Intraspecific Functional and Genetic Diversity of Petriella Setifera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10 -
Fungal Planet Description Sheets: 716–784 By: P.W
Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H. -
Ceratocystis Fimbriata Infecting Eucalyptus Grandis in Uruguay
CSIRO PUBLISHING www.publish.csiro.au/journals/app Australasian Plant Pathology, 2003, 32, 361–366 Ceratocystis fimbriata infecting Eucalyptus grandis in Uruguay I. BarnesA,D, J. RouxA, B. D. WingfieldB, M. O’NeillC and M. J. WingfieldA ADepartment of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa. BDepartment of Genetics, University of Pretoria, Pretoria, South Africa. CUruguaya S. A. Forestry Company, Rivera, Uruguay. DCorresponding author: [email protected] Abstract. Uruguay has a rapidly growing forestry industry consisting mainly of exotic Pinus and Eucalyptus spp. Recently, there have been reports of individual E. grandis trees wilting and dying rapidly in plantations. The aim of this investigation was to survey the dying E. grandis in the Rivera area of Uruguay and to determine the cause of the Eucalyptus wilt. Sap-staining symptoms were observed on recently pruned E. grandis. Discs of discoloured wood were cut from these pruned trees and from the stems of dying trees. These disks were stored in a moist environment to induce fungal sporulation. Ascomata, typical of a Ceratocystis sp., were found covering the edges of the wood where streaking symptoms occurred. Morphologically, the fungus resembles C. fimbriata. The internal transcribed spacer regions of the ribosomal RNA operon of the Ceratocystis sp. were amplified and sequenced. Sequence data confirmed placement of this fungus amongst other isolates of C. fimbriata. Furthermore, the sequence data showed that the Uruguay isolates are most closely related to those from diseased Eucalyptus spp. in Brazil, Congo and Uganda. C. fimbriata is a well-known pathogen of many woody plants and could constitute a serious threat to intensively managed E. -
Isolation of Scopulariopsis Brevicaulis from Wistar Rats
Etlik Vet Mikrobiyol Derg, 2020; 31 (2): 196-200 Case Report doi: https://doi.org/10.35864/evmd.768818 Olgu Sunumu Case report: Isolation of Scopulariopsis brevicaulis from Wistar Rats Özlem Şahan Yapıcıer1* , Mehmet Kaya2 , Zeki Erol3 , Dilek Öztürk4 1,2,4 Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Department of Microbiology, Burdur, TURKEY 3 Mehmet Akif Ersoy University, Experimental Animal Production and Experimental Research Center, Burdur, TURKEY Geliş Tarihi / Received: 13.07.2020, Kabul tarihi / Accepted: 07.12.2020 Abstract: Scopulariopsis brevicaulis is a saprophytic fungus that has wide geographic distribution. This study de- scribes a case of hair loss and skin lesions observed in male and female Wistar rats due to Scopulariopsis brevicaulis infection in Turkey. Skin scrapings and hair samples from three male and two female rats were provided by the Experimental Animal Production and Experimental Research Center of Mehmet Akif Ersoy University to the Faculty of Veterinary Medicine, Department of Microbiology Laboratory in Burdur for analysis in July 2019. Microbiological methods were used for species identification andScopulariopsis brevicaulis was isolated from all of the samples. The rats completely recovered without treatment and had no recurrence of clinical signs at one month post-sampling. This study is the first report ofS. brevicaulis causing an infection in Wistar rats in Turkey. Keywords: Laboratory animals, mycological examination, rats, saprophyte, Scopulariopsis sp Olgu sunumu: Wistar Ratlarından Scopulariopsis brevicularis izolasyonu Özet: Scopulariopsis brevicaulis, geniş coğrafi dağılımı olan saprofitik bir mantardır. Bu olgu, Türkiye’deki erkek ve dişi Wistar ratlarında Scopulariopsis brevicaulis infeksiyonuna bağlı olarak gözlenen tüy kaybı ve deri lezyonlarını tanımlamaktadır. -
Identification and Bioactive Potential of Endophytic Fungi Isolated From
Qadri et al. SpringerPlus 2013, 2:8 http://www.springerplus.com/content/2/1/8 a SpringerOpen Journal RESEARCH Open Access Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas Masroor Qadri1, Sarojini Johri1, Bhahwal A Shah2, Anamika Khajuria3, Tabasum Sidiq3, Surrinder K Lattoo4, Malik Z Abdin5 and Syed Riyaz-Ul-Hassan1* Abstract This study was conducted to characterize and explore the endophytic fungi of selected plants from the Western Himalayas for their bioactive potential. A total of 72 strains of endophytic fungi were isolated and characterized morphologically as well as on the basis of ITS1-5.8S-ITS2 ribosomal gene sequence acquisition and analyses. The fungi represented 27 genera of which two belonged to Basidiomycota, each representing a single isolate, while the rest of the isolates comprised of Ascomycetous fungi. Among the isolated strains, ten isolates could not be assigned to a genus as they displayed a maximum sequence similarity of 95% or less with taxonomically characterized organisms. Among the host plants, the conifers, Cedrus deodara, Pinus roxburgii and Abies pindrow harbored the most diverse fungi, belonging to 13 different genera, which represented almost half of the total genera isolated. Several extracts prepared from the fermented broth of these fungi demonstrated strong bioactivity against E. coli and S. aureus with the lowest IC50 of 18 μg/ml obtained with the extract of Trichophaea abundans inhabiting Pinus sp. In comparison, extracts from only three endophytes were significantly inhibitory to Candida albicans, an important fungal pathogen. Further, 24 endophytes inhibited three or more phytopathogens by at least 50% in co-culture, among a panel of seven test organisms. -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
Microascaceae)
PERSOONIA Published by the Rijksherbarium, Leiden Part. Volume 7, 3, 367-375 (1973) The genera Petriellidium and Pithoascus (Microascaceae) J.A. von Arx Centraalbureau The Netherlands voor Schimmelcultures, Baarn, the and the of Keys are given to genera of the Microascaceae to species Petriellidium and Pithoascus. In Petriellidium six species are accepted, P. desertorum, P. ellipsoideum, P. fusoideum, and P. africanum are described as new. In Pithoascus also six species are enumerated, P. platysporus and P. stoveri are the described as new, for Microascus exsertus Skou combination Pithoascus exsertus is proposed. Introduction The family Microascaceae, covering five genera of ascomycetes, has been treated by for Malloch (1970). Microascus, Petriella and Lophotrichus are accepted species with non-ostiolate classifiedin Kerniaand the ostiolateascomata; the counterparts are new Petriellidium. A further Pithoascus has been Arx genus genus proposed by von (1973) for some species hitherto classified in Microascus. The Microascaceae be the characteristics ofthe can easily recognized by ascospores, which are one-celled, smooth, relatively small, yellowish, straw coloured, reddish or dextrinoid when and with often indistinct copper coloured, young, an or inconspi- both ends. The formationof conidia is characteristic in of cuous germ pore at most the genera. Typical Microascus and Kernia species include a Scopulariopsis or War- have like conidial domyces conidialstate; all Petriella species a Graphium- state, and in ali Petriellidium and oftenalso conidial is species a Scedosporium- a Graphium- state present. No conidial states are known in Lophotrichus- and Pithoascus-species. The latter genus also be the slow of the colonies and can recognized by very growth by glabrous which be ostiolate non-ostiolate. -
Miller 138..147
Chlorostroma subcubisporum gen. et sp. nov. and notes on the systematic position of Thuemenella cubispora A. N. Miller1, Larissa N. Vasilyeva2 & Jack D. Rogers3 1 Section for Biodiversity, Illinois Natural History Survey, Champaign, Illinois 61820-6970 USA 2 Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Vladivostok 690022 Russia 3 Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430 USA Miller A. N., L. N. Vasilyeva & J. D. Rogers (2007) Chlorostroma sub- cubisporum gen. et. sp. nov. and notes on the systematic position of Thuemenella cubispora. Sydowia 59: xxx-xxx. Chlorostroma subcubisporum is a new genus and species erected to accom- modate a taxon featuring a green stroma bearing perithecia, asci with an apex that does not become blue in iodine, and subcubical brown ascospores with a promi- nent germination slit. The two extant collections are inhabitants of Hypoxylon stromata from North Carolina. Although this taxon seems to be a member of family Xylariaceae (Xylariales, Ascomycota), its position is equivocal owing to anomalies in cultures and molecular data. Thuemenella cubispora, which C. subcubisporum resembles in general ascus and ascospore morphology, was tentatively considered by others to be a member of family Xylariaceae primarily on the basis of its Nodulisporiumlike anamorph. Molecular data presented herein supports this taxonomic disposition. Keywords: ascomycetes, pyrenomycetes, Great Smoky Mountains National Park. In the course of a survey of the mycobiota of the Great Smoky Mountains National Park in North Carolina we collected a pyr- enomycetous fungus inhabiting stromata of Hypoxylon perforatum (Schwein.:Fr.) Fr. that we believe to represent a previously unde- scribed genus and species. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Discovery of the Teleomorph of the Hyphomycete, Sterigmatobotrys Macrocarpa, and Epitypification of the Genus to Holomorphic Status
available online at www.studiesinmycology.org StudieS in Mycology 68: 193–202. 2011. doi:10.3114/sim.2011.68.08 Discovery of the teleomorph of the hyphomycete, Sterigmatobotrys macrocarpa, and epitypification of the genus to holomorphic status M. Réblová1* and K.A. Seifert2 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43, Průhonice, Czech Republic; 2Biodiversity (Mycology and Botany), Agriculture and Agri- Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: Sterigmatobotrys macrocarpa is a conspicuous, lignicolous, dematiaceous hyphomycete with macronematous, penicillate conidiophores with branches or metulae arising from the apex of the stipe, terminating with cylindrical, elongated conidiogenous cells producing conidia in a holoblastic manner. The discovery of its teleomorph is documented here based on perithecial ascomata associated with fertile conidiophores of S. macrocarpa on a specimen collected in the Czech Republic; an identical anamorph developed from ascospores isolated in axenic culture. The teleomorph is morphologically similar to species of the genera Carpoligna and Chaetosphaeria, especially in its nonstromatic perithecia, hyaline, cylindrical to fusiform ascospores, unitunicate asci with a distinct apical annulus, and tapering paraphyses. Identical perithecia were later observed on a herbarium specimen of S. macrocarpa originating in New Zealand. Sterigmatobotrys includes two species, S. macrocarpa, a taxonomic synonym of the type species, S. elata, and S. uniseptata. Because no teleomorph was described in the protologue of Sterigmatobotrys, we apply Article 59.7 of the International Code of Botanical Nomenclature. We epitypify (teleotypify) both Sterigmatobotrys elata and S. macrocarpa to give the genus holomorphic status, and the name S. -
Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´
Hindawi International Journal of Microbiology Volume 2020, Article ID 6582514, 9 pages https://doi.org/10.1155/2020/6582514 Research Article Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´ Eveleise SamiraMartins Canto ,1,2 Ana Clau´ dia AlvesCortez,3 JosianeSantana Monteiro,4 Flavia Rodrigues Barbosa,5 Steven Zelski ,6 and João Vicente Braga de Souza3 1Programa de Po´s-Graduação da Rede de Biodiversidade e Biotecnologia da Amazoˆnia Legal-Bionorte, Manaus, Amazonas, Brazil 2Universidade Federal do Oeste do Para´, UFOPA, Santare´m, Para´, Brazil 3Instituto Nacional de Pesquisas da Amazoˆnia, INPA, Laborato´rio de Micologia, Manaus, Amazonas, Brazil 4Museu Paraense Emilio Goeldi-MPEG, Bele´m, Para´, Brazil 5Universidade Federal de Mato Grosso, UFMT, Sinop, Mato Grosso, Brazil 6Miami University, Department of Biological Sciences, Middletown, OH, USA Correspondence should be addressed to Eveleise Samira Martins Canto; [email protected] and Steven Zelski; [email protected] Received 25 August 2019; Revised 20 February 2020; Accepted 4 March 2020; Published 9 April 2020 Academic Editor: Giuseppe Comi Copyright © 2020 Eveleise Samira Martins Canto et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aquatic ecosystems in tropical forests have a high diversity of microorganisms, including fungi, which -
Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.