The Enumerative Geometry of Rational and Elliptic Tropical Curves and a Riemann-Roch Theorem in Tropical Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topological Modes in Dual Lattice Models
Topological Modes in Dual Lattice Models Mark Rakowski 1 Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland Abstract Lattice gauge theory with gauge group ZP is reconsidered in four dimensions on a simplicial complex K. One finds that the dual theory, formulated on the dual block complex Kˆ , contains topological modes 2 which are in correspondence with the cohomology group H (K,Zˆ P ), in addition to the usual dynamical link variables. This is a general phenomenon in all models with single plaquette based actions; the action of the dual theory becomes twisted with a field representing the above cohomology class. A similar observation is made about the dual version of the three dimensional Ising model. The importance of distinct topological sectors is confirmed numerically in the two di- 1 mensional Ising model where they are parameterized by H (K,Zˆ 2). arXiv:hep-th/9410137v1 19 Oct 1994 PACS numbers: 11.15.Ha, 05.50.+q October 1994 DIAS Preprint 94-32 1Email: [email protected] 1 Introduction The use of duality transformations in statistical systems has a long history, beginning with applications to the two dimensional Ising model [1]. Here one finds that the high and low temperature properties of the theory are related. This transformation has been extended to many other discrete models and is particularly useful when the symmetries involved are abelian; see [2] for an extensive review. All these studies have been confined to hypercubic lattices, or other regular structures, and these have rather limited global topological features. Since lattice models are defined in a way which depends clearly on the connectivity of links or other regions, one expects some sort of topological effects generally. -
Tropical Geometry of Deep Neural Networks
Tropical Geometry of Deep Neural Networks Liwen Zhang 1 Gregory Naitzat 2 Lek-Heng Lim 2 3 Abstract 2011; Montufar et al., 2014; Eldan & Shamir, 2016; Poole et al., 2016; Telgarsky, 2016; Arora et al., 2018). Recent We establish, for the first time, explicit connec- work (Zhang et al., 2016) showed that several successful tions between feedforward neural networks with neural networks possess a high representation power and ReLU activation and tropical geometry — we can easily shatter random data. However, they also general- show that the family of such neural networks is ize well to data unseen during training stage, suggesting that equivalent to the family of tropical rational maps. such networks may have some implicit regularization. Tra- Among other things, we deduce that feedforward ditional measures of complexity such as VC-dimension and ReLU neural networks with one hidden layer can Rademacher complexity fail to explain this phenomenon. be characterized by zonotopes, which serve as Understanding this implicit regularization that begets the building blocks for deeper networks; we relate generalization power of deep neural networks remains a decision boundaries of such neural networks to challenge. tropical hypersurfaces, a major object of study in tropical geometry; and we prove that linear The goal of our work is to establish connections between regions of such neural networks correspond to neural network and tropical geometry in the hope that they vertices of polytopes associated with tropical ra- will shed light on the workings of deep neural networks. tional functions. An insight from our tropical for- Tropical geometry is a new area in algebraic geometry that mulation is that a deeper network is exponentially has seen an explosive growth in the recent decade but re- more expressive than a shallow network. -
Group Actions and Divisors on Tropical Curves Max B
Claremont Colleges Scholarship @ Claremont HMC Senior Theses HMC Student Scholarship 2011 Group Actions and Divisors on Tropical Curves Max B. Kutler Harvey Mudd College Recommended Citation Kutler, Max B., "Group Actions and Divisors on Tropical Curves" (2011). HMC Senior Theses. 5. https://scholarship.claremont.edu/hmc_theses/5 This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Group Actions and Divisors on Tropical Curves Max B. Kutler Dagan Karp, Advisor Eric Katz, Reader May, 2011 Department of Mathematics Copyright c 2011 Max B. Kutler. The author grants Harvey Mudd College and the Claremont Colleges Library the nonexclusive right to make this work available for noncommercial, educational purposes, provided that this copyright statement appears on the reproduced ma- terials and notice is given that the copying is by permission of the author. To dis- seminate otherwise or to republish requires written permission from the author. Abstract Tropical geometry is algebraic geometry over the tropical semiring, or min- plus algebra. In this thesis, I discuss the basic geometry of plane tropical curves. By introducing the notion of abstract tropical curves, I am able to pass to a more abstract metric-topological setting. In this setting, I discuss divisors on tropical curves. I begin a study of G-invariant divisors and divisor classes. Contents Abstract iii Acknowledgments ix 1 Tropical Geometry 1 1.1 The Tropical Semiring . -
Notes by Eric Katz TROPICAL GEOMETRY
Notes by Eric Katz TROPICAL GEOMETRY GRIGORY MIKHALKIN 1. Introduction 1.1. Two applications. Let us begin with two examples of questions where trop- ical geometry is useful. Example 1.1. Can we represent an untied trefoil knot as a genus 1 curve of degree 5 in RP3? Yes, by means of tropical geometry. It turns out that it can be be represented by a rational degree 5 curve but not by curve of genus greater than 1 since such a curve must sit on a quadric surface in RP3. 3 k 3 Figure 1. Untied trefoil. Example 1.2. Can we enumerate real and complex curves simultaneously by com- binatorics? For example, there is a way to count curves in RP2 or CP2 through 3d − 1+ g points by using bipartite graphs. 1.2. Tropical Geometry. Tropical geometry is algebraic geometry over the tropi- cal semi-field, (T, “+”, “·”). The semi-field’s underlying set is the half-open interval [−∞, ∞). The operations are given for a,b ∈ T by “a + b” = max(a,b) “a · b”= a + b. The semi-field has the properties of a field except that additive inverses do not exist. Moreover, every element is an idempotent, “a + a”= a so there is no way to adjoin inverses. In some sense algebra becomes harder, geometry becomes easier. By the way, tropical geometry is named in honor of a Brazilian computer scien- tist, Imre Simon. Two observations make tropical geometry easy. First, the tropical semiring T naturally has a Euclidean topology like R and C. Second, the geometric structures are piecewise linear structures, and so tropical geometry reduces to a combination 1 2 MIKHALKIN of combinatorics and linear algebra. -
Applications of Tropical Geometry in Deep Neural Networks
Applications of Tropical Geometry in Deep Neural Networks Thesis by Motasem H. A. Alfarra In Partial Fulfillment of the Requirements For the Degree of Masters of Science in Electrical Engineering King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia April, 2020 2 EXAMINATION COMMITTEE PAGE The thesis of Motasem H. A. Alfarra is approved by the examination committee Committee Chairperson: Bernard S. Ghanem Committee Members: Bernard S. Ghanem, Wolfgang Heidrich, Xiangliang Zhang 3 ©April, 2020 Motasem H. A. Alfarra All Rights Reserved 4 ABSTRACT Applications of Tropical Geometry in Deep Neural Networks Motasem H. A. Alfarra This thesis tackles the problem of understanding deep neural network with piece- wise linear activation functions. We leverage tropical geometry, a relatively new field in algebraic geometry to characterize the decision boundaries of a single hidden layer neural network. This characterization is leveraged to understand, and reformulate three interesting applications related to deep neural network. First, we give a geo- metrical demonstration of the behaviour of the lottery ticket hypothesis. Moreover, we deploy the geometrical characterization of the decision boundaries to reformulate the network pruning problem. This new formulation aims to prune network pa- rameters that are not contributing to the geometrical representation of the decision boundaries. In addition, we propose a dual view of adversarial attack that tackles both designing perturbations to the input image, and the equivalent perturbation to the decision boundaries. 5 ACKNOWLEDGEMENTS First of all, I would like to express my deepest gratitude to my thesis advisor Prof. Bernard Ghanem who supported me through this journey. Prof. -
Tropical Geometry? Eric Katz Communicated by Cesar E
THE GRADUATE STUDENT SECTION WHAT IS… Tropical Geometry? Eric Katz Communicated by Cesar E. Silva This note was written to answer the question, What is tropical geometry? That question can be interpreted in two ways: Would you tell me something about this research area? and Why the unusual name ‘tropi- Tropical cal geometry’? To address Figure 1. Tropical curves, such as this tropical line the second question, trop- and two tropical conics, are polyhedral complexes. geometry ical geometry is named in transforms honor of Brazilian com- science. Here, tropical geometry can be considered as alge- puter scientist Imre Simon. braic geometry over the tropical semifield (ℝ∪{∞}, ⊕, ⊗) questions about This naming is compli- with operations given by cated by the fact that he algebraic lived in São Paolo and com- 푎 ⊕ 푏 = min(푎, 푏), 푎 ⊗ 푏 = 푎 + 푏. muted across the Tropic One can then find tropical analogues of classical math- varieties into of Capricorn. Whether his ematics and define tropical polynomials, tropical hyper- work is tropical depends surfaces, and tropical varieties. For example, a degree 2 questions about on whether he preferred to polynomial in variables 푥, 푦 would be of the form do his research at home or polyhedral min(푎 + 2푥, 푎 + 푥 + 푦, 푎 + 2푦, 푎 + 푥, 푎 + 푦, 푎 ) in the office. 20 11 02 10 01 00 complexes. The main goal of for constants 푎푖푗 ∈ ℝ ∪ {∞}. The zero locus of a tropical tropical geometry is trans- polynomial is defined to be the set of points where the forming questions about minimum is achieved by at least two entries. -
The Boardman Vogt Resolution and Tropical Moduli Spaces
The Boardman Vogt resolution and tropical moduli spaces by Nina Otter Master Thesis submitted to The Department of Mathematics Supervisors: Prof. Dr. John Baez (UCR) Prof. Dr. Giovanni Felder (ETH) Contents Page Acknowledgements 5 Introduction 7 Preliminaries 9 1. Monoidal categories 9 2. Operads 13 3. Trees 17 Operads and homotopy theory 31 4. Monoidal model categories 31 5. A model structure on the category of topological operads 32 6. The W-construction 35 Tropical moduli spaces 41 7. Abstract tropical curves as metric graphs 47 8. Tropical modifications and pointed curves 48 9. Tropical moduli spaces 49 Appendix A. Closed monoidal categories, enrichment and the endomorphism operad 55 Appendix. Bibliography 63 3 Acknowledgements First and foremost I would like to thank Professor John Baez for making this thesis possible, for his enduring patience and support, and for sharing his lucid vision of the big picture, sparing me the agony of mindlessly hacking my way through the rainforest of topological operads and possibly falling victim to the many perils which lurk within. Furthermore I am indebted to Professor Giovanni Felder who kindly assumed the respon- sibility of supervising the thesis on behalf of the ETH, and for several fruitful meetings in which he took time to listen to my progress, sharing his clear insight and giving precious advice. I would also like to thank David Speyer who pointed out the relation between tropical geometry and phylogenetic trees to Professor Baez, and Adrian Clough for all the fruitful discussions on various topics in this thesis and for sharing his ideas on mathematical writing in general. -
Tropical Geometry to Analyse Demand
TROPICAL GEOMETRY TO ANALYSE DEMAND Elizabeth Baldwin∗ and Paul Klemperery preliminary draft May 2012, slightly revised July 2012 The latest version of this paper and related material will be at http://users.ox.ac.uk/∼wadh1180/ and www.paulklemperer.org ABSTRACT Duality techniques from convex geometry, extended by the recently-developed math- ematics of tropical geometry, provide a powerful lens to study demand. Any consumer's preferences can be represented as a tropical hypersurface in price space. Examining the hypersurface quickly reveals whether preferences represent substitutes, complements, \strong substitutes", etc. We propose a new framework for understanding demand which both incorporates existing definitions, and permits additional distinctions. The theory of tropical intersection multiplicities yields necessary and sufficient conditions for the existence of a competitive equilibrium for indivisible goods{our theorem both en- compasses and extends existing results. Similar analysis underpins Klemperer's (2008) Product-Mix Auction, introduced by the Bank of England in the financial crisis. JEL nos: Keywords: Acknowledgements to be completed later ∗Balliol College, Oxford University, England. [email protected] yNuffield College, Oxford University, England. [email protected] 1 1 Introduction This paper introduces a new way to think about economic agents' individual and aggregate demands for indivisible goods,1 and provides a new set of geometric tools to use for this. Economists mostly think about agents' -
The Mathematics of Lattices
The Mathematics of Lattices Daniele Micciancio January 2020 Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 1 / 43 Outline 1 Point Lattices and Lattice Parameters 2 Computational Problems Coding Theory 3 The Dual Lattice 4 Q-ary Lattices and Cryptography Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 2 / 43 Point Lattices and Lattice Parameters 1 Point Lattices and Lattice Parameters 2 Computational Problems Coding Theory 3 The Dual Lattice 4 Q-ary Lattices and Cryptography Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 3 / 43 Key to many algorithmic applications Cryptanalysis (e.g., breaking low-exponent RSA) Coding Theory (e.g., wireless communications) Optimization (e.g., Integer Programming with fixed number of variables) Cryptography (e.g., Cryptographic functions from worst-case complexity assumptions, Fully Homomorphic Encryption) Point Lattices and Lattice Parameters (Point) Lattices Traditional area of mathematics ◦ ◦ ◦ Lagrange Gauss Minkowski Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 4 / 43 Point Lattices and Lattice Parameters (Point) Lattices Traditional area of mathematics ◦ ◦ ◦ Lagrange Gauss Minkowski Key to many algorithmic applications Cryptanalysis (e.g., breaking low-exponent RSA) Coding Theory (e.g., wireless communications) Optimization (e.g., Integer Programming with fixed number of variables) Cryptography (e.g., Cryptographic functions from worst-case complexity assumptions, Fully Homomorphic Encryption) Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 4 / 43 Point Lattices and Lattice Parameters Lattice Cryptography: a Timeline 1982: LLL basis reduction algorithm Traditional use of lattice algorithms as a cryptanalytic tool 1996: Ajtai's connection Relates average-case and worst-case complexity of lattice problems Application to one-way functions and collision resistant hashing 2002: Average-case/worst-case connection for structured lattices. -
Electromagnetic Duality for Children
Electromagnetic Duality for Children JM Figueroa-O'Farrill [email protected] Version of 8 October 1998 Contents I The Simplest Example: SO(3) 11 1 Classical Electromagnetic Duality 12 1.1 The Dirac Monopole ....................... 12 1.1.1 And in the beginning there was Maxwell... 12 1.1.2 The Dirac quantisation condition . 14 1.1.3 Dyons and the Zwanziger{Schwinger quantisation con- dition ........................... 16 1.2 The 't Hooft{Polyakov Monopole . 18 1.2.1 The bosonic part of the Georgi{Glashow model . 18 1.2.2 Finite-energy solutions: the 't Hooft{Polyakov Ansatz . 20 1.2.3 The topological origin of the magnetic charge . 24 1.3 BPS-monopoles .......................... 26 1.3.1 Estimating the mass of a monopole: the Bogomol'nyi bound ........................... 27 1.3.2 Saturating the bound: the BPS-monopole . 28 1.4 Duality conjectures ........................ 30 1.4.1 The Montonen{Olive conjecture . 30 1.4.2 The Witten e®ect ..................... 31 1.4.3 SL(2; Z) duality ...................... 33 2 Supersymmetry 39 2.1 The super-Poincar¶ealgebra in four dimensions . 40 2.1.1 Some notational remarks about spinors . 40 2.1.2 The Coleman{Mandula and Haag{ÃLopusza¶nski{Sohnius theorems .......................... 42 2.2 Unitary representations of the supersymmetry algebra . 44 2.2.1 Wigner's method and the little group . 44 2.2.2 Massless representations . 45 2.2.3 Massive representations . 47 No central charges .................... 48 Adding central charges . 49 1 [email protected] draft version of 8/10/1998 2.3 N=2 Supersymmetric Yang-Mills . -
Product-Mix Auctions and Tropical Geometry
PRODUCT-MIX AUCTIONS AND TROPICAL GEOMETRY NGOC MAI TRAN AND JOSEPHINE YU Abstract. In a recent and ongoing work, Baldwin and Klemperer explored a con- nection between tropical geometry and economics. They gave a sufficient condition for the existence of competitive equilibrium in product-mix auctions of indivisible goods. This result, which we call the Unimodularity Theorem, can also be traced back to the work of Danilov, Koshevoy, and Murota in discrete convex analysis. We give a new proof of the Unimodularity Theorem via the classical unimodularity theorem in integer programming. We give a unified treatment of these results via tropical geometry and formulate a new sufficient condition for competitive equilib- rium when there are only two types of product. Generalizations of our theorem in higher dimensions are equivalent to various forms of the Oda conjecture in algebraic geometry. 1. Introduction. An auction is a mechanism to sell goods. It is a process that takes in a collection of bids and produces a set of winners, the amount of goods each winner gets, and the prices the winners have to pay. A product-mix auction is a sealed bid, static auction for differentiated goods. That is, no one knows others' bids, each agent submits the bids only once, and there are different types of goods. The goods are said to be indivisible if they can only be sold in integer quantities, and this is the case that interests us. Each agent (bidder) indicates her valuation, or how much each bundle of goods is worth to her. After seeing the bids, the economist sets the per-unit price for each type of good, splits up the supply into possibly empty bundles, one for each agent. -
Lattice Basics II Lattice Duality. Suppose First That
Math 272y: Rational Lattices and their Theta Functions 11 September 2019: Lattice basics II Lattice duality. Suppose first that V is a finite-dimensional real vector space without any further structure, and let V ∗ be its dual vector space, V ∗ = Hom(V; R). We may still define a lattice L ⊂ V as a discrete co-compact subgroup, or concretely (but not canonically) as the Z-span of an R-basis e1; : : : ; en. The dual lattice is then L∗ := fx∗ 2 V ∗ : 8y 2 L; x∗(y) 2 Zg: 1 This is indeed a lattice: we readily see that if e1; : : : ; en is a Z-basis for L then the dual basis ∗ ∗ ∗ ∗ e1; : : : ; en is a Z-basis for L . It soon follows that L = Hom(L; Z) (that is, every homomorphism L ! Z is realized by a unique x∗ 2 L∗), and — as suggested by the “dual” terminology — the ∗ ∗ ∗ ∗ canonical identification of the double dual (V ) with V takes the dual basis of e1; : : : ; en back to ∗ e1; : : : ; en, and thus takes the dual of L back to L. Once we have chosen some basis for V, and thus an identification V =∼ Rn, we can write any basis as the columns of some invertible matrix M, and then that basis generates the lattice MZn; the dual basis then consists of the row vectors of −1 n −1 ∗ ∗ M , so the dual lattice is Z M (in coordinates that make e1; : : : ; en unit vectors). We shall soon use Fourier analysis on V and on its quotient torus V=L. In this context, V ∗ is the Pontrjagin dual of V : any x∗ 2 V ∗ gives a continuous homomorphism y 7! exp(2πi x∗(y)) from V to the unit circle.