Identification and Validation of Novel Hpxr Activators Amongst
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(CD-P-PH/PHO) Report Classification/Justifica
COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group R01 (Nasal preparations) Table of Contents Page INTRODUCTION 5 DISCLAIMER 7 GLOSSARY OF TERMS USED IN THIS DOCUMENT 8 ACTIVE SUBSTANCES Cyclopentamine (ATC: R01AA02) 10 Ephedrine (ATC: R01AA03) 11 Phenylephrine (ATC: R01AA04) 14 Oxymetazoline (ATC: R01AA05) 16 Tetryzoline (ATC: R01AA06) 19 Xylometazoline (ATC: R01AA07) 20 Naphazoline (ATC: R01AA08) 23 Tramazoline (ATC: R01AA09) 26 Metizoline (ATC: R01AA10) 29 Tuaminoheptane (ATC: R01AA11) 30 Fenoxazoline (ATC: R01AA12) 31 Tymazoline (ATC: R01AA13) 32 Epinephrine (ATC: R01AA14) 33 Indanazoline (ATC: R01AA15) 34 Phenylephrine (ATC: R01AB01) 35 Naphazoline (ATC: R01AB02) 37 Tetryzoline (ATC: R01AB03) 39 Ephedrine (ATC: R01AB05) 40 Xylometazoline (ATC: R01AB06) 41 Oxymetazoline (ATC: R01AB07) 45 Tuaminoheptane (ATC: R01AB08) 46 Cromoglicic Acid (ATC: R01AC01) 49 2 Levocabastine (ATC: R01AC02) 51 Azelastine (ATC: R01AC03) 53 Antazoline (ATC: R01AC04) 56 Spaglumic Acid (ATC: R01AC05) 57 Thonzylamine (ATC: R01AC06) 58 Nedocromil (ATC: R01AC07) 59 Olopatadine (ATC: R01AC08) 60 Cromoglicic Acid, Combinations (ATC: R01AC51) 61 Beclometasone (ATC: R01AD01) 62 Prednisolone (ATC: R01AD02) 66 Dexamethasone (ATC: R01AD03) 67 Flunisolide (ATC: R01AD04) 68 Budesonide (ATC: R01AD05) 69 Betamethasone (ATC: R01AD06) 72 Tixocortol (ATC: R01AD07) 73 Fluticasone (ATC: R01AD08) 74 Mometasone (ATC: R01AD09) 78 Triamcinolone (ATC: R01AD11) 82 -
Composition for Rectal Administration Combined with an Oral Alpha-Lipoic
(19) & (11) EP 2 162 125 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/136 (2006.01) A61K 31/01 (2006.01) 19.10.2011 Bulletin 2011/42 A61P 1/00 (2006.01) A61K 45/06 (2006.01) A61K 31/56 (2006.01) A61K 31/573 (2006.01) (2006.01) (21) Application number: 08768441.1 A61K 31/606 (22) Date of filing: 13.06.2008 (86) International application number: PCT/US2008/007401 (87) International publication number: WO 2008/156671 (24.12.2008 Gazette 2008/52) (54) Composition for rectal administration combined with an oral alpha-lipoic acid composition for the treatment of inflammatory bowel disease Zusammensetzung zur rektalen Verabreichung kombiniert mit einer oralen Zusammentzung enthaltend alpha Liponsäure zur Behandlung von entzündlicher Darmerkrankung Composition pour l’administration rectale en combinaison avec une composition orale de l’ acide alpha- lipoique pour le traitment des maladies intestinales inflammatoires (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR EP-B1- 0 671 168 WO-A2-02/089796 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT US-A- 4 657 900 US-A- 5 082 651 RO SE SI SK TR US-A- 5 378 470 (30) Priority: 13.06.2007 US 934505 P • MULDER CJ. ET AL.: ’Beclomethasone 06.02.2008 US 63745 P dipropionate (3mg) versus 5- aminosalicylic acid (2g) versus the combination of both (3mg/2g)as (43) Date of publication of application: retention enemas in active ulcerative proctitis’ 17.03.2010 Bulletin 2010/11 EUR.J.GASTROENTEROL HEPATOL vol. -
5Α-Androstane-3Α, 17Β-Diolglucuronide (3 Αdiol
Product Data Sheet: 5α-ANDROSTANE-3α, 17β-DIOL GLUCURONIDE (3α DIOL G) ELISA ENG Catalogue number: RCD007R For research use only! Example Version BioVendor – Laboratorní medicína a.s. Karásek 1767/1, 621 00 Brno, Czech Republic +420 549 124 185 [email protected] [email protected] www.biovendor.com CONTENTS 1. INTENDED USE 3 2. PRINCIPLE OF THE TEST INTRODUCTION 3 3. CLINICAL APPLICATIONS 3 4. PROCEDURAL CAUTIONS AND WARNINGS 4 5. LIMITATIONS 5 6. SAFETY CAUTIONS AND WARNINGS 5 7. SPECIMEN COLLECTION AND STORAGE 5 8. SPECIMEN PRETREATMENT 6 9. REAGENTS AND EQUIPMENT NEEDED BUT NOT PROVIDED ASSAY PROCEDURE 6 10. REAGENTS PROVIDED 6 11. ASSAY PROCEDURE 9 12. CALCULATIONS 10 13. TYPICAL TABULATED DATA 10 14. TYPICAL CALIBRATOR CURVE 11 15. PERFORMANCE CHARACTERISTICS 11 16. EXPECTED NORMAL VALUES 14 17. REFERENCES 14 Example Version ENG.004.A 3 3 1. INTENDED USE For the direct quantitative determination of 3α Diol G by enzyme immunoassay in human serum. 2. PRINCIPLE OF THE TEST INTRODUCTION The principle of the following enzyme immunoassay test follows the typical competitive binding scenario. Competition occurs between an unlabeled antigen (present in standards, control and patient samples) and an enzyme-labelled antigen (conjugate) for a limited number of antibody binding sites on the microplate. The washing and decanting procedures remove unbound materials. After the washing step, the enzyme substrate is added. The enzymatic reaction is terminated by addition of the stopping solution. The absorbance is measured on a microtiter plate reader. The intensity of the colour formed is inversely proportional to the concentration of 3α Diol G in the sample. -
Inhaled Corticosteroid (ICS) Only – Metered Dose Inhalers (MDI)
Categorisation and Formulary Choices of Inhaled Corticosteroids for Adults Inhaled Corticosteroid (ICS) only – Metered Dose Inhalers (MDI) MDI Beclometasone dipropionate Use with a compatible Fluticasone Propionate spacer device Prescribe by BRAND Clenil Modulite® Qvar®(extrafine) Qvar®(extrafine) Flixotide® Evohaler MDI Easi-Breathe Low Dose 100mcg, two puffs twice a 50 mcg, two puffs twice a day 50 mcg, two puffs twice a day 50 mcg, two puffs twice a day (BDP equivalent day (200 dose) (200 dose) (200 dose) (120 dose) ≤400mcg BDP) £4.45/month £4.72/month £4.64/month £5.44/month Medium Dose 200mcg, two puffs twice a 100 mcg, two puffs twice a day 100 mcg, two puffs twice a day 125mcg, two puffs twice a day (BDP equivalent day (200 dose) (200 dose) (200 dose) (120 dose) 400-1000mcg BDP) £9.70/month £10.33/month £10.17/month £12.50/month High Dose 250mcg, two puffs twice a 100 mcg, four puffs twice a day 100 mcg, four puffs twice a day 250mcg, two puffs twice a day (BDP equivalent day (200 dose) (200 dose) (200 dose) (120 dose) >1000mcg BDP) £9.77/month £20.66/month £20.34/month £20.00/month Simultaneous specialist OR referral recommended 250mcg four puffs, twice a day (200 dose) £19.55/month Prices correct as per Drug Tariff and DM&D December2018 1st line choices (dark green, solid border) 2nd line choices (light green, dashed border) Approved by Hertfordshire Medicines Management Committee – October 2018 Inhaled Corticosteroid (ICS) only – Dry Powder Inhalers (DPI) Beclometasone DPI dipropionate Budesonide Fluticasone Propionate Prescribe -
Effects of Aminoglutethimide on A5-Androstenediol Metabolism in Postmenopausal Women with Breast Cancer1
[CANCER RESEARCH 42, 4797-4800, November 1982] 0008-5472/82/0042-0000802.00 Effects of Aminoglutethimide on A5-Androstenediol Metabolism in Postmenopausal Women with Breast Cancer1 Charles E. Bird,2 Valerie Masters, Ernest E. Sterns, and Albert F. Clark Departments of Medicine [C. E. B., V. M.], Surgery [E. E. S.J, and Biochemistry [A. F. C.], Queen s University and Kingston General Hospital, Kingston, Ontario, Canada K7L 2V7 ABSTRACT women. More recently, we (8) and others (18) reported that the production of A5-androstene-3/8,17/8-diol in normal post- A5-Androstene-3/8,1 7/S-diol has potential estrogenic activity menopausal women is approximately 500 to 700 fig/24 hr. because it is known to bind to receptors and translocate to the AG, in combination with hydrocortisone, has been utilized to nucleus of certain estrogen target tissues. Its role in the biology inhibit estrogen production in patients with breast cancer (21 ). of breast cancer is unclear. Aminoglutethimide plus hydrocor This form of therapy has been termed "medical adrenalec tisone ("medical adrenalectomy") has been used to treat post- tomy," and studies suggest that it is as effective as surgical menopausal women with metastatic breast cancer. adrenalectomy. The hydrocortisone shuts off the basal adre- We studied A5-androstene-3/3,17/?-diol metabolism in post- nocortical production of estrogen precursors; AG not only menopausal women with breast cancer before and during slows down steroid biosynthesis at an early step but also aminoglutethimide-plus-hydrocortisone therapy, utilizing the specifically inhibits the aromatization of A4-androstenedione to constant infusion technique. -
Perinatal Bisphenol a Exposure Increases Atherosclerosis in Adult Male PXR-Humanized Mice
RESEARCH ARTICLE Perinatal Bisphenol A Exposure Increases Atherosclerosis in Adult Male PXR-Humanized Mice Yipeng Sui,1 Se-Hyung Park,1 Fang Wang,1 and Changcheng Zhou1 1Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536 Bisphenol A (BPA) is a base chemical used extensively in numerous consumer products, and human exposure to BPA is ubiquitous. Higher BPA exposure has been associated with an increased risk of atherosclerosis and cardiovascular disease (CVD) in multiple human population-based studies. However, the underlying mechanisms responsible for the associations remain elusive. We previously reported that BPA activates the xenobiotic receptor pregnane X receptor (PXR), which has proa- therogenic effects in animal models. Because BPA is a potent agonist for human PXR but does not 2 2 affect rodent PXR activity, a suitable PXR-humanized apolipoprotein E–deficient (huPXR•ApoE / ) mouse model was developed to study BPA’s atherogenic effects. Chronic BPA exposure increased atherosclerosis in the huPXR•ApoE2/2 mice. We report that BPA exposure can also activate human PXR signaling in the heart tubes of huPXR•ApoE2/2 embryos, and perinatal BPA exposure exac- erbated atherosclerosis in adult male huPXR•ApoE2/2 offspring. However, atherosclerosis devel- opment in female offspring was not affected by perinatal BPA exposure. Perinatal BPA exposure did not affect plasma lipid levels but increased aortic and atherosclerotic lesional fatty acid transporter 2 2 CD36 expression in male huPXR•ApoE / offspring. Mechanistically, PXR epigenetically regulated CD36 expression by increasing H3K4me3 levels and decreasing H3K27me3 levels in the CD36 promoter in response to perinatal BPA exposure. The findings from the present study contribute to our understanding of the association between BPA exposure and increased atherosclerosis or CVD risk in humans, and activation of human PXR should be considered for future BPA risk assessment. -
BSG Plan for IBD Patients During COVID19 Pandemic V1.5 349.88 KB
British Society of Gastroenterology (BSG) advice for management of inflammatory bowel diseases during the COVID-19 pandemic Date of publication: 22nd March 2020 Introduction Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is a condition in which the gastrointestinal immune system responds inappropriately. It is therefore often treated with immune suppression medications to control inflammation and to prevent ‘flares’, a worsening in symptoms, which may be unpredictable. It is known that 0.8% of people in the UK (approx. 524,000 patients) currently have IBD, but only 44% have been to a clinic in the last 3 years1,2. There will be many patients who will be worried about the effect of the Coronavirus pandemic (SARS-CoV-2 or COVID-19 disease) on their IBD and vice versa. During the COVID-19 outbreak we will do everything we can to keep our IBD patients safe. The biggest risks are related not only to the infection itself, but also the emergency reorganisation of hospital and general practice services to deal with the pandemic, meaning routine IBD services will be significantly affected. A combined approach covering both primary and secondary care is therefore required to keep vulnerable IBD patients out of hospital as much as possible. Insights from Hubei, China and from Italy suggest hospital admission for non-COVID-19 illness will provide a reservoir for further spread of infection. However, alterations to the way we deliver IBD care in the UK must be balanced against the risks of undertreated, active IBD. Importantly, patients with active IBD are likely to have a higher risk of infection both in the community and during inpatient care, even in the absence of immunosupressant treatment3. -
FF/UMEC/VI) Triple Therapy Versus Tiotropium Monotherapy in Patients with COPD
www.nature.com/npjpcrm ARTICLE OPEN Single-inhaler fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) triple therapy versus tiotropium monotherapy in patients with COPD Sandeep Bansal1, Martin Anderson2, Antonio Anzueto3,4, Nicola Brown5, Chris Compton6, Thomas C. Corbridge7,8, David Erb9, Catherine Harvey5, Morrys C. Kaisermann10, Mitchell Kaye11, David A. Lipson 10,12, Neil Martin6,13, Chang-Qing Zhu5 and ✉ Alberto Papi 14 Chronic obstructive pulmonary disease (COPD) treatment guidelines do not currently include recommendations for escalation directly from monotherapy to triple therapy. This 12-week, double-blind, double-dummy study randomized 800 symptomatic moderate-to-very-severe COPD patients receiving tiotropium (TIO) for ≥3 months to once-daily fluticasone furoate/umeclidinium/ vilanterol (FF/UMEC/VI) 100/62.5/25 mcg via ELLIPTA (n = 400) or TIO 18 mcg via HandiHaler (n = 400) plus matched placebo. Study endpoints included change from baseline in trough forced expiratory volume in 1 s (FEV1) at Days 85 (primary), 28 and 84 (secondary), health status (St George’s Respiratory Questionnaire [SGRQ] and COPD Assessment Test [CAT]) and safety. FF/UMEC/VI significantly improved trough FEV1 at all timepoints (Day 85 treatment difference [95% CI] 95 mL [62–128]; P < 0.001), and significantly improved SGRQ and CAT versus TIO. Treatment safety profiles were similar. Once-daily single-inhaler FF/UMEC/VI significantly improved lung function and health status versus once-daily TIO in symptomatic moderate-to-very-severe COPD 1234567890():,; patients, with a similar safety profile. npj Primary Care Respiratory Medicine (2021) 31:29 ; https://doi.org/10.1038/s41533-021-00241-z INTRODUCTION performed to date and a lack of updated recommendations Chronic obstructive pulmonary disease (COPD) is a major cause of based on the current body of evidence. -
A Practical Approach To, Diagnosis, Assessment and Management Of
REVIEW A practical approach to, diagnosis, Pract Neurol: first published as 10.1136/practneurol-2014-000821 on 8 May 2014. Downloaded from assessment and management of idiopathic intracranial hypertension Susan P Mollan,1 Keira A Markey,2 James D Benzimra,1 Andrew Jacks,1 Tim D Matthews,1 Michael A Burdon,1 Alex J Sinclair2,3 1Birmingham Neuro- ABSTRACT term to encompass primary raised intra- Ophthalmology Unit, Adult patients who present with papilloedema cranial pressure where there is no identi- Ophthalmology Department, — — University Hospitals Birmingham and symptoms of raised intracranial pressure fiable cause which we term IIH and 3 NHS Trust, Queen Elizabeth need urgent multidisciplinary assessment secondary causes of raised pressure. Hospital Birmingham, including neuroimaging, to exclude life- The diagnostic criteria of IIH are well Birmingham, UK 2 threatening causes. Where there is no apparent known and have evolved since Dandy’s Neurotrauma and 4 Neurodegeneration, School of underlying cause for the raised intracranial initial description in 1937 ; they include Clinical and Experimental pressure, patients are considered to have a CSF opening pressure of ≥25 cm H2O Medicine, College of Medical idiopathic intracranial hypertension (IIH). The (box 1).3 However, these criteria recom- and Dental Sciences, The incidence of IIH is increasing in line with the mend imaging only to exclude a venous Medical School, The University of Birmingham, Birmingham, UK global epidemic of obesity. There are sinus thrombosis in patients without the 3Department of Neurology, controversial issues in its diagnosis and typical IIH phenotype (obesity and University Hospital Birmingham management. This paper gives a practical female sex). We feel, however, that it is NHS Trust, Queen Elizabeth Hospital Birmingham, approach to assessing patients with essential to exclude venous sinus throm- Birmingham, UK papilloedema, its investigation and the bosis (using MRI or CT with venography) subsequent management of patients with IIH. -
Utah Medicaid Pharmacy and Therapeutics Committee Drug
Utah Medicaid Pharmacy and Therapeutics Committee Drug Class Review Single Ingredient Nasal Corticosteroids Beclomethasone dipropionate (Qnasl) Beclomethasone dipropionate monohydrate (Beconase AQ) Budesonide (Rhinocort) Ciclesonide (Omnaris, Zetonna) Flunisolide (Generic) Fluticasone Furoate (Flonase Sensimist) Fluticasone Propionate (Flonase, Xhance) Mometasone Furoate (Nasonex) Triamcinolone Acetonide (Nasacort) AHFS Classification: 52.08.08 Corticosteroids (EENT) Final Report February 2018 Review prepared by: Valerie Gonzales, Pharm.D., Clinical Pharmacist Elena Martinez Alonso, B.Pharm., MSc MTSI, Medical Writer Vicki Frydrych, Pharm.D., Clinical Pharmacist Joanita Lake, B.Pharm., MSc EBHC (Oxon), Research Assistant Professor Joanne LaFleur, Pharm.D., MSPH, Associate Professor University of Utah College of Pharmacy University of Utah College of Pharmacy, Drug Regimen Review Center Copyright © 2018 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved Contents Abbreviations ................................................................................................................................................ 2 Executive Summary ....................................................................................................................................... 3 Introduction .................................................................................................................................................. 5 Table 1. Nasal corticosteroid products ............................................................................................. -
Pharmacology/Therapeutics II Block III Lectures 2013-14
Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine -
Androstane-3\G=A\,17\G=B\-Dioland 5\G=A\-Androstane\X=Req-\ 3\G=B\,17\G=B\-Diolby Rat Testicular Cells in Vitro R
Age-related changes in conversion of 5\g=a\-androstan-17\g=b\-ol\x=req-\ 3-one to 5\g=a\-androstane-3\g=a\,17\g=b\-dioland 5\g=a\-androstane\x=req-\ 3\g=b\,17\g=b\-diolby rat testicular cells in vitro R. C. Cochran, A. W. Schuetz and L. L. Ewing Division ofReproductive Biology, Department ofPopulation Dynamics, The Johns Hopkins University, School ofHygiene and Public Health, Baltimore, Maryland 21205, U.SA. Summary. Conversion of labelled 5\g=a\-androstan-17\g=b\-ol-3-one(DHT) by isolated testicular cells from rats of different ages was examined under saturating substrate conditions in vitro (5\p=n-\10\g=m\gDHT/ml in a 24 h incubation). Two detectable metabolites of DHT were produced by testicular cells in vitro, 5\g=a\-androstane\x=req-\ 3\g=a\-17\g=b\-diol(3\g=a\-diol)and 5\g=a\-androstane-3\g=b\,17\g=b\-diol(3\g=b\-diol).Production of these diols during a 24 h period was linear, and the amounts formed were directly related to the cell number. The amount of 3\g=a\-and 3\g=b\-diolsformed by testicular cells of rats of different ages increased from Day 10 to Day 25, then declined. Testicular cells from rats 10 to 20 days of age converted DHT mainly to 3\g=a\-diol,but thereafter 3\g=b\\x=req-\ diol was the predominant testicular metabolite of DHT. Introduction Testosterone is the major metabolite of progesterone in testicular tissue sUce preparations taken from rats aged 0-17 days (Ficher & Steinberger, 1968).