Asaia, a Versatile Acetic Acid Bacterial Symbiont, Capable of Cross-Colonizing Insects of Phylogenetically

Total Page:16

File Type:pdf, Size:1020Kb

Asaia, a Versatile Acetic Acid Bacterial Symbiont, Capable of Cross-Colonizing Insects of Phylogenetically Environmental Microbiology (2009) 11(12), 3252–3264 doi:10.1111/j.1462-2920.2009.02048.x Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and ordersemi_2048 3252..3264 Elena Crotti,1§ Claudia Damiani,2§ Massimo Pajoro,3§ malaria mosquito vector Anopheles stephensi, is also Elena Gonella,3§ Aurora Rizzi,1 Irene Ricci,2 present in, and capable of cross-colonizing other Ilaria Negri,3 Patrizia Scuppa,2 Paolo Rossi,2 sugar-feeding insects of phylogenetically distant Patrizia Ballarini,4 Noura Raddadi,1,3† genera and orders. PCR, real-time PCR and in situ Massimo Marzorati,1‡ Luciano Sacchi,5 hybridization experiments showed Asaia in the body Emanuela Clementi,5 Marco Genchi,5 of the mosquito Aedes aegypti and the leafhopper Mauro Mandrioli,6 Claudio Bandi,7 Guido Favia,2 Scaphoideus titanus, vectors of human viruses Alberto Alma3 and Daniele Daffonchio1* and a grapevine phytoplasma respectively. Cross- 1Dipartimento di Scienze e Tecnologie Alimentari e colonization patterns of the body of Ae. aegypti, Microbiologiche, Università degli Studi di Milano, 20133 An. stephensi and S. titanus have been documented Milan, Italy. with Asaia strains isolated from An. stephensi 2Dipartimento di Medicina Sperimentale e Sanità or Ae. aegypti, and labelled with plasmid- or Pubblica, Università degli Studi di Camerino, 62032 chromosome-encoded fluorescent proteins (Gfp and Camerino, Italy. DsRed respectively). Fluorescence and confocal 3Dipartimento di Valorizzazione e Protezione delle microscopy showed that Asaia, administered with the Risorse Agroforestali, Università degli Studi di Torino, sugar meal, efficiently colonized guts, male and female 10095 Turin, Italy. reproductive systems and the salivary glands. The 4Dipartimento di Biologia Molecolare, Cellulare ed ability in cross-colonizing insects of phylogenetically Animale, Università degli Studi di Camerino, 62032 distant orders indicated that Asaia adopts body inva- Camerino, Italy. sion mechanisms independent from host-specific bio- 5Dipartimento di Biologia Animale, Università degli Studi logical characteristics. This versatility is an important di Pavia, 27100 Pavia, Italy. property for the development of symbiont-based 6Dipartimento di Biologia Animale, Università degli Studi control of different vector-borne diseases. di Modena e Reggio Emilia, 41125 Modena, Italy. 7Dipartimento di Patologia Animale, Igiene e Sanità Introduction Pubblica Veterinaria, Università degli Studi di Milano, 20133 Milan, Italy. Microorganisms play crucial roles in the biology and life cycle of most arthropod species, affecting nutrition, devel- opment, reproduction, immunity, defence against natural Summary enemies and speciation (Dale and Moran, 2006; Moran, Bacterial symbionts of insects have been proposed for 2006; Feldhaar and Gross, 2009). Animal symbioses are blocking transmission of vector-borne pathogens. categorized according to the extent of dependence However, in many vector models the ecology of sym- between the host and the symbiont, which generally bionts and their capability of cross-colonizing differ- depends on evolutionary antiquity of the symbiosis. While ent hosts, an important feature in the symbiotic control obligate primary symbionts are essential for the host sur- approach, is poorly known. Here we show that the vival and/or reproduction, secondary symbionts are facul- acetic acid bacterium Asaia, previously found in the tative and thought to be of more recent acquisition, even though they can contribute to the fitness of the host, e.g. conferring resistance to parasites (Dale and Moran, Received 22 December, 2008; accepted 31 July, 2009. *For correspondence. E-mail [email protected]; Tel. (+39) 2006). Most primary symbionts are vertically transmitted 250319117; Fax (+39) 250319238. Present addresses: †Dipartimento to the progeny with a process starting at early stages of di Valorizzazione e Protezione delle Risorse Agroforestali, Università oogenesis or embryogenesis. Vertical transmission is degli Studi di Torino, 10095 Turin, Italy; ‡Laboratory for Microbial Ecology and Technology (LabMET), Ghent University, B9000 Ghent, common also in secondary symbionts, but they can also Belgium. §These authors contributed equally to this work. colonize novel hosts through horizontal transmission © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd Asaia cross-colonization of different insects 3253 among host individuals belonging to the same or different bacterium in other insect vectors (i.e. other Anopheles species (Dale and Moran, 2006). species and S. titanus) raise the question of whether, and Representatives from the group of the acetic acid bac- to which extent, this bacterium can cross-colonize differ- teria (AAB), e.g. Acetobacter, Gluconacetobacter and ent insect hosts. This capacity would allow investigating Gluconobacter, have recently been demonstrated to be the basis of host–symbiont specific interaction and could naturally associated, not only with plants (Kommanee be very promising towards the development of Asaia- et al., 2008), but also with insects, such as the fruit fly based symbiotic control approaches to block parasite Drosophila melanogaster (Corby-Harris et al., 2007; Cox transmission by insect vectors. A high specificity of the and Gilmore, 2007; Ren et al., 2007; Ryu et al., 2008), the host–symbiont interaction characterizes primary sym- olive fly Bactrocera oleae (Kounatidis et al., 2009), the bionts that are vertically transmitted to the progeny but are honeybee Apis mellifera (Jeyaprakash et al., 2003; Mohr not cultivable. This hampers their use for symbiotic and Tebbe, 2006; Babendreier et al., 2007) and the pink control. On the other hand, secondary symbionts include sugarcane mealybug Saccharococcus sacchari (Ashbolt culturable microorganisms that are transmitted both ver- and Inkerman, 1990). Cox and Gilmore (2007) found that tically and horizontally. For symbiotic control applications, in D. melanogaster, Acetobacter was one of the most multiple transmission routes and broad host range carry abundant genera accounting for 29% of all phylotypes. some potential risks regarding biosafety of the biocontrol The detection of AAB in the above insects, all having plant symbiotic microorganism, as well as opportunities for a materials and sugar-rich matrices as food sources, successful disease transmission control. The more the suggests that these bacteria might play roles in food transmission routes, the higher the chances of success exploitation. are. In addition, if a symbiont is present in many different Among AAB, the genus Asaia differentiates because it hosts, the chances of environmental spread and horizon- does not (or weakly) oxidize ethanol to acetic acid. tal transmission to the target species are higher. In this Besides tropical plants, where it was originally isolated work, the capacity of Asaia symbionts to cross-colonize (Yamada et al., 2000; Katsura et al., 2001; Yukphan et al., insects of phylogenetically distant orders, like Diptera and 2004; Malimas et al., 2008), Asaia has thus far been Hemiptera, has been evaluated by using as models found associated with few insect species. These include An. stephensi and Aedes aegypti (Diptera) and S. titanus the hemipteran Scaphoideus titanus, the leafhopper (Hemiptera). We chose these species according to their vector of the phytoplasma causing Flavescence Dorée, a evolutionary distance, one, Ae. aegypty, phylogenetically severe disease of grapevine (Marzorati et al., 2006), and close to An. stephensi, the other, S. titanus, much more three mosquito vectors of malaria, Anopheles stephensi, distant. The presence of Asaia and the ability to cross- Anopheles maculipennis and Anopheles gambiae. Asaia colonize organs and tissues of these insects were has been found stably associated with larvae and adults assessed by in situ hybridization, quantitative real-time of An. stephensi, dominating the microbiota of the mos- PCR and cultivation, and by in vivo studies with Asaia quito (Favia et al., 2007). The distribution of Asaia in the strains labelled with Gfp or DsRed fluorescent proteins body of An. stephensi has been investigated by the use of after isolation from An. stephensi (Favia et al., 2007) and a strain, previously isolated from the mosquito, after Ae. aegypti. genetic modification to express a green fluorescent protein (Gfp). The Gfp-tagged strain efficiently colonized Results the gut, salivary glands and male and female reproductive Detection of Asaia in Ae. aegypti and S. titanus organs. It is noteworthy that Asaia, after assumption with a sugar-based diet by females, was detected in the gut Electron microscopy observations on midgut sections of and then in the salivary glands of the insect, crucial Ae. aegypti and S. titanus individuals (Fig. 1) allowed us organs for the development of the cycle of the malaria to observe bacterial cells resembling Asaia in both parasites Plasmodium spp. (Favia et al., 2007). By using insects. Figure 1A shows a portion of the midgut of Ae. fluorescent strains it was shown that, in An. stephensi, aegypti filled with bacteria, embedded in an extracellular Asaia is vertically transmitted from the mother to offspring matrix, whose morphology is very similar to that already (Favia et al., 2007), but also undergoes paternal transmis- reported for Asaia in An. stephensi (Favia et al., 2007). sion to the progeny, by the way of venereal transfer from Two morphological signatures, i.e. a
Recommended publications
  • Investigation of Bacteria Associated with Australian Wine Grapes Using Cultural and Molecular Methods
    Investigation of bacteria associated with Australian wine grapes using cultural and molecular methods Sung Sook Bae A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of New South Wales Food Science and Technology School of Chemical Engineering and Industrial Chemistry Sydney, Australia 2005 i DECLARATION I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of materials which have been accepted for the award of any other degree or diploma at UNSW or any other education institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. Sung Sook Bae ii ACKNOWLEDGEMENTS I owe a tremendous debt of gratitude to numerous individuals who have contributed to the completion of this work, and I wish to thank them for their contribution. Firstly and foremost, my sincere appreciation goes to my supervisor, Professor Graham Fleet. He has given me his time, expertise, constant guidance and inspiration throughout my study. I also would like to thank my co-supervisor, Dr. Gillian Heard for her moral support and words of encouragement. I am very grateful to the Australian Grape and Wine Research Development and Corporation (GWRDC) for providing funds for this research.
    [Show full text]
  • Adhesion of <I>Asaia</I> <I>Bogorensis</I> To
    1186 Journal of Food Protection, Vol. 78, No. 6, 2015, Pages 1186–1190 doi:10.4315/0362-028X.JFP-14-440 Copyright G, International Association for Food Protection Research Note Adhesion of Asaia bogorensis to Glass and Polystyrene in the Presence of Cranberry Juice HUBERT ANTOLAK,* DOROTA KREGIEL, AND AGATA CZYZOWSKA Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland MS 14-440: Received 10 September 2014/Accepted 29 January 2015 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/78/6/1186/1686447/0362-028x_jfp-14-440.pdf by guest on 02 October 2021 ABSTRACT The aim of the study was to evaluate the adhesion abilities of the acetic acid bacterium Asaia bogorensis to glass and polystyrene in the presence of American cranberry (Vaccinium macrocarpon) juice. The strain of A. bogorensis used was isolated from spoiled commercial fruit-flavored drinking water. The cranberry juice was analyzed for polyphenols, organic acids, and carbohydrates using high-performance liquid chromatography and liquid chromatography–mass spectrometry techniques. The adhesive abilities of bacterial cells in culture medium supplemented with cranberry juice were determined using luminometry and microscopy. The viability of adhered and planktonic bacterial cells was determined by the plate count method, and the relative adhesion coefficient was calculated. This strain of A. bogorensis was characterized by strong adhesion properties that were dependent upon the type of surface. The highest level of cell adhesion was found on the polystyrene. However, in the presence of 10% cranberry juice, attachment of bacterial cells was three times lower. Chemical analysis of juice revealed the presence of sugars, organic acids, and anthocyanins, which were identified as galactosides, glucosides, and arabinosides of cyanidin and peonidin.
    [Show full text]
  • Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera
    Microbiol. Cult. Coll. June 2003. p. 13 ─ 21 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera Koei Hamana1)*,Azusa Sakamoto1),Satomi Tachiyanagi1), Eri Terauchi1)and Mariko Takeuchi2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa-machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan 2)Institute for Fermentation, Osaka, 17 ─ 85, Juso-honmachi 2 ─ chome, Yodogawa-ku, Osaka, 532 ─ 8686, Japan Cellular polyamines of 41 newly validated or reclassified alpha proteobacteria belonging to 20 genera were analyzed by HPLC. Acetic acid bacteria belonging to the new genus Asaia and the genera Gluconobacter, Gluconacetobacter, Acetobacter and Acidomonas of the alpha ─ 1 sub- group ubiquitously contained spermidine as the major polyamine. Aerobic bacteriochlorophyll a ─ containing Acidisphaera, Craurococcus and Paracraurococcus(alpha ─ 1)and Roseibium (alpha-2)contained spermidine and lacked homospermidine. New Rhizobium species, including some species transferred from the genera Agrobacterium and Allorhizobium, and new Sinorhizobium and Mesorhizobium species of the alpha ─ 2 subgroup contained homospermidine as a major polyamine. Homospermidine was the major polyamine in the genera Oligotropha, Carbophilus, Zavarzinia, Blastobacter, Starkeya and Rhodoblastus of the alpha ─ 2 subgroup. Rhodobaca bogoriensis of the alpha ─ 3 subgroup contained spermidine. Within the alpha ─ 4 sub- group, the genus Sphingomonas has been divided into four clusters, and species of the emended Sphingomonas(cluster I)contained homospermidine whereas those of the three newly described genera Sphingobium, Novosphingobium and Sphingopyxis(corresponding to clusters II, III and IV of the former Sphingomonas)ubiquitously contained spermidine.
    [Show full text]
  • Genome Features of Asaia Sp. W12 Isolated from the Mosquito Anopheles Stephensi Reveal Symbiotic Traits
    G C A T T A C G G C A T genes Article Genome Features of Asaia sp. W12 Isolated from the Mosquito Anopheles stephensi Reveal Symbiotic Traits Shicheng Chen 1,* , Ting Yu 2, Nicolas Terrapon 3,4 , Bernard Henrissat 3,4,5 and Edward D. Walker 6 1 Department of Clinical and Diagnostic Sciences, School of Health Sciences, Oakland University, 433 Meadowbrook Road, Rochester, MI 48309, USA 2 Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] 3 Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), UMR 7257, 13288 Marseille, France; [email protected] (N.T.); [email protected] (B.H.) 4 Institut National de la Recherche Agronomique (INRA), USC AFMB, 1408 Marseille, France 5 Department of Biological Sciences, King Abdulaziz University, Jeddah 21412, Saudi Arabia 6 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-248-364-8662 Abstract: Asaia bacteria commonly comprise part of the microbiome of many mosquito species in the genera Anopheles and Aedes, including important vectors of infectious agents. Their close association with multiple organs and tissues of their mosquito hosts enhances the potential for paratransgenesis for the delivery of antimalaria or antivirus effectors. The molecular mechanisms involved in the interactions between Asaia and mosquito hosts, as well as Asaia and other bacterial members of the mosquito microbiome, remain underexplored. Here, we determined the genome sequence of Asaia strain W12 isolated from Anopheles stephensi mosquitoes, compared it to other Asaia species associated Citation: Chen, S.; Yu, T.; Terrapon, with plants or insects, and investigated the properties of the bacteria relevant to their symbiosis N.; Henrissat, B.; Walker, E.D.
    [Show full text]
  • Asaia Spp., Acetic Acid Bacteria Causing the Spoilage of Non-Alcoholic Beverages
    Kvasny prumysl (2019) 65:1-5 https://doi.org/10.18832/kp2019.65.1 Research Institute of Brewing anf Malting, Plc. Asaia spp., acetic acid bacteria causing the spoilage of non-alcoholic beverages Iveta Šístková*, Iveta Horsáková, Mariana Hanková, Helena CížkovᡠDepartment of Food Preservation, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic *Corresponding author :[email protected] Abstract After a general introduction and introduction to acetic acid bacteria, this work focuses on the genus Asaia, which causes sensory defects in non-alcoholic beverages. Asaia representatives have strong adhesive properties for materials used in the food industry, where they subsequently form biofilms and are highly resistant to chemical preservatives. After the basic characteristics of the genus Asaia and its influence on humans, the main part of the paper deals with microbial contami- nation of beverages by these bacteria. The paper summarizes the knowledge of the influence of packaging materials on the development of defects in beverages and the use of natural bioactive substances and plant extracts as an alternative to maintaining the microbiological stability of beverages. Key words: Asaia spp., soft drinks, sensory defect 1. Introduction and succinic acids, acetaldehyde and ketone compounds. Final products depend on the type of bacteria and the Acetic acid bacteria (AAB) get their name because of growth conditions (Juvonen et al., 2011). No glycolysis is their ability to oxidize ethanol to acetic acid (except the performed due to the lack of phosphofructokinase enzyme. Asaia genus), which is used in the industry for the pro- AAB were isolated from plants, fruits, fermented foods duction of vinegar and other compounds such as L-ascorbic and beverages, or insects (Crotti et al., 2010).
    [Show full text]
  • Chemosynthetic Symbiont with a Drastically Reduced Genome Serves As Primary Energy Storage in the Marine Flatworm Paracatenula
    Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula Oliver Jäcklea, Brandon K. B. Seaha, Målin Tietjena, Nikolaus Leischa, Manuel Liebekea, Manuel Kleinerb,c, Jasmine S. Berga,d, and Harald R. Gruber-Vodickaa,1 aMax Planck Institute for Marine Microbiology, 28359 Bremen, Germany; bDepartment of Geoscience, University of Calgary, AB T2N 1N4, Canada; cDepartment of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695; and dInstitut de Minéralogie, Physique des Matériaux et Cosmochimie, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 1, 2019 (received for review November 7, 2018) Hosts of chemoautotrophic bacteria typically have much higher thrive in both free-living environmental and symbiotic states, it is biomass than their symbionts and consume symbiont cells for difficult to attribute their genomic features to either functions nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria they provide to their host, or traits that are necessary for envi- symbionts in mouthless Paracatenula flatworms comprise up to ronmental survival or to both. half of the biomass of the consortium. Each species of Paracate- The smallest genomes of chemoautotrophic symbionts have nula harbors a specific Ca. Riegeria, and the endosymbionts have been observed for the gammaproteobacterial symbionts of ves- been vertically transmitted for at least 500 million years. Such icomyid clams that are directly transmitted between host genera- prolonged strict vertical transmission leads to streamlining of sym- tions (13, 14). Such strict vertical transmission leads to substantial biont genomes, and the retained physiological capacities reveal and ongoing genome reduction.
    [Show full text]
  • Knockout of Anopheles Stephensi Immune Gene LRIM1 by CRISPR-Cas9 Reveals Its Unexpected Role in Reproduction and Vector Competen
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.02.450840; this version posted July 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals 2 its unexpected role in reproduction and vector competence 3 Ehud Inbar1, Abraham G. Eappen1, Robert T. Alford2, William Reid1*, Robert A. Harrell2, Maryam 4 Hosseini1, Sumana Chakravarty 1, Tao Li1, B. Kim Lee Sim1, Peter F. Billingsley1 and Stephen L. Hoffman1& 5 1Sanaria Inc. Rockville, MD 20850. 2Insect Transformation Facility, Institute for Bioscience and 6 Biotechnology Research, University of Maryland, Rockville, MD 20850. 7 *Current address: Dept. Veterinary Pathobiology, University of Missouri, Columbia MO 65211. 8 &Correspondence and requests for materials should be addressed to Stephen L. Hoffman 9 10 Abstract 11 PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) 12 manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response 13 genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ 14 development (sporogony) in mosquitoes by supporting melanization and phagocytosis of 15 ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi 16 LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 17 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome 18 composition, including elimination of commensal acetic acid bacteria.
    [Show full text]
  • Acetobacteraceae Sp., Strain AT-5844 Catalog No
    Product Information Sheet for HM-648 Acetobacteraceae sp., Strain AT-5844 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-648 Growth Conditions: For research use only. Not for human use. Media: Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% sheep blood or Chocolate agar or Carey-Ann Burnham, Ph.D., Medical Director of equivalent Microbiology, Department of Pediatrics, Washington Incubation: University School of Medicine, St. Louis, Missouri, USA Temperature: 35°C Atmosphere: Aerobic with 5% CO2 Manufacturer: Propagation: BEI Resources 1. Keep vial frozen until ready for use, then thaw. 2. Transfer the entire thawed aliquot into a single tube of Product Description: broth. Bacteria Classification: Rhodospirillales, Acetobacteraceae 3. Use several drops of the suspension to inoculate an agar Species: Acetobacteraceae sp. slant and/or plate. Strain: AT-5844 4. Incubate the tube, slant and/or plate at 35°C for 18-24 Original Source: Acetobacteraceae sp., strain AT-5844 was hours. isolated at the St. Louis Children’s Hospital in Missouri, USA, on May 28, 2010, from a leg wound infection of a Citation: human patient that was stepped on by a bull.1 Acknowledgment for publications should read “The following Comments: Acetobacteraceae sp., strain AT-5844 (HMP ID reagent was obtained through BEI Resources, NIAID, NIH as 9946) is a reference genome for The Human Microbiome part of the Human Microbiome Project: Acetobacteraceae Project (HMP). HMP is an initiative to identify and sp., Strain AT-5844, HM-648.” characterize human microbial flora.
    [Show full text]
  • Caracterización De Bacterias Del Ácido Acético Destinadas a La Producción De Vinagres De Frutas
    Departamento de Tecnología de Alimentos CARACTERIZACIÓN DE BACTERIAS DEL ÁCIDO ACÉTICO DESTINADAS A LA PRODUCCIÓN DE VINAGRES DE FRUTAS TESIS DOCTORAL Presentada por: Liliana Mabel Gerard Dirigida por: Dra. María Mercedes Ferreyra Dra. María Inmaculada Álvarez Cano Diciembre 2015 Dedico esta Tesis a mis padres. Ellos me ensañaron que para lograr los objetivos planteados es necesario dedicarse con esfuerzo, sacrificio, constancia y fuerza de voluntad. AGRADECIMIENTOS Agradezco especialmente a las instituciones que me brindaron la posibilidad de continuar mi formación profesional a través del Programa de Doctorado en Ciencia, Tecnología y Gestión Alimentaria: la Universidad Nacional de Entre Ríos y la Universidad Politécnica de Valencia. A la Facultad de Ciencias de la Alimentación que me brindó las instalaciones y las herramientas para que pudiera desarrollar mi Tesis Doctoral. A mis Directoras: la Dra. María Mercedes Ferreyra; muchas gracias Mercedes por tu dedicación y paciencia, tus consejos y tus enseñanzas; y a la Dra. María Inmaculada Álvarez Cano, que a la distancia, dedicó horas de su descanso para leer y corregir capítulo a capítulo esta Tesis. A mi familia: a mi esposo Maximiliano y mis hijos: Giuliana, Ignacio y Gino, que a pesar de todo, me alentaron a seguir adelante. Siempre repetían: Shhh! mamá está estudiando…. A mi amiga y compañera de ruta Cristina, siempre dispuesta a escuchar, a dar consejos, siempre con la palabra justa. Recorrimos este largo camino juntas, nos acompañamos en los logros y en los fracasos, compartimos muchas alegrías y también “bajones”, esperando “la otra vida al final del camino”. ¡Gracias Cris por ser mi amiga! A vos Petty, mi mamá del corazón, siempre disponible para cuidar mis hijos, tus nietos.
    [Show full text]
  • Swaminathania Salitolerans Gen. Nov., Sp. Nov., a Salt-Tolerant, Nitrogen-fixing and Phosphate-Solubilizing Bacterium from Wild Rice (Porteresia Coarctata Tateoka)
    International Journal of Systematic and Evolutionary Microbiology (2004), 54, 1185–1190 DOI 10.1099/ijs.0.02817-0 Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka) P. Loganathan and Sudha Nair Correspondence M. S. Swaminathan Research Foundation, 111 Cross St, Tharamani Institutional Area, Chennai, Sudha Nair Madras 600 113, India [email protected] A novel species, Swaminathania salitolerans gen. nov., sp. nov., was isolated from the rhizosphere, roots and stems of salt-tolerant, mangrove-associated wild rice (Porteresia coarctata Tateoka) using nitrogen-free, semi-solid LGI medium at pH 5?5. Strains were Gram-negative, rod-shaped and motile with peritrichous flagella. The strains grew well in the presence of 0?35 % acetic acid, 3 % NaCl and 1 % KNO3, and produced acid from L-arabinose, D-glucose, glycerol, ethanol, D-mannose, D-galactose and sorbitol. They oxidized ethanol and grew well on mannitol and glutamate agar. The fatty acids 18 : 1v7c/v9t/v12t and 19 : 0cyclo v8c constituted 30?41 and 11?80 % total fatty acids, respectively, whereas 13 : 1 AT 12–13 was found at 0?53 %. DNA G+C content was 57?6–59?9 mol% and the major quinone was Q-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that these strains were related to the genera Acidomonas, Asaia, Acetobacter, Gluconacetobacter, Gluconobacter and Kozakia in the Acetobacteraceae. Isolates were able to fix nitrogen and solubilized phosphate in the presence of NaCl. Based on overall analysis of the tests and comparison with the characteristics of members of the Acetobacteraceae, a novel genus and species is proposed for these isolates, Swaminathania salitolerans gen.
    [Show full text]
  • Asaia (Rhodospirillales: Acetobacteraceae)
    Revista Brasileira de Entomologia 64(2):e20190010, 2020 www.rbentomologia.com Asaia (Rhodospirillales: Acetobacteraceae) and Serratia (Enterobacterales: Yersiniaceae) associated with Nyssorhynchus braziliensis and Nyssorhynchus darlingi (Diptera: Culicidae) Tatiane M. P. Oliveira1* , Sabri S. Sanabani2, Maria Anice M. Sallum1 1Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, SP, Brasil. 2Universidade de São Paulo, Faculdade de Medicina da São Paulo (FMUSP), Hospital das Clínicas (HCFMUSP), Brasil. ARTICLE INFO ABSTRACT Article history: Midgut transgenic bacteria can be used to express and deliver anti-parasite molecules in malaria vector mosquitoes Received 24 October 2019 to reduce transmission. Hence, it is necessary to know the symbiotic bacteria of the microbiota of the midgut Accepted 23 April 2020 to identify those that can be used to interfering in the vector competence of a target mosquito population. Available online 08 June 2020 The bacterial communities associated with the abdomen of Nyssorhynchus braziliensis (Chagas) (Diptera: Associate Editor: Mário Navarro-Silva Culicidae) and Nyssorhynchus darlingi (Root) (Diptera: Culicidae) were identified using Illumina NGS sequencing of the V4 region of the 16S rRNA gene. Wild females were collected in rural and periurban communities in the Brazilian Amazon. Proteobacteria was the most abundant group identified in both species. Asaia (Rhodospirillales: Keywords: Acetobacteraceae) and Serratia (Enterobacterales: Yersiniaceae) were detected in Ny. braziliensis for the first time Vectors and its presence was confirmed in Ny. darlingi. Malaria Amazon Although the malaria burden has decreased worldwide, the disease bites by the use of insecticide-treated bed nets, and insecticide indoor still imposes enormous suffering for human populations in the majority residual spraying (Baird, 2017; Shretta et al., 2017; WHO, 2018).
    [Show full text]
  • Microbiology of Vinegar: from Isolation, Phenetic Characterization and Detection of Acetic Acid Bacteria to Microbial Profiling of an Industrial Production
    Microbiology of Vinegar: from Isolation, Phenetic Characterization and Detection of Acetic Acid Bacteria to Microbial Profiling of an Industrial Production João Nuno Serôdio de Melo Thesis to obtain the Master of Science Degree in Microbiology Supervisor(s): Prof. Rogério Paulo de Andrade Tenreiro Prof. Nuno Gonçalo Pereira Mira Examination Committee: Chairperson: Prof. Jorge Humberto Gomes Leitão Supervisor: Prof. Rogério Paulo de Andrade Tenreiro Member of the Committee: Prof. Rodrigo da Silva Costa December, 2016 Acknowledgements I would like to express my sincere gratitude to my supervisor, Professor Rogério Tenreiro, for giving me this opportunity and for all his support and guidance throughout the last year. I have truly learned immensely working with you. Also, I would like to show appreciation to my supervisor from IST, Professor Nuno Mira, for his support along the development of this thesis. I would also like to thank Professor Ana Tenreiro for all her time and help, especially with the flow cytometry assays. Additionally, I’d like to thank Professor Lélia Chambel for her help with the Bionumerics software. I would like to thank Filipa Antunes, from the Lab Bugworkers | M&B-BioISI, for the remarkable organization of the lab and for all her help. I would like to express my gratitude to Mendes Gonçalves, S.A. for the opportunity to carry out this thesis and for providing support during the whole course of this project. Special thanks to Cristiano Roussado for always being available. Also, a big thank you to my colleagues and friends, Catarina, Sofia, Tatiana, Ana, Joana, Cláudia, Mariana, Inês and Pedro for their friendship, support and for this enjoyable year, especially to Ana Marta Lourenço for her enthusiastic Gram stainings.
    [Show full text]