The Endocrine Function of the Placenta: Interactions Between Trophic Peptides and Hormones

Total Page:16

File Type:pdf, Size:1020Kb

The Endocrine Function of the Placenta: Interactions Between Trophic Peptides and Hormones Placenlal Function and Fetal Nutrition, edited by Frederick C. Battaglia, Nestle Nutrition Workshop Series. Vol. 39. Nestec Ltd.. Vevey/Lippincott-Raven Publishers. Philadelphia. © 1997. The Endocrine Function of the Placenta: Interactions Between Trophic Peptides and Hormones Lise Cedard U. 361 INSERM, Maternite Baudelocque, 121 Boulevard de Port-Royal Paris, France The placenta is classically considered to be a source of hormones that play an important role in the establishment and maintenance of pregnancy. Because of its hemochorial structure, the human placenta produces hormones and easily secretes them into the maternal circulation. They include steroid hormones, such as estrogens and progesterone, and protein hormones, the most important of which are the chori- onic gonadotrophins (hCG), discovered in 1927. During the period from 1960 to 1980, the concept of a fetoplacental unit (1) with a complementary role for the fetus in steroid production offered a new approach to steroid metabolism, and since then new proteins and neuropeptides have been discovered (2,3). However, the lack of innervation of placental tissue highlights the importance of understanding neuroen- docrine regulation of placental physiology. Sophisticated culture methods enabling the study of biologic phenomena occurring during transformation of cytotrophoblast cells into a syncytiotrophoblast (4) have been combined with electron microscopy and histochemistry. Possibilities offered by molecular biology, including in situ hybridization and molecular cloning studies, have also completely modified current knowledge and revealed the presence of a multitude of factors, such as neuropeptides, cytokines, and growth factors, with their own receptors, but the role of these factors is often unclear. Results from these different approaches have recently added a new concept to the classic notion of endocrine production (with hormone secretion into the fetal or maternal circulation, followed by an eventual effect on other or- gans)—that of paracrine (between cells)/autocrine (into the same cell) regulation, varying at different stages of gestation and under pathologic conditions. STEROID HORMONES (2,5) Progesterone Progesterone clearly plays an important role in enabling implantation. It is neces- sary for the maintenance of a quiescent myometrium, which is impregnated with 59 60 TROPHIC PEPTIDE AND HORMONE INTERACTIONS this steroid through a process of diffusion from the site of placental insertion. It plays an important role in the development of the mammary gland and exerts a suppressive effect on lymphocyte proliferation and activity. Progesterone is produced by the corpus luteum in early pregnancy, with the relayed production by the placenta (the luteoplacental shift) occurring in the human from day 50 of pregnancy, then increasing in parallel with trophoblast growth (Fig. 1). At the end of pregnancy, the daily production is about 250 mg/d, with maternal blood levels of progesterone reaching 200 ng/mL. Progesterone cannot be synthesized by the trophoblast from acetate, but is derived from maternal cholesterol bound to low-density lipoproteins (LDL) (6) (Fig. 2). The uptake of LDL is accomplished by specific receptors present in the placental microvilli as early as the sixth week of pregnancy. Receptor-mediated endocytosis of LDL is followed by degradation of LDL in lysosomes (7). The pres- ence of scavenger receptors for acetyl-LDL and of specific binding sites for HDL3 increases the possibility of intemalization of the huge amount of cholesterol needed for both placenta development and progesterone biosynthesis (8). The placental production of progesterone was formerly considered as autonomous. In fact, its g IU/ml ug/ml 800 -| 40 -, r 8 600 - 30- - 6 400- 20- - 4 200- 10- - 2 o -i oJr I- 0 8 12 16 20 24 28 32 36 40 Weeks FIG. 1. Evolution of placental weight and levels of hPL and hCG during gestation. The level of hPL rises gradually until term in parallel with the placental growth. The circulating hCG level increases rapidly after implantation and reaches a peak at 8 to 12 weeks. After a drop, a plateau is observed until term. TROPHIC PEPTIDE AND HORMONE INTERACTIONS 61 1 eto-1'lacentai Unit Placenta Cholesterol j (C27) A 5-Pregnenolone| (C21) - A5, iP HSDH, A4"5 isomerase adrenal glands •"*" adrenal glands corticosterolds sulfatase sulfatase pHA| (C19) A-5, jp HSDH, A^-5 isomerase 17fi-HSDH A^-Androstenedione — •• Testosterone C19) aromatase enzymatic f complex X Estrone | ^ • |Estradiol-176 (C18) Liver 17fi-HSDH QH- MIA. $ FIG. 2. Biosynthesis of steroids in women from 10th week of pregnancy until labor. LDL, low- density lipoproteins. DHAS, dehydroepiandrosterone sulfate. regulation is extremely complex within the organ. The addition of a synthetic pre- cursor, 25-hydroxycholesterol, increases progesterone production in vitro by the presence of a specific cytochrome P450 (P450 sec). In the baboon, estrogens stimulate key steps in the progesterone biosynthetic pathway, namely LDL receptors and P450 sec (9), a process that in the human placenta in vitro is stimulated by hCG. The addition of pregnenolone to different placental preparations increases proges- terone production considerably, but the 3-hydroxydehydrogenase 5-4 isomerase (3- HSDH), which is not a rate-limiting factor by itself, can be inhibited by retroaction by 4-3 ketosteroids (androgens, progesterone) (10) and by estrogens. Catecholamines were shown to stimulate progesterone production by the adenylate cyclase protein A system. Activation of adenylate cyclase could also mediate the stimulating effect of luteinizing hormone (LH), hCG, vasoactive intestinal polypeptide (VIP), and prostaglandin E (11). Insulin-like growth factors (IGF-1 and IGF-2) (12) and epider- mal growth factor (EGF) stimulate progesterone production in vitro by their effect on cytochrome P450 sec and 3/3-HSDH. Other growth factors, such as transforming growth factor (TGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF), also increase the synthetic capacity of the trophoblast, probably by their role in the regulation of cell growth and differentiation (13). Apart from low 6-hydroxylation, progesterone cannot be metabolized by the human placenta, and about 25% of the progesterone produced by the placenta is transformed by the fetus into corticosteroids and androgens (Fig. 2). 62 TROPHIC PEPTIDE AND HORMONE INTERACTIONS Estrogens Estrogens have an important role in implantation and mammary gland develop- ment; they induce vasodilation within the maternal uterine vascular bed and enhance uterine contractility by regulating several subcellular mechanisms. The placenta is the main source of estrogen production after the ninth week of pregnancy, but as the human placenta lacks some steroidogenic activity, it has been assumed that steroidogenesis results from the fetoplacental unit. Estrogen production depends on the adrenal gland of the mother or fetus to supply androgens, particularly dehydroepi- androsterone (DHA) sulfate, which is hydrolyzed by a placental sulfatase to produce free DHA. Oxidation by 3-HSDH then forms the 4-androstenedione before aromati- zation by cytochrome P450 aromatase to produce estrone and estradiol, which are interconvertible under the action of a placental 17-dehydrogenase (Fig. 2). The placenta synthesizes estriol from the 16-DHA sulfate formed in the fetal liver. This steroid circulates in the maternal compartment as a sulfo or glycuro conjugate, whereas in the maternal blood, plasma estradiol (E2) is mainly in the free form and bound to the sex-binding globulin. The increased E2-to-progesterone ratio in late gestation is mainly caused by the rise in estrogen production by the placenta, which is itself caused by the development of the fetal adrenal cortex and by the constant increase in placental aromatase activity. Estrogen production by the placenta depends on many factors, such as evolution of the trophoblastic mass and of its blood flow, as well as stimulation by several more or less specific factors (14). Sulfatase, which is the rate-limiting factor in the placental metabolism of the DHA sulfate, is retroin- hibited by estrogens and by some progestins. It was initially demonstrated by in vitro perfusion that hCG stimulates aromatase activity through the intermediary of an increase in cyclic AMP production; prostaglandins F2, E2, and mainly E] have the same action. Several clinical conditions occurring in human pregnancy result in subnormal placental estrogen production. For example, in fetal anencephaly there is a decrease in secretion of the fetal adrenal C19 steroids, whereas in intrauterine growth retardation, DHA sulfate metabolism is impaired (15). When there is placen- tal sulfatase deficiency, an X-linked error of metabolism, estrogen secretion is very low, but the fetus shows normal development until term, as is the case with the more recently discovered deficiency of placental aromatase. It is thus evident that there is a considerable excess of estrogen production in human pregnancy. POLYPEPTIDE HORMONES (2,3) Human Chorionic Gonadotrophins The placenta is the primary source of hCG in pregnant women. It is essential for maintenance of pregnancy through its actions to increase luteal progesterone production until the placenta is able to produce adequate amounts of progesterone. The family of glycoprotein hormones to which hCG belongs comprises LH, folli- TROPHIC PEPTIDE AND HORMONE INTERACTIONS 63 cle stimulating hormone (FSH), and thyroid stimulating hormone
Recommended publications
  • Therapeutic Approaches to Preserve Islet Mass in Type 2 Diabetes
    24 Dec 2005 16:24 AR ANRV262-ME57-17.tex XMLPublishSM(2004/02/24) P1: OJO 10.1146/annurev.med.57.110104.115624 Annu. Rev. Med. 2006. 57:265–81 doi: 10.1146/annurev.med.57.110104.115624 Copyright c 2006 by Annual Reviews. All rights reserved THERAPEUTIC APPROACHES TO PRESERVE ISLET MASS IN TYPE 2DIABETES Laurie L. Baggio and Daniel J. Drucker Department of Medicine, Toronto General Hospital, Banting and Best Diabetes Center, University of Toronto, Toronto, Ontario, Canada M5S 2S2; email: [email protected] KeyWords β-cell mass, apoptosis, neogenesis, proliferation ■ Abstract Type 2 diabetes is characterized by hyperglycemia resulting from in- sulin resistance in the setting of inadequate β-cell compensation. Currently available therapeutic agents lower blood glucose through multiple mechanisms but do not directly reverse the decline in β-cell mass. Glucagon-like peptide-1 (GLP-1) receptor agonists, exemplified by Exenatide (exendin-4), not only acutely lower blood glucose but also engage signaling pathways in the islet β-cell that lead to stimulation of β-cell repli- cation and inhibition of β-cell apoptosis. Similarly, glucose-dependent insulinotropic polypeptide (GIP) receptor activation stimulates insulin secretion, enhances β-cell proliferation, and reduces apoptosis. Moreover, potentiation of the endogenous post- prandial levels of GLP-1 and GIP via inhibition of dipeptidyl peptidase-IV (DPP-IV) also expands β-cell mass via related mechanisms. The thiazolidinediones (TZDs) en- hance insulin sensitivity, reduce blood glucose levels, and also preserve β-cell mass, although it remains unclear whether TZDs affect β-cell mass via direct mechanisms. Complementary approaches to regeneration of β-cell mass involve combinations of factors, exemplified by epidermal growth factor and gastrin, which promote islet neo- genesis and ameliorate diabetes in rodent studies.
    [Show full text]
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Interleukin 6 Inhibits Mouse Placental Lactogen II but Not Mouse Placental Lactogen I Secretion in Vitro (Trophoblast/Pregnancy/Cytokine) M
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11905-11909, December 1993 Physiology Interleukin 6 inhibits mouse placental lactogen II but not mouse placental lactogen I secretion in vitro (trophoblast/pregnancy/cytokine) M. YAMAGUCHI*t, L. OGREN*, J. N. SOUTHARD*, H. KURACHI*, A. MIYAKEt, AND F. TALAMANTES*§ *Department of Biology, University of California, Santa Cruz, CA 95064; and tDepartment of Obstetrics and Gynecology, Osaka University Medical School, Osaka, Japan 565 Communicated by George E. Seidel, Jr., September 7, 1993 (receivedfor review June 9, 1993) ABSTRACT The mouse placenta produces several poly- members ofthe PRL-GH gene family. We have used primary peptides belonging to the prolactin-growth hormone gene fam- cultures of placental cells from several days of pregnancy to ily, including mouse placental lactogen (mPL) I and mPL-II. demonstrate that IL-6 regulates the secretion of mPL-II, but The present study was undertaken to determine whether the not mPL-I, and that the sensitivity of mPL-II secretion to secretion of mPL-I and mPL-H is regulated by interleukin 6 IL-6 varies during gestation. (IL-6), which is present in the placenta and has previously been reported to stimulate the secretion ofpituitary members of this gene family. Effects of human and mouse IL-6 on mPL-I and MATERIALS AND METHODS mPL-II secretion were examined in primary cultures of pla- Hormones, Cytokines, and Antisera. mPL-II and recombi- cental cells from days 7, 9, and 12 of pregnancy. IL-6 caused nant mPL-I were purified as described (10, 16). Rabbit a dose-dependent reduction in the mPL-HI concentration in the anti-mPL-I and rabbit anti-mPL-II antisera have been de- medium of cells from days 9 and 12 of pregnancy but did not scribed (11, 16).
    [Show full text]
  • Placental Growth Hormone-Related Proteins and Prolactin-Related Proteins
    Placental Growth Hormone-Related Proteins and Prolactin-Related Proteins The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Haig, D. 2008. Placental growth hormone-related proteins and prolactin-related proteins. Placenta 29: 36-41. Published Version doi:10.1016/j.placenta.2007.09.010 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11148777 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Placental growth hormone-related proteins and prolactin-related proteins. David Haig Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge MA 02138. e-mail: [email protected] phone: 617-496-5125 fax: 617-495-5667 Keywords: GH, PRL, placenta, endometrial glands, placental lactogen The placentas of ruminants and muroid rodents express prolactin (PRL)-related genes whereas the placentas of anthropoid primates express growth hormone (GH)-related genes. The evolution of placental expression is associated with acclerated evolution of the corresponding pituitary hormone and destabilization of conserved endocrine systems. In particular, placental hormones often evolve novel interactions with new receptors. The adaptive functions of some placental hormones may be revealed only under conditions of physiological stress. Introduction Placental hormones are produced by offspring, but act on receptors of mothers. As such, placental hormones and maternal receptors are prime candidates for the expression of parent-offspring conflict [1,2].
    [Show full text]
  • Pathophysiology of Gestational Diabetes Mellitus: the Past, the Present and the Future
    6 Pathophysiology of Gestational Diabetes Mellitus: The Past, the Present and the Future Mohammed Chyad Al-Noaemi1 and Mohammed Helmy Faris Shalayel2 1Al-Yarmouk College, Khartoum, 2National College for Medical and Technical Studies, Khartoum, Sudan 1. Introduction It is just to remember that “Pathophysiology” refers to the study of alterations in normal body function (physiology and biochemistry) which result in disease. E.g. changes in the normal thyroid hormone level causes either hyper or hypothyroidism. Changes in insulin level as a decrease in its blood level or a decrease in its action will cause hyperglycemia and finally diabetes mellitus. Scientists agreed that gestational diabetes mellitus (GDM) is a condition in which women without previously diagnosed diabetes exhibit high blood glucose levels during pregnancy. From our experience most women with GDM in the developing countries are not aware of the symptoms (i.e., the disease will be symptomless). While some of the women will have few symptoms and their GDM is most commonly diagnosed by routine blood examinations during pregnancy which detect inappropriate high level of glucose in their blood samples. GDM should be confirmed by doing fasting blood glucose and oral glucose tolerance test (OGTT), according to the WHO diagnostic criteria for diabetes. A decrease in insulin sensitivity (i.e. an increase in insulin resistance) is normally seen during pregnancy to spare the glucose for the fetus. This is attributed to the effects of placental hormones. In a few women the physiological changes during pregnancy result in impaired glucose tolerance which might develop diabetes mellitus (GDM). The prevalence of GDM ranges from 1% to 14% of all pregnancies depending on the population studied and the diagnostic tests used.
    [Show full text]
  • UNASYN® (Ampicillin Sodium/Sulbactam Sodium)
    NDA 50-608/S-029 Page 3 UNASYN® (ampicillin sodium/sulbactam sodium) PHARMACY BULK PACKAGE NOT FOR DIRECT INFUSION To reduce the development of drug-resistant bacteria and maintain the effectiveness of UNASYN® and other antibacterial drugs, UNASYN should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION UNASYN is an injectable antibacterial combination consisting of the semisynthetic antibiotic ampicillin sodium and the beta-lactamase inhibitor sulbactam sodium for intravenous and intramuscular administration. Ampicillin sodium is derived from the penicillin nucleus, 6-aminopenicillanic acid. Chemically, it is monosodium (2S, 5R, 6R)-6-[(R)-2-amino-2-phenylacetamido]- 3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate and has a molecular weight of 371.39. Its chemical formula is C16H18N3NaO4S. The structural formula is: COONa O CH3 N CH O 3 NH S NH2 Sulbactam sodium is a derivative of the basic penicillin nucleus. Chemically, sulbactam sodium is sodium penicillinate sulfone; sodium (2S, 5R)-3,3-dimethyl-7-oxo-4-thia­ 1-azabicyclo [3.2.0] heptane-2-carboxylate 4,4-dioxide. Its chemical formula is C8H10NNaO5S with a molecular weight of 255.22. The structural formula is: NDA 50-608/S-029 Page 4 COONa CH3 O N CH3 S O O UNASYN, ampicillin sodium/sulbactam sodium parenteral combination, is available as a white to off-white dry powder for reconstitution. UNASYN dry powder is freely soluble in aqueous diluents to yield pale yellow to yellow solutions containing ampicillin sodium and sulbactam sodium equivalent to 250 mg ampicillin per mL and 125 mg sulbactam per mL.
    [Show full text]
  • Estrogen Metabolism in the Human Estrogen Metabolism in the Human
    ENE PURRE: ESTROGEN METABOLISM IN THE HUMAN ESTROGEN METABOLISM IN THE HUMAN A THESIS BY ENE PURRE SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT FOR THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE McGILL UNIVERSITY MONTREAL, CANADA. DEPARTMENT OF EXPERIMENTAL MEDICINE AUGUST 1965 TABLE OF CONTENTS Page No. I INTRODUCTION A. Early history and isolation of the e strogens 2 B. Metabolism of the estrogens 4 1. Biogenesis 4 2. Metabolism 6 3. Degradation 14 4. Conjugation 15 c. Altered states of estrogen metabolism 18 Purpose of the Investigation II MATERIALS AND METHODS 25 Materials I Radioactive compounds 25 II Non-radioactive compounds 25 Ill Enzymes 26 IV Reagents 26 Methods I Purification of radioactive steroids 30 II Preparation of non-radioactive standards 31 III Spectophotometric and f1uorimetric readings 31 IV Counting methods 32 V Enzyme assays 33 VI Injections 33 VII Collection of urine 34 VIII Hydrolysis and extraction of urines 34 IX Assay of estrone, estradiol-17 f.:' and estriol 36 X Attempts at separa ting ring 011( keto1s 3 7 XI Assay of ring D..: ketols in the urine 39 XII Recrysta1lization studies 40 ---------------···---- TABLE OF CONTENTS (cont.) Page No._ Ill RESULTS Section I - Studies with control subjects and those with myocardial infarction 41 Section II- A. Recovery of 16~-hydroxyestrone and 16-ketoestradiol-17~ from toluene/ propylene glycol system 50 B. Pre 1 imi nary study on urinary ring De>< ketols 51 c. Urinary ring D<K ke to 1 s in nonnal males 53 D. Studies of the excretion and metabolism of eight estrogen metabolites from urine 59 IV DISCUSSION 71 SUMMARY 87 BIBLIOGRAPHY 89 • LIST OF FIGURES Figure No.
    [Show full text]
  • AUGMENTIN® (Amoxicillin/Clavulanate Potassium) Tablets
    NDA 50-564/S-051 Page 3 AG:AL16 PRESCRIBING INFORMATION AUGMENTIN® (amoxicillin/clavulanate potassium) Tablets To reduce the development of drug-resistant bacteria and maintain the effectiveness of AUGMENTIN (amoxicillin/clavulanate potassium) and other antibacterial drugs, AUGMENTIN should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION AUGMENTIN is an oral antibacterial combination consisting of the semisynthetic antibiotic amoxicillin and the β-lactamase inhibitor, clavulanate potassium (the potassium salt of clavulanic acid). Amoxicillin is an analog of ampicillin, derived from the basic penicillin nucleus, 6-aminopenicillanic acid. The amoxicillin molecular formula is C16H19N3O5S•3H2O, and the molecular weight is 419.46. Chemically, amoxicillin is (2S,5R,6R)-6-[(R)-(-)-2-Amino-2-(p- hydroxyphenyl)acetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid trihydrate and may be represented structurally as: Clavulanic acid is produced by the fermentation of Streptomyces clavuligerus. It is a β-lactam structurally related to the penicillins and possesses the ability to inactivate a wide variety of β-lactamases by blocking the active sites of these enzymes. Clavulanic acid is particularly active against the clinically important plasmid-mediated β-lactamases frequently responsible for transferred drug resistance to penicillins and cephalosporins. The clavulanate potassium molecular formula is C8H8KNO5, and the molecular weight is 237.25. Chemically, clavulanate potassium is potassium (Z)- (2R,5R)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo[3.2.0]-heptane-2-carboxylate, and may be represented structurally as: Inactive Ingredients: Colloidal silicon dioxide, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and titanium dioxide.
    [Show full text]
  • The Importance of Determining Human
    JMB 2009; 28 (2) DOI: 10.2478/v10011-009-0003-1 UDK 577.1 : 61 ISSN 1452-8258 JMB 28: 97–100, 2009 Original paper Originalni nau~ni rad THE IMPORTANCE OF DETERMINING HUMAN PLACENTAL LACTOGEN IN THE THIRD TRIMESTER OF PREGNANCY ZNA^AJ ODRE\IVANJA HUMANOG PLACENTALNOG LAKTOGENA U TRE]EM TRIMESTRU TRUDNO]E Jasmina Durkovi}1, Bojana Mandi}2 1Department of Genetics , Town Hospital, Subotica, Serbia 2Mega Lab, Biochemical Laboratory, Subotica, Serbia Summary: Human placental lactogen (HPL) is a hormone Kratak sadr`aj: Humani placentalni laktogen (HPL) jeste produced by the placenta with a role in the re gu lation of hormon koji izlu~uje placenta i regulator je fetoplacen- fetoplacental growth. In this paper, the results of HPL de- talnog rasta. U radu su prikazani rezultati odre|ivanja HPL- termination in the third trimester of pregnancy are pre- a u tre}em trimestru trudno}e, sa ciljem da se ispita senzi - sented with the aim of testing the sensitivity of this bio - tivnost tog biohemijskog markera za otkrivanje poreme}aja chemical marker for detecting placental dysfunction, fetal funkcije placente, vitaliteta fetusa i rizika za lo{ ishod. vitality and risk of bad outcome. The tests were performed Ispitivanje je obavljeno na uzorku od 370 rizi~nih trudno}a on 370 women with high-risk pregnancy, between the 20th izme|u 20 i 36 nedelje trudno}e. HPL je odre|en ELISA and 36th week of pregnancy. HPL was determined by an metodom, testovima »Bioserv Diagnostics«, a rezultati su ELISA method using Bioserv Diagnostics tests and the o~itani na rideru »STAT–FAX 303+«.
    [Show full text]
  • Fetal Growth Signals
    Arch Dis Child: first published as 10.1136/adc.64.1_Spec_No.53 on 1 January 1989. Downloaded from Archives of Disease in Childhood, 1989, 64, 53-57 Current topic Fetal growth signals R D G MILNER AND D J HILL Department of Paediatrics, Children's Hospital, Sheffield Human fetal growth is not uniform. Tissue patterns growth factor fi like peptide is found in the vegetal and organ primordia are established during embryo- pole ectoderm of the early Xenopus embryo and is genesis, then from the end of the first trimester and transcribed by a maternally derived gene designated throughout the second the fetus undergoes massive Vgl. An ectodermal cell line, XTC, from the meta- hyperplasia. In the third trimester further organ morphosing tadpole releases a transforming growth modelling and functional maturation occur in pre- factor I8 like peptide in vitro.5 In the 11-18 day fetal paration for extrauterine life. Each aspect ofdevelop- mouse transforming growth factor 3 can be detected ment requires orchestrated intercellular signalling at in bone and connective tissue, particularly that two levels. The release of peptide growth factors derived from neural crest such as palate, larynx, and the modulation of an extracellular matrix are facial mesenchyme, and teeth.6 Staining was most paracrine actions that occur within cell populations intense at sites of tissue morphogenesis affecting and between adjacent germ layers. In contrast, mesodermal and epithelial interaction such as hair endocrine hormones may stimulate growth non- follicles, teeth, and secondary palate. copyright. specifically or promote specific maturational events. Recently both fibroblast growth factor and trans- The interactions between paracrinology, endocrino- forming growth factor i have been shown to exert logy, and environmental constraints to growth remarkable effects on embryonal morphology.
    [Show full text]
  • Regulation of Glucokinase As Lslets Adapt to Pregnancy
    Matschinsky FM, Magnuson MA (eds): Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. Basel, Karger, 2004, vol 16, pp 222-239 Regulationof Glucokinaseas lsletsAdapt to Pregnancy RobertL. Sorenson,Anthony J. Weinhaus,T. Clark Brelje Department of Genetics Cell Biology and Development, University of Minnesota Medical School, Minneapolis,Minn., USA Pregnancyis an occasionin the life history of the B-cell where there is an increasedneed for insulinthat'occurs over a relativelyshort period of time. This amountsto daysin rodentsand monthsin humans.The needfor enhanced islet function emergesas a consequenceof an increasein peripheralinsulin resistanceat the sametime as the placenta,a major targetorgan for insulin, develops.To accommodatethis increasein insulin demand,the islet must undergochanges that lead to increasedinsulin secretionunder normal glucose conditions. The primary short-termregulation of insulin secretionis achievedby ele- vating the glucoseconcentration. However, if this were the primary adaptive mechanismsduring pregnancy,there would be a need for persistenthyper- glycemia- a conditiondeleterious to the developingembryo, fetus and mother. Thus, in the face of this increaseddemand for insulin, islets must undergo structuraland functional changes.The outcomeof this long term upregulation of isletsmust be enhancedinsulin secretion at normalglucose levels. Failure of this long-termadaptive process can lead to gestationaldiabetes. Evidence for functional changes in islets during pregnancy first appearedin the 1960sshortly after the developmentof a sensitiveradioimm- unoassayfor insulin. Spellacyand coworkers[1 3] reportedthat there was a progressiveincrease in both fasting and glucose-stimulatedinsulin secretion throughoutthe courseof pregnancy.These and subsequentstudies led to the charucterizationof pregnancyas a condition of elevatedserum insulin levels, slightly lower blood glucose levels and peripheralinsulin resistance(see reviews[4, 5]).
    [Show full text]
  • Generic Formulary - 2015 S
    GENERIC FORMULARY - 2015 S. N. Composition Strength Form VMS_code NEW VMS 1. Anaesthetics 1 Atropine 0.6 mg / ml Inj G01019 2 Benzocaine 20% Gel G01026 3 Bupivacaine 25mg/10ml Inj G01010 4 Bupivacaine 50mg/10ml Inj G01011 5 Bupivacaine in Dextrose 5% +7.5% Inj G01012 6 Desflurane 250 ml Inhalation G01027 7 Dexmedetomidine 100mg/ml Inj G01028 8 Diazepam 5 mg/ml Inj G01020 9 Doxapram 4 mg/ml Inj G01032 10 Ethyl Chloride 1% Spray G01013 11 Glycopyrroolate 0.2 mg/ml Inj G01029 12 Halothane Inhalation Inhalation G01002 13 Isoflurane Inhalation Inhalation G01003 14 Ketamine 50mg/ml Inj G01005 15 Ketamine 10 mg / ml Inj G01004 16 Lignocaine and Adrenaline 1% + 1:200,000 Inj G01017 17 Lignocaine and Adrenaline 2% + 1:200,000 Inj G01018 18 Lignocaine and Dextrose 5%+7.5% Inj G01016 19 Lignocaine 2% Gel G01014 20 Lignocaine 2,5% Gel G01033 21 Lignocaine 1% INJ G01034 22 Lignocaine 2% INJ G01015 23 Lignocaine 5% GEL G01035 24 Midazolam Injection 1 mg / ml Inj G01021 25 Midazolam Injection 5mg/ml Inj G01022 26 Nitrous Oxide Inhalation Inhalation G01006 27 Oxygen Inhalation Inhalation G01007 28 Propofol Injection 10 mg / ml Inj G01025 29 Sevoflurane 250MG Inhalation G01024 30 Thiopentone Injection I.P 0.5G 0.5G Inj G01008 31 Thiopentone Injection I.P 0.5G 1 G Inj G01009 32 Xylocaine spray 10% 10% Spray G01030 2. A n a l g e s i c s , A n t i p y r e t i c s , N o n s t e ro i d a l Anti-inflammatory Medicines, Medicines used to treat 33 AceclofenacRheumatoid 100mg Disorders.
    [Show full text]