi DAHMANA1, 2, Laurent GRANJON3, Christophe DIAGNE3, Bernard DAVOUST1, 2, 5 Florence FENOLLAR2,4, Oleg MEDIANNIKOV1, 2* 6 1 Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France 7 2 IHU-Méditerranée Infection, Marseille, France 8 3 CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France 9 4 Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France 10 11 Corresponding author: Oleg MEDIANNIKOV 12 Address: MEPHI, IRD, APHM, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13 13385 Marseille Cedex 05 14 Tel : +33 (0)4 13 73 24 01, Fax: +33 (0)4 13 73 24 02, E-mail: [email protected]. Code de champ modifié 15 16 17 Word abstract count : 230 18 Word text count: 5,720 19 1 © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 February 2020 doi:10.20944/preprints202002.0153.v1 Peer-reviewed version available at Pathogens 2020, 9, 202; doi:10.3390/pathogens9030202 20 Abstract 21 Rodents are known to be reservoir hosts for at least 60 zoonotic diseases and are 22 known to play an important role in their transmission and spreading in different ways. We 23 sampled different rodent communities within and around human settlements in Northern 24 Senegal, an area subjected to major environmental transformations associated with global 25 changes. -
Chemosynthetic Symbiont with a Drastically Reduced Genome Serves As Primary Energy Storage in the Marine Flatworm Paracatenula
Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula Oliver Jäcklea, Brandon K. B. Seaha, Målin Tietjena, Nikolaus Leischa, Manuel Liebekea, Manuel Kleinerb,c, Jasmine S. Berga,d, and Harald R. Gruber-Vodickaa,1 aMax Planck Institute for Marine Microbiology, 28359 Bremen, Germany; bDepartment of Geoscience, University of Calgary, AB T2N 1N4, Canada; cDepartment of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695; and dInstitut de Minéralogie, Physique des Matériaux et Cosmochimie, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 1, 2019 (received for review November 7, 2018) Hosts of chemoautotrophic bacteria typically have much higher thrive in both free-living environmental and symbiotic states, it is biomass than their symbionts and consume symbiont cells for difficult to attribute their genomic features to either functions nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria they provide to their host, or traits that are necessary for envi- symbionts in mouthless Paracatenula flatworms comprise up to ronmental survival or to both. half of the biomass of the consortium. Each species of Paracate- The smallest genomes of chemoautotrophic symbionts have nula harbors a specific Ca. Riegeria, and the endosymbionts have been observed for the gammaproteobacterial symbionts of ves- been vertically transmitted for at least 500 million years. Such icomyid clams that are directly transmitted between host genera- prolonged strict vertical transmission leads to streamlining of sym- tions (13, 14). Such strict vertical transmission leads to substantial biont genomes, and the retained physiological capacities reveal and ongoing genome reduction. -
Download E-Book (PDF)
African Journal of Microbiology Research Volume 11 Number 29 7 August, 2017 ISSN 1996-0808 The African Journal of Microbiology Research (AJMR) is published weekly (one volume per year) by Academic Journals. provides rapid publication (weekly) of articles in all areas of Microbiology such as: Environmental Microbiology, Clinical Microbiology, Immunology, Virology, Bacteriology, Phycology, Mycology and Parasitology, Protozoology, Microbial Ecology, Probiotics and Prebiotics, Molecular Microbiology, Biotechnology, Food Microbiology, Industrial Microbiology, Cell Physiology, Environmental Biotechnology, Genetics, Enzymology, Molecular and Cellular Biology, Plant Pathology, Entomology, Biomedical Sciences, Botany and Plant Sciences, Soil and Environmental Sciences, Zoology, Endocrinology, Toxicology. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed. Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/AJMR Submit manuscript online http://ms.academicjournals.me/ Editors Prof. Stefan Schmidt Dr. Thaddeus Ezeji Applied and Environmental Microbiology Fermentation and Biotechnology Unit Department of Animal Sciences School of Biochemistry, Genetics and Microbiology The Ohio State University University of KwaZulu-Natal USA. Pietermaritzburg, South Africa. Dr. Mamadou Gueye Prof. Fukai Bao MIRCEN/Laboratoire -
Knockout of Anopheles Stephensi Immune Gene LRIM1 by CRISPR-Cas9 Reveals Its Unexpected Role in Reproduction and Vector Competen
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.02.450840; this version posted July 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals 2 its unexpected role in reproduction and vector competence 3 Ehud Inbar1, Abraham G. Eappen1, Robert T. Alford2, William Reid1*, Robert A. Harrell2, Maryam 4 Hosseini1, Sumana Chakravarty 1, Tao Li1, B. Kim Lee Sim1, Peter F. Billingsley1 and Stephen L. Hoffman1& 5 1Sanaria Inc. Rockville, MD 20850. 2Insect Transformation Facility, Institute for Bioscience and 6 Biotechnology Research, University of Maryland, Rockville, MD 20850. 7 *Current address: Dept. Veterinary Pathobiology, University of Missouri, Columbia MO 65211. 8 &Correspondence and requests for materials should be addressed to Stephen L. Hoffman 9 10 Abstract 11 PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) 12 manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response 13 genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ 14 development (sporogony) in mosquitoes by supporting melanization and phagocytosis of 15 ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi 16 LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 17 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome 18 composition, including elimination of commensal acetic acid bacteria. -
Acetobacteraceae Sp., Strain AT-5844 Catalog No
Product Information Sheet for HM-648 Acetobacteraceae sp., Strain AT-5844 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-648 Growth Conditions: For research use only. Not for human use. Media: Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% sheep blood or Chocolate agar or Carey-Ann Burnham, Ph.D., Medical Director of equivalent Microbiology, Department of Pediatrics, Washington Incubation: University School of Medicine, St. Louis, Missouri, USA Temperature: 35°C Atmosphere: Aerobic with 5% CO2 Manufacturer: Propagation: BEI Resources 1. Keep vial frozen until ready for use, then thaw. 2. Transfer the entire thawed aliquot into a single tube of Product Description: broth. Bacteria Classification: Rhodospirillales, Acetobacteraceae 3. Use several drops of the suspension to inoculate an agar Species: Acetobacteraceae sp. slant and/or plate. Strain: AT-5844 4. Incubate the tube, slant and/or plate at 35°C for 18-24 Original Source: Acetobacteraceae sp., strain AT-5844 was hours. isolated at the St. Louis Children’s Hospital in Missouri, USA, on May 28, 2010, from a leg wound infection of a Citation: human patient that was stepped on by a bull.1 Acknowledgment for publications should read “The following Comments: Acetobacteraceae sp., strain AT-5844 (HMP ID reagent was obtained through BEI Resources, NIAID, NIH as 9946) is a reference genome for The Human Microbiome part of the Human Microbiome Project: Acetobacteraceae Project (HMP). HMP is an initiative to identify and sp., Strain AT-5844, HM-648.” characterize human microbial flora.