Erths Dinosaur Zoo Live! Study Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Australian Sauropods Shed Light on Cretaceous Dinosaur Palaeobiogeography Received: 15 April 2016 Stephen F
www.nature.com/scientificreports OPEN New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography Received: 15 April 2016 Stephen F. Poropat1,2,*,, Philip D. Mannion3,*, Paul Upchurch4,*, Scott A. Hocknull5, Accepted: 13 September 2016 Benjamin P. Kear1,6, Martin Kundrát7,8, Travis R. Tischler2, Trish Sloan2, George H. K. Sinapius2, Published: 20 October 2016 Judy A. Elliott2 & David A. Elliott2 Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian–Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America. -
Prehistoric Australia Quiz Space
PREHISTORIC AUSTRALIA QUIZ SPACE How much do you know about prehistoric Australia? In what era did dinosaurs live? Which living animal is the a) Palaeozoic ammonite group most closely b) Mesozoic related to? c) Cenozoic a) Jellyfish b) Starfish Which of these Australian c) Crab dinosaurs was a meat-eater? d) Squid a) Diamantinasaurus b) Minmi Which of these prehistoric animals c) Australovenator was a sea creature? a) Tyrannosaurus Which one of the following is b) Brontosaurus not a well-known Australian c) Minmi dinosaur site? d) Kronosaurus a) Broome, Western Australia b) Winton, Queensland Which of these prehistoric animals c) Bathurst, New South Wales was capable of flying? d) Dinosaur Cove, Victoria a) Minmi b) Woolungasaurus Australia was once part of c) Mythunga the great southern land d) Platypterygius called Gondwana. a) True What plants dominated Australia’s b) False forests during the Mesozoic? a) Eucalypts Which part of the b) Terrestrial grasses Australian continent did the c) Giant conifers ancient Eromanga Sea once roughly cover? What event is thought to a) Great Sandy Desert have caused the extinction b) Great Australian Bight of the dinosaurs? c) Great Artesian Basin a) A meteorite hitting Earth d) Great Barrier Reef b) An ice age c) A tsunami www.nma.gov.au/kspace PREHISTORIC AUSTRALIA SPACE QUIZ ANSWERS How much do you know about prehistoric Australia? In what era did dinosaurs live? Which living animal is the a) Palaeozoic ammonite group most closely b) Mesozoic related to? c) Cenozoic a) Jellyfish b) Starfish Which -
Neural Spine Bifurcation in Sauropods Palarch’S Journal of Vertebrate Palaeontology, 10(1) (2013)
Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) NEURAL SPINE BIFURCATION IN SAUROPOD DINOSAURS OF THE MORRISON FORMATION: ONTOGENETIC AND PHYLOGENETIC IMPLICATIONS Mathew J. Wedel* & Michael P. Taylor# *Corresponding author. College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA. [email protected] #Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. [email protected] Wedel, Mathew J. & Michael P. Taylor. 2013. Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications. – Pal- arch’s Journal of Vertebrate Palaeontology 10(1) (2013), 1-34. ISSN 1567-2158. 34 pages + 25 figures, 2 tables. Keywords: sauropod, vertebra, neural spine, ontogeny, Morrison Formation AbsTrAcT It has recently been argued that neural spine bifurcation increases through ontogeny in several Morrison Formation sauropods, that recognition of ontogenetic transforma- tion in this ‘key character’ will have sweeping implications for sauropod phylogeny, and that Suuwassea and Haplocanthosaurus in particular are likely to be juveniles of known diplodocids. However, we find that serial variation in sauropod vertebrae can mimic on- togenetic change and is therefore a powerful confounding factor, especially when deal- ing with isolated elements whose serial position cannot be determined. When serial po- sition is taken into account, there is no evidence that neural spine bifurcation increased over ontogeny in Morrison Formation diplodocids. Through phylogenetic analysis we show that neural spine bifurcation is not a key character in sauropod phylogeny and that Suuwassea and Haplocanthosaurus are almost certainly not juveniles of known diplodo- cids. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
STUDY GUIDE What to Know About This Relaxed Show
STUDY GUIDE What to know about this relaxed show: There will be dinosaurs! And, yes dinos make noise, stomp around and are really big. But we will be making accommodations to make sure they aren’t as loud and scary as you might think. For this show: • Lights in the theatre will stay low during the show, instead of turning all the way off. • The sound levels will be lowered when needed. • Fidgets, headphones, and weighted toys will be available to help children feel more organized and settled. • Even though we will lower the sound and ease the lights we want to make sure it’s a great experience. • A quiet room will be available if children need to leave the theatre to feel more settled or regroup during the show. • The dinos will limit their engagement in the audience, but you may come up on stage if invited. To get an idea of what the show will be like before we make adjustments, visit these weblinks: https://www.youtube.com/watch?v=67z2GSCSlIg https://www.youtube.com/watch?v=_-0n8OgV7IU INTRODUCTION This publication was created as a study guide for students preparing to see Erth’s DINOSAUR ZOO Live™ which is touring theatres throughout North America beginning January 2014. Erth’s DINOSAUR ZOO Live™ takes the audience on a tour through pre- historic Australia, bringing an eye-popping array of ancient creatures to life on stage. They will observe and interact with extraordinarily life-like creatures, just like those that inhabited the Southern Hemisphere millions of years ago. -
Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur. -
Fossil Focus: Dinosaurs Down Under Author(S): Stephen F
www.palaeontologyonline.com |Page 1 Title: Fossil Focus: Dinosaurs Down Under Author(s): Stephen F. Propat *1 Volume: 5 Article: 1 Page(s): 1-11 Published Date: 01/01/2015 PermaLink: http://www.palaeontologyonline.com/articles/2015/fossil-focus-dinosaurs/ IMPORTANT Your use of the Palaeontology [online] archive indicates your acceptance of Palaeontology [online]'s Terms and Conditions of Use, available at http://www.palaeontologyonline.com/site-information/terms-and-conditions/. COPYRIGHT Palaeontology [online] (www.palaeontologyonline.com) publishes all work, unless otherwise stated, under the Creative Commons Attribution 3.0 Unported (CC BY 3.0) license. This license lets others distribute, remix, tweak, and build upon the published work, even commercially, as long as they credit Palaeontology[online] for the original creation. This is the most accommodating of licenses offered by Creative Commons and is recommended for maximum dissemination of published material. Further details are available at http://www.palaeontologyonline.com/site-information/copyright/. CITATION OF ARTICLE Please cite the following published work as: Propat, Stephen F.. 2015. Fossil Focus: Dinosaurs Down Under, Palaeontology Online, Volume 5, Article 1, 1- 11. Published by: Palaeontology [online] www.palaeontologyonline.com |Page 2 Fossil Focus: Dinosaurs Down Under by Stephen F. Poropat*1,2 Introduction: Ask the average person in the street to name an Australian dinosaur, and you will be lucky if you get a correct answer. If they say crocodile, they are in the right postcode but have the wrong address. If they say emu, then they are correct, strictly speaking, but they are either lucky or being smart. If they say kangaroo, back away slowly and avoid eye contact. -
Osteological Revision of the Holotype of the Middle
Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979 Femke Holwerda, Oliver W.M. Rauhut, Pol Diego To cite this version: Femke Holwerda, Oliver W.M. Rauhut, Pol Diego. Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979. 2020. hal-02977029 HAL Id: hal-02977029 https://hal.archives-ouvertes.fr/hal-02977029 Preprint submitted on 27 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Osteological revision of the holotype of the Middle Jurassic sauropod 2 dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) 3 BONAPARTE 1979 4 5 Femke M Holwerda1234, Oliver W M Rauhut156, Diego Pol78 6 7 1 Staatliche Naturwissenscha�liche Sammlungen Bayerns (SNSB), Bayerische Staatssamlung für 8 Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 München, Germany 9 10 2 Department of Geosciences, Utrecht University, Princetonlaan, 3584 CD Utrecht, 10 Netherlands 11 12 3 Royal Tyrrell Museum of Palaeontology, Drumheller, AlbertaT0J 0Y0, Canada (current) 13 14 4 Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen- 15 Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany 16 17 5 Department für Umwelt- und Geowissenscha�en, Ludwig-Maximilians-Universität München, Richard- 18 Wagner-Str. -
Triassic Jurassic C Re Tac E O Us
Australovenator Winton wintonensis It may have had feathers Oss-trah-low-ven-ah-tore win-ton-enn-siss or a scaly skin. Cretaceous Its nickname is ‘Banjo’ in honour of Banjo Patterson who wrote Waltzing Matilda. Carnivore Jurassic Type: Theropod The ‘cheetah’ of the dinosaur world. Its long, muscly legs made it a fast runner. Triassic Illustration by Lida Xing Diamantinasaurus Winton matildae Herbivore Di-ah-man-teen-ah-sore-us mah-till-day Cretaceous Matilda was longer than a bus. The fossil was found in an ancient billabong. Its nickname is ‘Matilda, from Banjo Patterson’s Type: Sauropod Jurassic Waltzing Matilda. Triassic Illustration by Lida Xing Leaellynasaura amicagraphica Dinosaur Cove Lay-ell-inn-ah-sore-ah am-ick-ah-graf-ick-ah Cretaceous It had a very long tail, the longest of any dinosaur, relative to its body size. Herbivore It lived in the cold, close to the Antarctic Circle. Jurassic Type: Ornithopod Known as the ‘dinosaur of the darkness’. It had large eyes to help it see in the dark. Triassic Illustration by Lida Xing Minmi paravertebra Roma Min-mee pah-rah-vert-eh-brah Cretaceous Herbivore It didn’t have a club on the end of its tail like other ankylosaurs. The most complete fossil of an Australian dinosaur. Jurassic It had bony armour on its back to protect it from carnivores. Type: Ankylosaur Triassic Illustration by Lida Xing Muttaburrasaurus langdoni Muttaburra Mutt-ah-burr-ah-sore-us lang-don-eye It had a horny beak to snip off tough leaves and could have given a powerful bite. -