William H.Pickering Photographic Atlas of the Moon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Glossary of Lunar Terminology
Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites. -
Lunar Domes Classification and Physical Properties by Raffaello Lena ………………………………………………..62
Selenology Today is devoted to the publication of contributions in the field of lunar studies. Editor-in-Chief: Manuscripts reporting the results of new research concerning the R. Lena astronomy, geology, physics, chemistry and other scientific Editors: aspects of Earth’s Moon are welcome. M.T. Bregante Selenology Today publishes C. Kapral papers devoted exclusively to the Moon. F. Lottero Reviews, historical papers J. Phillips and manuscripts describing observing or spacecraft P. Salimbeni instrumentation are considered. C. Wöhler C. Wood The Selenology Today Editorial Office [email protected] Selenology Today # 5 April 2007 SELENOLOGY TODAY #5 April 2007 Cover : Image taken by Gerardo Sbarufatti, Schmidt Cassegrain 200 mm f/10. Selenology Today websites http://digilander.libero.it/glrgroup/ http://www.selenologytoday.com/ Messier, Messier A and surrounding Mare Fecunditatis by Alexander Vandenbohede …………………………………..1 Crater depths from the Apollo era to the present by Kurt Allen Fisher …………………………………………….17 Lunar domes classification and physical properties by Raffaello Lena ………………………………………………..62 Selenology Today # 5 April 2007 TOPOGRAPHY SELENOLOGY TODAY # 5 Messier, Messier A and clusters, nebulae, galaxies etc. Charles surrounding Mare Fecunditatis Messier (1730 – 1817). Messier A has a by Alexander Vandenbohede diameter of 11 x 13 km and a depth of Association for Lunar and Planetary 2250 m. Both craters fall in the category Observers – Lunar Section of small craters (less than 15 – 20 km). However, their shape is atypical for these small and in most cases simple Abstract bowl shaped craters. Also atypical is the shape of the ejecta deposits, which is Messier and Messier A (formerly called highly asymmetrical. Messier features a Pickering) form an interesting crater pair butterfly-type of ray system with situated on the western part of Mare Fe- deposits towards the north and south of cunditatis. -
Observing the Moon
OBSERVING THE MOON The Moon is all too often dismissed by amateur astronomers as a nuisance, a source of light pollution that spoils an otherwise clear dark night. And in fact there are no celestial objects other than the Sun that can even remotely compete with old Luna when she rides high and bright in the night sky. For people devoted to the observation of deep sky objects the Moon means the end of observing for the night, or hours of waiting for the Moon to set. Or clear nights with no observing at all. Of course, a better way to think about the Moon is to see it as a source of observing opportunities, especially for smaller telescopes. The Moon is an entire world hanging above our heads, an alien planet that can be studied at a level of detail that Mars, Jupiter, or Saturn cannot come close to matching. The Moon is worth the time and effort to observe and study. Or look at it this way. The Moon is not going to go away. So if you can’t beat it, observe it! Observing the Moon is all about learning your way around an alien landscape. When you learn terrestrial geography you learn to recognize features such as mountains, lakes, rivers, and canyons. Our approach to taking a better look at the Moon will parallel this idea, and although some geographical features (mountains) are recognizably similar to their Earthly counterparts, others (such as craters) are like nothing you will see here. And that is because the Moon is airless, with no weather, and consequently no weathering or erosion. -
The Isabel Williamson Lunar Observing Program
The Isabel Williamson Lunar Observing Program by The RASC Observing Committee Revised Third Edition September 2015 © Copyright The Royal Astronomical Society of Canada. All Rights Reserved. TABLE OF CONTENTS FOR The Isabel Williamson Lunar Observing Program Foreword by David H. Levy vii Certificate Guidelines 1 Goals 1 Requirements 1 Program Organization 2 Equipment 2 Lunar Maps & Atlases 2 Resources 2 A Lunar Geographical Primer 3 Lunar History 3 Pre-Nectarian Era 3 Nectarian Era 3 Lower Imbrian Era 3 Upper Imbrian Era 3 Eratosthenian Era 3 Copernican Era 3 Inner Structure of the Moon 4 Crust 4 Lithosphere / Upper Mantle 4 Asthenosphere / Lower Mantle 4 Core 4 Lunar Surface Features 4 1. Impact Craters 4 Simple Craters 4 Intermediate Craters 4 Complex Craters 4 Basins 5 Secondary Craters 5 2. Main Crater Features 5 Rays 5 Ejecta Blankets 5 Central Peaks 5 Terraced Walls 5 ii Table of Contents 3. Volcanic Features 5 Domes 5 Rilles 5 Dark Mantling Materials 6 Caldera 6 4. Tectonic Features 6 Wrinkle Ridges 6 Faults or Rifts 6 Arcuate Rilles 6 Erosion & Destruction 6 Lunar Geographical Feature Names 7 Key to a Few Abbreviations Used 8 Libration 8 Observing Tips 8 Acknowledgements 9 Part One – Introducing the Moon 10 A – Lunar Phases and Orbital Motion 10 B – Major Basins (Maria) & Pickering Unaided Eye Scale 10 C – Ray System Extent 11 D – Crescent Moon Less than 24 Hours from New 11 E – Binocular & Unaided Eye Libration 11 Part Two – Main Observing List 12 1 – Mare Crisium – The “Sea of Cries” – 17.0 N, 70-50 E; -
LAC 77 Scale 1:1,000,000 Mercator Projection
-10˚ -8˚ -6˚ -4˚ -2˚ 0˚ 2˚ 4˚ 6˚ 8˚ 10˚ 0˚ . 0˚ SÖMMERING Mösting E . Lade B . Rhaeticus F . Réaumur D RHAETICUS Rhaeticus E Lade V . Lade U Mösting D . Oppolzer A Rhaeticus J . Mösting K MÖSTING . Mösting L . Rhaeticus H . Lade M Lade S Mösting M . Réaumur Y Lade T OPPOLZER LADE . Pickering C . Pickering A . Oppolzer K . Mösting C . Seeliger A . Flammarion A -2˚ . Flammarion C Rima Oppolzer -2˚ o n . Flammarion W . Seeliger S . Pickering B r i . SEELIGER . Seeliger T m a Flammarion Z m Saunder S . l a RÉAUMUR F Rima Réaumur m a . Mösting B R i Flammarion T . PICKERING Flammarion X . Réaumur X . Flammarion D . Flammarion U . Lalande B . Mösting U . Lalande U . Mösting A . Horrocks U Réaumur W FLAMMARION . Spörer A . Réaumur C . Réaumur R . Flammarion Y . Réaumur K . -4˚ HORROCKS -4˚ . Flammarion B . Horrocks M Saunder B . Hipparchus E . Hipparchus F SAUNDER SPÖRER . Réaumur B LALANDE . Hipparchus D Réaumur A Lalande R . Hipparchus P . Hipparchus N Herschel C . Hipparchus W . Lalande T . GYLDÉN . Herschel D . HIPPARCHUS Hipparchus G Herschel X Herschel N . Gyldén K . Hipparchus H . Lalande C . Lalande N HERSCHEL . Herschel F . Gyldén C . Hipparchus X -6˚ -6˚ Lalande G . Lalande D . Herschel H . Herschel J . Lalande W . Herschel G . Lalande A . Ptolemaeus R . Hipparchus U . Hipparchus L Hipparchus B . Hipparchus K . Ptolemaeus H . Ptolemaeus G . Hipparchus T . Ptolemaeus O . Hipparchus C . Ptolemaeus T MÜLLER . Hipparchus J . Palisa C . Ptolemaeus B . Müller F . Müller O HIND -8˚ HALLEY -8˚ . Müller A . Palisa T . Ptolemaeus K . Ptolemaeus D Palisa E AMMONIUS . -
Craters on the Moon from Galileo to Wegener: a Short History of the Impact Hypothesis, and Implications for the Study of Terrestrial Impact Craters
CRATERS ON THE MOON FROM GALILEO TO WEGENER: A SHORT HISTORY OF THE IMPACT HYPOTHESIS, AND IMPLICATIONS FOR THE STUDY OF TERRESTRIAL IMPACT CRATERS CHRISTIAN KOEBERL Institute of Geochemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria (E-mail: [email protected]) Abstract. The origin of lunar craters has been discussed for centuries, since they were discovered by Galilei in 1609. The majority of researchers were of the opinion that they are volcanic structures, but a variety of “exotic” explanations that included tidal forces, circular glaciers, and coral atolls was also considered. The meteorite impact hypothesis had been discussed a few times, starting with Hooke in 1665, and formulated in more detail by Proctor in 1873 and Gilbert in 1893. However, this theory only gained momentum early in the 20th century, after the identification of Meteor Crater in Arizona as an impact structure, and after specific and plausible physical models for impact craters formation were devised by Öpik in 1916, Ives in 1919, and Gifford in 1924. Nevertheless, despite growing evidence for the interpretation that most craters formed by impact, proponents of the volcanic theory impact were still vociferous as late as 1965, just four years before the first samples were brought back from the moon. Important lessons could have been learned for the study of impact craters on the Earth, especially in view of evidence that large impact events had some influence on the geologic and biologic evolution of the Earth. Keywords: History, impact craters, lunar craters, lunar maps 1. Introduction Impact cratering is now recognized to be a very important (if not the most im- portant) surface-modifying process in the planetary system. -
RESEARCH REPORT NO. 4, November 1962, NASA GRANT G246-62
RESEARCH REPORT NO. 4, November 1962, NASA GRANT G246-62 bY Gerald S, Hawkins and Peter W, Mitchell E? e0w 6 * * Introduction 445 This catalog gives the selenographic coordinates of all - LL wo 5 craters observable on a selected portion of the moon's surface. w-2 xs The diameter of the crater together with comments on shape are I also given, Approximately 25 per cent of the craters have been measured previously by other observers. The catalog gives the position found in the present series of measurements and the name adopted by the International Astronomical Union. Residuals and errors The residuals from the determination of plate constants gave an rms, value less than + 0.0003 for and 1 , corres- ponding to an uncertainty in position on the surface of -+ 0,5 km. Although undqtected systematic errors almost cer- tainly exist, the positions given are probably reliable to -+ 1,O km, The error in determining the diameter of the craters depends to a great extent on the individual crater. The error is estimated as -+ 30 per cent for small craters, decreasing to s+ 10 per cent for the largest craters. -2- Selection criteria (1.) A crater must have at least half of its wall clearly visible . (2.) When foreshortening has been allowed for, a crater must be approximately circular. If elliptical, its eccen- tricity must not be greater than 0.75, i.e. the ratio of major to minor axes must not exceed 1.5. A crater may be polygonal, but its longest diameter must not exceed 1.5 times its shortest diameter. -
Prepared on Behalf of the National Aeronautics and Space Administration GEOMETRIC INTERPRETATION of LUNAR CRATERS G23QIJQ8
Prepared on behalf of the National Aeronautics and Space Administration GEOMETRIC INTERPRETATION OF LUNAR CRATERS G23QIJQ8 MONIES ALPES MONIES ARISTILLUS SPITZBERGENSIS • < PALUS PUTREDINIS ;i Impact craters and other features on the Moon, photographed by Apollo 15 crew while in orbit 106 km above surface on July 31, 1971. Oblique view is north across eastern Mare Imbrium. The horizon lies about 500 km from the lava-flooded 80-km-diameter crater Archimedes. Out-of- focus object in lower right corner is part of Command Service Module. Sun is to right. Apollo 15 mapping-camera photograph 1540. Geometric Interpretation of Lunar Craters By RICHARD J. PIKE APOLLO 15-17 ORBITAL INVESTIGATIONS GEOLOGICAL SURVEY PROFESSIONAL PAPER 1046-C Prepared on behalf of the National Aeronautics and Space Administration UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Pike, Richard J. Geometric interpretation of lunar craters. (Apollo 15-17 orbital investigation) (Geological Survey professional paper : 1046-C) Bibliography: p. C60-C65. Supt.ofDocs.no.: I 19.16:1046-C 1. Lunar craters-Data processing. 2. Lunar craters- Statistical methods. I. Title. II. Series. III. Series: United States. Geological Survey. Professional paper ; 1046-C. QB591.P73 559.9*1 79-607927 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Abstract ________________________________