TROPICAL GEOMETRY TO ANALYSE DEMAND Elizabeth Baldwin∗ and Paul Klemperery preliminary draft May 2012, slightly revised July 2012 The latest version of this paper and related material will be at http://users.ox.ac.uk/∼wadh1180/ and www.paulklemperer.org ABSTRACT Duality techniques from convex geometry, extended by the recently-developed math- ematics of tropical geometry, provide a powerful lens to study demand. Any consumer's preferences can be represented as a tropical hypersurface in price space. Examining the hypersurface quickly reveals whether preferences represent substitutes, complements, \strong substitutes", etc. We propose a new framework for understanding demand which both incorporates existing definitions, and permits additional distinctions. The theory of tropical intersection multiplicities yields necessary and sufficient conditions for the existence of a competitive equilibrium for indivisible goods{our theorem both en- compasses and extends existing results. Similar analysis underpins Klemperer's (2008) Product-Mix Auction, introduced by the Bank of England in the financial crisis. JEL nos: Keywords: Acknowledgements to be completed later ∗Balliol College, Oxford University, England.
[email protected] yNuffield College, Oxford University, England.
[email protected] 1 1 Introduction This paper introduces a new way to think about economic agents' individual and aggregate demands for indivisible goods,1 and provides a new set of geometric tools to use for this. Economists mostly think about agents'