Mosses Are Often Overlooked and Although Many Are Quite Small, They Play a Vital Role in Most Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Mosses Are Often Overlooked and Although Many Are Quite Small, They Play a Vital Role in Most Ecosystems Plant of the Week MMoosssseess When considering plants, mosses are often overlooked and although many are quite small, they play a vital role in most ecosystems. We usually think of mosses as conspicuous components of wet habitats, rainforests, swamps, creek and river banks, but when you know what to look for, and how to look, you will find mosses in some pretty harsh environments: in deserts; alpine, arctic and subantarctic regions; even round volcanic fumaroles. Don’t forget, they are plants and they do carry out photosynthesis but they produce spores rather than flowers and they don’t have an internal conducting (vascular) system. Hypnodendron \vitiense subsp. australe Bryophytes are probably more important than many other divisions of the plant kingdom because of their interaction with water. Mosses are able to hold amazing quantities of moisture between their minute, often finely sculptured, overlapping leaves and fine, massed rhizoids (root like structures). In rainforests, mosses reduce the velocity of water and minimize erosion processes; mosses and liverworts in tree canopies can absorb moisture as if they were giant sponges, humidifying the forest for long periods after rain. In deserts, where they are Ptychomnion aciculare Mosses from Werrikimbe National Park in northern NSW Dawsonia superba components of biological soil crusts (complex combinations of algae, fungi, lichens, mosses and liverworts), mosses have the ability to rapidly absorb and store moisture from dew or fog. They stabilize desert soils and protect dunes from erosion by wind and flash flooding. They also contribute to the fertility of desert soils, and enhance the survival of ephemeral, annual and perennial seedlings. The ancestors of modern day mosses are believed to have moved from the sea to the land in the late Ordovician ~ 450 million years before present, although the Carboniferous is more usually accepted for origin and expansion of mosses. Until recently, mosses were considered to be one class (Musci) of the division Bryophyta of the Plant Kingdom. The other two classes were the liverworts (Hepaticae) and the hornworts (Anthocerotae). Using modern molecular techniques, botanists have now elevated each of these classes to divisions of the plant kingdom, so now only mosses belong to the Division Bryophyta, liverworts are placed in the Division Marchantiophyta and hornworts in the Division Anthocerophyta. All three divisions are now collectively referred to as “Embryophytes”, that is, land plants that do not have a vascular system. Some mosses do have elements of conducting systems, but as they lack lignin, they are not considered to be true “vascular plants”. There are currently a number of bryophyte studies being undertaken by researchers in the Department of Biological Sciences at Macquarie University. These include a study of bryophyte distribution in Nothofagus moorei forests of northern NSW by Ross Peacock and Alison Downing; taxonomy of the Trematodon, Pohlia, Mniaceae and Sematophyllaceae by Helen Ramsay; studies of bryophytes of biological soil crusts of the Gurbantunggut Desert of north-western China by Alison Downing working with Professor Zhang Yuan Ming and other researchers and students of the Chinese Academy of Sciences; and bryophytes of sub-Antarctic islands (Macquarie Island, Heard Island and Iles Kerguelen) by Patricia Selkirk. Professor R. D. Seppelt from the Australian Antarctic Division in Hobart, has very kindly allowed us to display some of his scientific illustrations of Australian mosses. Nothofagus moorei (Antarctic Beech) forest in Alison & Kevin Downing, Werrikimbe National Park in northern NSW. Mosses Department of Biological are abundant on beech buttresses, fallen logs and rocks. Sciences, 21.05.2012 .
Recommended publications
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES BRACHYTHECIACEAE A.J. FIFE Fascicle 46 – JUNE 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 46, Brachytheciaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-65-1 (pdf) ISBN 978-0-478-34747-0 (set) 1. Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.16(931) DC 588.20993 DOI: 10.7931/w15y-gz43 This work should be cited as: Fife, A.J. 2020: Brachytheciaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 46. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/w15y-gz43 Date submitted: 9 May 2019 ; Date accepted: 15 Aug 2019 Cover image: Eurhynchium asperipes, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 6828, CHR 449024. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1
    [Show full text]
  • Chapter 3-1 Sexuality: Sexual Strategies Janice M
    Glime, J. M. and Bisang, I. 2017. Sexuality: Sexual Strategies. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 1. 3-1-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 2 April 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SEXUALITY: SEXUAL STRATEGIES JANICE M. GLIME AND IRENE BISANG TABLE OF CONTENTS Expression of Sex............................................................................................................................................... 3-1-2 Unisexual and Bisexual Taxa............................................................................................................................. 3-1-2 Sex Chromosomes....................................................................................................................................... 3-1-6 An unusual Y Chromosome........................................................................................................................ 3-1-7 Gametangial Arrangement.......................................................................................................................... 3-1-8 Origin of Bisexuality in Bryophytes ................................................................................................................ 3-1-11 Monoicy as a Derived/Advanced Character.............................................................................................. 3-1-11 Anthocerotophyta and Multiple Reversals...............................................................................................
    [Show full text]
  • On the Branch Primordia Structure in the Basal Pleurocarpous Mosses (Bryophyta) Особенности Строения Зачатков Веточек В Базальных Группах Бокоплодных Мхов Ulyana N
    Arctoa (2012) 21: 221-236 ON THE BRANCH PRIMORDIA STRUCTURE IN THE BASAL PLEUROCARPOUS MOSSES (BRYOPHYTA) ОСОБЕННОСТИ СТРОЕНИЯ ЗАЧАТКОВ ВЕТОЧЕК В БАЗАЛЬНЫХ ГРУППАХ БОКОПЛОДНЫХ МХОВ ULYANA N. SPIRINA1,2, MASAKI SHIMAMURA3 & MICHAEL S. IGNATOV2 УЛЬЯНА Н. СПИРИНА1,2, МАСАКИ ШИМАМУРА3 И МИХАИЛ С. ИГНАТОВ2 Abstract The development of leaves on branch primordia is studied in Ptychomniales, Hookeriales, and basal families of the Hypnales, including the Trachylomataceae, Plagiotheciaceae, Acrocladiaceae, etc. Many of them are characterized by “lacking pseudoparaphyllia”. However, the definition of this character remains vague. In order to avoid misleading terminology, we suggest distinguishing, with certain refinements, the Bryum-type and Climacium-type of branch primordia. Their main difference concerns the origin of the most proximal branch leaves: in the Climacium-type, they are derived from cells that are the first merophytes produced by the branch apical cell, while in the Bryum-type, the first merophytes do not produce leaves and the first branch leaves appear on branch primordia from cells that are later descendants of the branch apical cell. The Bryum-type is often associated with a leaf deep splitting to its base into separate segments, and appearing as independent structures (and some- times referred to “pseudoparaphyllia”) although originating from a single merophyte as a compound leaf. Bryum-type branch primordia are characteristic of basal groups of pleurocarpous mosses, while Climacium-type is represented in most of advanced families. Резюме Рассматривается развитие листьев в в базальных группах бокоплодных мхов (Ptychomniales, Hookeriales и базальных семействах порядка Hypnales), которые часто описываются как не имеющие псевдопарафиллий. Вместе с тем последний термин понимается разными авторами очень неоднозначно, и более информативным, по-видимому, следует считать подразделение зачатков веточек на Bryum- и Climacium-типы, с некоторыми уточнениями.
    [Show full text]
  • Non-Ruminants
    Glime, J. M. 2018. Large Mammals – Non-Ruminants. Chapter 18-3. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 18-3-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 18-3 LARGE MAMMALS – NON-RUMINANTS TABLE OF CONTENTS Canidae – Dogs .................................................................................................................................................................... 18-3-2 Macropodidae – Wallabies and Kangaroos .......................................................................................................................... 18-3-2 Dendrolagus – Tree Kangaroo ..................................................................................................................................... 18-3-7 Macropus – Australian Wallabies (and others) ............................................................................................................ 18-3-8 Vombatidae – Wombats ....................................................................................................................................................... 18-3-8 Phalangeridae ....................................................................................................................................................................... 18-3-9 Common Brushtail Possum – Trichosurus vulpecula .................................................................................................
    [Show full text]
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES PTYCHOMNIACEAE A.J. FIFE Fascicle 43 – FEBRUARY 2019 © Landcare Research New Zealand Limited 2019. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: “Source: Manaaki Whenua – Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Manaaki Whenua – Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951– Flora of New Zealand : mosses. Fascicle 43, Ptychomniaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2019. 1 online resource ISBN 978-0-947525-55-2 (pdf) ISBN 978-0-478-34747-0 (set) 1.Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua – Landcare Research New Zealand Ltd. UDC 582.344.937(931) DC 588.20993 DOI: 10.7931/B1QE12 This work should be cited as: Fife, A.J. 2019: Ptychomniaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 43. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B1QE12 Date submitted: 7 Feb 2018; Date accepted: 2 Jul 2018 Cover image: Hampeella alaris, habit. Drawn by Rebecca Wagstaff from A.J. Fife 6614, CHR 405723. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1
    [Show full text]
  • Families and Genera of Mosses No Longer Believed to Occur in Sub-Saharan Africa 119
    Families and genera of mosses no longer believed to occur in sub-Saharan Africa 119 Tropical Bryology 18: 119-127, 2000. Families and genera of mosses no longer believed to occur in sub-Saharan Africa Brian J. O’Shea 1 & Ryszard Ochyra 2 1141 Fawnbrake Avenue, London SE24, UK. E-mail: [email protected] 2Laboratory of Bryology, Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, PL-31-512 Kraków, Poland. E-mail: [email protected] Abstract: Twelve genera are excluded from the sub-Saharan Africa checklist based on evidence from literature or re-identification. Atractylocarpus, Chorisodontium, Ctenidium, Dicranodontium, Homalia, Isothecium, Lasiodontium, Meesia and Potamium are excluded as the collections belong to other genera, and Camptochaete, Phyllodrepanium and Ptychomnion are excluded because of evidence of mistaken (or no longer existing) localities. As a consequence, the following families no longer are known from Africa: Echinodiaceae, Lembophyllaceae, Phyllodrepaniaceae and Ptychomniaceae. Ectropothecium nishimurii O’Shea & Ochyra, nom. nov. replaces Ectropothecium mauritianum (Broth.) Nishimura, hom. illeg., and Kindbergia kenyae (Dixon ex Tosco & Piovano) O’Shea & Ochyra, comb. nov. replaces Isothecium kenyae Dixon ex Tosco & Piovano. Lasiodontium mieheanum Ochyra in S. Miehe & G. Miehe, nom. nud., is a synonym of Daltonia angustifolia Dozy & Molk. and accordingly Lasiodontium Ochyra in S. Miehe & G. Miehe, nom. nud., must be placed in synonymy with Daltonia Hook. & Taylor. Introduction large quantity of data. The project to create a Guide to the bryophytes of sub-Saharan Africa The African moss checklist (O’Shea 1995) was has required all the families and genera to be built from checklists already produced by other reviewed, which provides a further opportunity authors, which in turn were mainly based on earlier to review the quality of this data, and to align the literature.
    [Show full text]
  • The Victorian Naturalist
    J The Victorian Naturalist Volume 113(1) 199 February Club of Victoria Published by The Field Naturalists since 1884 MUSEUM OF VICTOR A 34598 From the Editors Members Observations As an introduction to his naturalist note on page 29, George Crichton had written: 'Dear Editors late years the Journal has become I Was not sure if it was of any relevance, as of ' very scientific, and ordinary nature reports or gossip of little importance We would be very sorry if members felt they could not contribute to The Victorian Naturalist, and we assure all our readers that the editors would be more than pleased to publish their nature reports or notes. We can, however, only print material that we actually receive and you are encouraged to send in your observations and notes or suggestions for topics you would like to see published. These articles would be termed Naturalist Notes - see in our editorial policy below. Editorial Policy Scope The Victorian Naturalist publishes articles on all facets of natural history. Its primary aims are to stimulate interest in natural history and to encourage the publication of arti- cles in both formal and informal styles on a wide range of natural history topics. Authors may submit the material in the following forms: Research Reports - succinct and original scientific communications. Contributions - may consist of reports, comments, observations, survey results, bib- liographies or other material relating to natural history. The scope is broad and little defined to encourage material on a wide range of topics and in a range of styles. This allows inclusion of material that makes a contribution to our knowledge of natural his- tory but for which the traditional format of scientific papers is not appropriate.
    [Show full text]
  • Hypnaceaeandpossiblyrelatedfn
    HikobiaHikobial3:645-665.2002 13: 645-665. 2002 MolecularMolecularphylo窪enyOfhypnobrJ/aleanmOssesasin化rredfroma phylogeny of hypnobryalean mosses as inferred from a large-scalelar淫e-scaledatasetofchlOroplastlbcL,withspecialre他rencetothe dataset of chloroplast rbcL, with special reference to the HypnaceaeHypnaceaeandpOssiblyrelatedfnmilies1 and possibly related families I HIROMIHIRoMITsuBoTA,ToMoTsuGuARIKAwA,HIRoYuKIAKIYAMA,EFRAINDELuNA,DoLoREs TSUBOTA, TOMOTSUGU ARIKAWA, HIROYUKI AKIYAMA, EFRAIN DE LUNA, DOLORES GONZALEZ,GoNzALEz,MASANoBuHIGucHIANDHIRoNoRIDEGucHI MASANOBU HIGUCHI AND HIRONORI DEGUCHI TSUBOTA,TsuBoTA,H、,ARIKAwA,T,AKIYAMA,H,,DELuNA,E,GoNzALEz,,.,HIGucHI,M H., ARIKAWA, T., AKIYAMA, H., DE LUNA, E., GONZALEZ, D., HIGUCHI, M. 4 &&DEGucHI,H、2002.Molecularphylogenyofhypnobryaleanmossesasinferred DEGUCHI, H. 2002. Molecular phylogeny of hypnobryalean mosses as inferred fromfiPomalarge-scaledatasetofchloroplastr6cL,withspecialreferencetotheHypnaceae a large-scale dataset of chloroplast rbcL, with special reference to the Hypnaceae andandpossiblyrelatedfamiliesl3:645-665. possibly related families. 13: 645-665. ▲ PhylogeneticPhylogeneticrelationshipswithinthehypnobryaleanmosses(ie,theHypnales,Leuco- relationships within the hypnobryalean mosses (i.e., the Hypnales, Leuco­ dontales,dontales,andHookeriales)havebeenthefbcusofmuchattentioninrecentyears and Hookeriales) have been the focus of much attention in recent years. HereHerewepresentphylogeneticinfierencesonthislargeclade,andespeciallyonthe we present phylogenetic inferences
    [Show full text]
  • Ecological Studies of a Marine Terrace Sequence in the Waitutu Ecological District of Southern New Zealand
    Journal of the Royal Society of New Zealand ISSN: 0303-6758 (Print) 1175-8899 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzr20 Ecological studies of a marine terrace sequence in the Waitutu Ecological District of southern New Zealand. Part 2: The bryophyte communities R. S. Tangney To cite this article: R. S. Tangney (1988) Ecological studies of a marine terrace sequence in the Waitutu Ecological District of southern New Zealand. Part 2: The bryophyte communities, Journal of the Royal Society of New Zealand, 18:1, 59-78, DOI: 10.1080/03036758.1988.10421693 To link to this article: http://dx.doi.org/10.1080/03036758.1988.10421693 Published online: 05 Jan 2012. Submit your article to this journal Article views: 47 View related articles Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzr20 Download by: [203.118.166.96] Date: 31 January 2017, At: 18:19 ©Journal of the Royal Society of New Zealand Volume 18, Number 1, 1988, pp. 59-78 Ecological studies of a marine terrace sequence in the Waitutu Ecological District of southern New Zealand. Part 2: The bryophyte communities R. S. Tangney* The bryophyte communities ofthe Waitutu marine terrace sequence are described on the basis of quantitative sampling. Local frequency data were obtained for ground bryophytes and percent cover values for epiphytes. Patterns of quadrat and phorophyte groupings generated by Cluster Analysis are confirmed by Detrended Correspondence Analysis. The bryophyte patterns relate closely to the communities of vascular plants recognised on the terrace sequence and described by Mark et at.
    [Show full text]
  • Helen P. Ramsay1 and Andi Cairns2
    Cunninghamia 8(3): 2004 Ramsay & Cairns, Mosses in the Wet Tropics bioregion NE Queensland 371 Habitat, distribution and the phytogeographical affinities of mosses in the Wet Tropics bioregion, north–east Queensland, Australia. Helen P. Ramsay1 and Andi Cairns2 1National Herbarium of New South Wales, Royal Botanic Gardens, Sydney NSW 2000, AUSTRALIA. 2School of Tropical Biology, James Cook University, Townsville, Queensland 4811, AUSTRALIA. Abstract: A checklist of the mosses (Bryophyta) of the Wet Tropics bioregion, north-east Queensland is presented. Included is an update on the taxonomy of species, listing a total of 408 taxa. The habitat and distribution patterns of species within the area and in Australia, together with information on the phytogeographical affinities of these taxa in related areas beyond Australia, are discussed. Cunninghamia (2004) 8(3): 371–408 Dedication The authors present this work as a tribute to the memory of the late Ilma Stone (1913–2001) and Heinar Streimann (1938–2001), whose work in the area formed the basis for these studies. The work began in the 1980s, between 1984 and 1998 with Ilma Stone, whose taxonomic studies and data from collections made in the area over many years were immeasurable. Heinar Streimann assisted later in the 1990s, with various taxonomic contributions and data from many collections. Without their assistance and knowledge, the work would not have been written. Their deaths in January 2001 and August 2001 respectively were a serious and tragic blow to Australian bryology. Introduction Mosses and liverworts, the major groups of bryophytes, are a Bryophytes in rainforests significant component of the biodiversity in the Australian For bryophytes, rainforests provide niches largely absent in wet tropics, in north-east Queensland, occurring in all other communities (Pócs 1982, Richards 1984, Gradstein ecosystems as colonisers of soil, rocks, fallen logs, and as 1992) including soil, earth banks, rocks, fallen trees and epiphytes and epiphylls.
    [Show full text]
  • Volume 2, Chapter 12-7: Terrestrial Insects: Hemimetabola
    Glime, J. M. 2017. Terrestrial Insects: Hemimetabola – Hemiptera (Non-Heteroptera) and Thysanoptera. Chapter 12-7. In: Glime, 12-7-1 J. M. Bryophyte Ecology. Volume 2. Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-7 TERRESTRIAL INSECTS: HEMIMETABOLA – HEMIPTERA (NON- HETEROPTERA) AND THYSANOPTERA TABLE OF CONTENTS SUBORDER AUCHENORRHYNCHA .......................................................................................................... 12-7-2 CICADOMORPHA .................................................................................................................................. 12-7-2 Cicadellidae – Leaf Hoppers .............................................................................................................. 12-7-2 FULGOROMORPHA – PLANTHOPPERS ............................................................................................ 12-7-5 Delphacidae – Delphacid Planthoppers ............................................................................................. 12-7-5 Derbidae – Planthoppers .................................................................................................................... 12-7-6 Issidae – Planthoppers........................................................................................................................ 12-7-7 SUBORDER STERNORRHYNCHA .............................................................................................................
    [Show full text]
  • A Revised Checklist of Hawaiian Mosses
    Tropical Bryology 25: 35-69, 2004 A revised checklist of Hawaiian mosses G. W. Staples, C. T. Imada, W. J. Hoe, and C. W. Smith Correction for Page 38: Hawaiian Moss Flora in Summary Endemic Indigenous Alien Total Families 0 41 1 42 Genera 2 126 7 135 Species 75 166 14 255 Total named taxa 90 169 14 273 Correction for Page 39: Frahm et al. 2000, cited under Amphidium tortuosum, should correctly refer to the following: Frahm, J.-P., T. Klöcker, R. Schmidt, and C. Schöter. 2000. Revision der Gattung Amphidium (Musci, Dicranaceae). Tropical Bryology 18: 173-184. Revised checklist of Hawaiian mosses 35 Tropical Bryology 25: 35-69, 2004 A revised checklist of Hawaiian mosses1 G. W. StaplesA, C. T. ImadaA, W. J. Hoe,B and C. W. SmithC A – Hawaii Biological Survey, Bishop Museum, 1525 Bernice St., Honolulu, Hawaii 96817 U.S.A. B – deceased; C – Department of Botany, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. Abstract. A revised and updated literature-based checklist of Hawaiian mosses is presented. Geographic coverage includes the eight main Hawaiian Islands; the Northwestern Hawaiian Islands are excluded. The checklist is alphabetically ordered by scientific names; the family is noted for each genus. Synonyms and misapplied names are cross-referenced to the accepted names. A bibliography of supporting references is included. Introduction cryptogamic plants—the mosses. Also in The Hawaii Biological Survey (HBS) was preparation by HBS staff members are checklists established as a program of Bishop Museum by and bibliographies for the Hawaiian anthocerotes the Hawaii State Legislature in 1992, specifically (hornworts) and hepatics (liverworts).
    [Show full text]