NHBSS 049 2O Rundel Photo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Name in Thesis
ปัจจัยที่มีผลต่อการกระจายของขนาด การงอก และความอยู่รอดของต้นกล้า และไม้หนุ่มของพืชวงศ์โปโดคาร์เปชีอี ณ อุทยานแห่งชาติเขาใหญ่ ประเทศไทย นางสาวเจมิกา อัครเศรษฐนนท์ วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาชีววิทยาสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2557 FACTORS AFFECTING SIZE DISTRIBUTION, SEED GERMINATION, AND SEEDLING AND SAPLING SURVIVAL OF PODOCARPACEAE AT KHAO YAI NATIONAL PARK, THAILAND Jemika Akkarasadthanon A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Biology Suranaree University of Technology Academic Year 2014 ACKNOWLEDGMENTS The grateful thanks and appreciation is given to my advisor, Dr. Paul J. Grote, for his consistent supervision, advice, encouragement, valuable suggestions, and support throughout my project. Special thanks are also extended to Assoc. Prof. Dr. Nooduan Muangsan, Asst. Prof. Dr. Pongthep Suwanwaree, and Asst. Prof. Dr. Adcharaporn Pagdee for valuable suggestions and guidance given as thesis co- advisors. I would like to thank all my thesis committee members for their suggestions and criticisms. I am also grateful to all the faculty and staff members of the School of Biology and colleagues of the Center for Scientific and Technological Equipment Building 1, 2 and 3, Suranaree University of Technology for their help and support throughout the period of this research work. I wish to thank Mr. Kunchit Srinopawan, and staff from Khao Yai National Park for their kind suggestions and helping for data collection according to the permit note number 0907.4/5923 on 31 March 2014 by the Department of National Parks Wildlife and Plant Conservation cited the National Research Council of Thailand 0002/1131 on 4 December 2013. I am grateful to Colin T. Strine and staff from Sakaerat Environmental Research Station for their helping me on data analysis. -
Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof. -
Occurrences of Mild Compression Wood in Agathis Borneensis and Dacrydium Elatum
378 IAWAIAWA Journal Journal 36 (4), 36 2015: (4), 2015 378–386 OCCURRENCES OF MILD COMPRESSION WOOD IN AGATHIS BORNEENSIS AND DACRYDIUM ELATUM Yoon Soo Kim1,*, Kwang Ho Lee1 and Andrew H. H. Wong2 1Department of Wood Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea 2Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia *Corresponding author; e-mail: [email protected] ABSTRACT Studies on the compression wood in tropical gymnosperms are uncommon due to their limited distribution and over-exploitation. Microscopic examination of the heartwood of two tropical gymnosperms, Agathis borneensis (local name: bindang, damar minyak) and Dacrydium elatum (local name: sempilor) grow- ing on higher elevations in Sarawak, Malaysia showed the occurrence of mild compression wood. Intercellular spaces were present in the compression wood of A. borneensis, but not in D. elatum. Rounded shapes of tracheids, typical of severe compression wood, were not observed in any of the samples examined. In D. elatum helical cavities were present, which corresponded in location to cell wall checks seen in cross-sectional views. The S1 layer was relatively thick in both wood species but a distinct S3 layer was observable only in the mild compression wood of D. elatum. Although the main feature of the mild com- pression wood tracheids of both wood species was greater lignification of the outer S2 region, autofluorescence and KMnO4 staining showed the fluorescence and staining intensity in the corner middle lamella in some cases to be much stronger than that in the outer part of S2 layer. -
Chromosome Numbers in Gymnosperms - an Update
Rastogi and Ohri . Silvae Genetica (2020) 69, 13 - 19 13 Chromosome Numbers in Gymnosperms - An Update Shubhi Rastogi and Deepak Ohri Amity Institute of Biotechnology, Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Malhaur (Near Railway Station), P.O. Chinhat, Luc know-226028 (U.P.) * Corresponding author: Deepak Ohri, E mail: [email protected], [email protected] Abstract still some controversy with regard to a monophyletic or para- phyletic origin of the gymnosperms (Hill 2005). Recently they The present report is based on a cytological data base on 614 have been classified into four subclasses Cycadidae, Ginkgoi- (56.0 %) of the total 1104 recognized species and 82 (90.0 %) of dae, Gnetidae and Pinidae under the class Equisetopsida the 88 recognized genera of gymnosperms. Family Cycada- (Chase and Reveal 2009) comprising 12 families and 83 genera ceae and many genera of Zamiaceae show intrageneric unifor- (Christenhusz et al. 2011) and 88 genera with 1104 recognized mity of somatic numbers, the genus Zamia is represented by a species according to the Plant List (www.theplantlist.org). The range of number from 2n=16-28. Ginkgo, Welwitschia and Gen- validity of accepted name of each taxa and the total number of tum show 2n=24, 2n=42, and 2n=44 respectively. Ephedra species in each genus has been checked from the Plant List shows a range of polyploidy from 2x-8x based on n=7. The (www.theplantlist.org). The chromosome numbers of 688 taxa family Pinaceae as a whole shows 2n=24except for Pseudolarix arranged according to the recent classification (Christenhusz and Pseudotsuga with 2n=44 and 2n=26 respectively. -
Palaeo Leaf Economics Reveal a Shift in Ecosystem Function Associated with the End-Triassic Mass Extinction Event
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318473239 Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event Article in Nature Plants · July 2017 DOI: 10.1038/nplants.2017.104 CITATIONS READS 7 428 7 authors, including: Wuu Kuang Soh Karen Bacon University College Dublin University of Leeds 14 PUBLICATIONS 79 CITATIONS 15 PUBLICATIONS 167 CITATIONS SEE PROFILE SEE PROFILE Margret Steinthorsdottir Andrew C Parnell Swedish Museum of Natural History Maynooth University 30 PUBLICATIONS 408 CITATIONS 103 PUBLICATIONS 5,129 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Mid-Cretaceous south polar forests View project Response of pan-Arctic permafrost peatlands to rapid climate warming View project All content following this page was uploaded by Wuu Kuang Soh on 24 March 2019. The user has requested enhancement of the downloaded file. ARTICLES PUBLISHED: XX XX 2017 | VOLUME: 3 | ARTICLE NUMBER: 17104 Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event W. K. Soh1*,I.J.Wright2,K.L.Bacon3, T. I. Lenz2, M. Steinthorsdottir4,5,A.C.Parnell6 and J. C. McElwain1 Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-time case study to evaluate the impact of a well-constrained CO2-induced global warming event on the ecological functioning of dominant plant communities. -
Kosipe Revisited
Peat in the mountains of New Guinea G.S. Hope Department of Archaeology and Natural History, Australian National University, Canberra, Australia _______________________________________________________________________________________ SUMMARY Peatlands are common in montane areas above 1,000 m in New Guinea and become extensive above 3,000 m in the subalpine zone. In the montane mires, swamp forests and grass or sedge fens predominate on swampy valley bottoms. These mires may be 4–8 m in depth and up to 30,000 years in age. In Papua New Guinea (PNG) there is about 2,250 km2 of montane peatland, and Papua Province (the Indonesian western half of the island) probably contains much more. Above 3,000 m, peat soils form under blanket bog on slopes as well as on valley floors. Vegetation types include cushion bog, grass bog and sedge fen. Typical peat depths are 0.5‒1 m on slopes, but valley floors and hollows contain up to 10 m of peat. The estimated total extent of mountain peatland is 14,800 km2 with 5,965 km2 in PNG and about 8,800 km2 in Papua Province. The stratigraphy, age structure and vegetation histories of 45 peatland or organic limnic sites above 750 m have been investigated since 1965. These record major vegetation shifts at 28,000, 17,000‒14,000 and 9,000 years ago and a variable history of human disturbance from 14,000 years ago with extensive clearance by the mid- Holocene at some sites. While montane peatlands were important agricultural centres in the Holocene, the introduction of new dryland crops has resulted in the abandonment of some peatlands in the last few centuries. -
Vietnamese Conifers and Some Problems of Their Sustainable Utilization Ke Loc Et Al
Vietnamese conifers and some problems of their sustainable utilization Ke Loc et al. Vietnamese conifers and some problems of their sustainable utilization Phan Ke Loc 1, 2, Nguyen Tien Hiep 2, Nguyen Duc To Luu 3, Philip Ian Thomas 4, Aljos Farjon 5, L.V. Averyanov 6, J.C. Regalado, Jr. 7, Nguyen Sinh Khang 2, Georgina Magin 8, Paul Mathew 8, Sara Oldfield 9, Sheelagh O’Reilly 8, Thomas Osborn 10, Steven Swan 8 and To Van Thao 2 1 University of Natural Science, Vietnam National University, Hanoi; 2 Institute of Ecology and Biological Resources; 3 Vietnam Central Forest Seed Company; 4 Royal Botanic Garden Edinburgh; 5 Royal Botanic Gardens, Kew; 6 Komarov Botanical Institute; 7 Missouri Botanical Garden; 8 Fauna & Flora International; 9 Global Trees Campaign; 10 Independent Consultant Introduction Vietnam is now recognized as one of the top ten global conifer conservation ‘hotspots’, as defined by the Conifer Specialist Group of the World Conservation Union (IUCN). Vietnam’s conifer flora has approximately 34 species that are indigenous to the country, making up about 5% of conifers known worldwide. Although conifers represent only less than 0.3% of the total number of higher vascular plant species of Vietnam, they are of great ecological, cultural and economic importance. Most conifer wood is prized for its high value in house construction, furniture making, etc. The decline of conifer populations in Vietnam has caused serious concern among scientists. Threats to conifer species are substantial and varied, ranging from logging (both commercial and subsistence), land clearing for agriculture, and forest fire. Over the past twelve years (1995-2006), Vietnam Botanical Conservation Program (VBCP), a scientific cooperation between the Missouri Botanical Garden in Saint Louis and the Institute of Ecology and Biological Resources in Hanoi, has conducted various studies on this important group of plants in order to gather baseline information necessary to make sound recommendations for their conservation and sustainable use. -
2. DACRYCARPUS (Endlicher) De Laubenfels, J. Arnold Arbor. 50: 315
Flora of China 4: 79. 1999. 2. DACRYCARPUS (Endlicher) de Laubenfels, J. Arnold Arbor. 50: 315. 1969. 鸡毛松属 ji mao song shu Podocarpus L’Héritier ex Persoon sect. Dacrycarpus Endlicher, Syn. Conif. 221. 1847; Bracteocarpus A. V. Bobrov & Melikyan. Trees or shrubs evergreen, dioecious (very rarely monoecious); trunk straight; main branches spreading or drooping; branchlets drooping or ascending, dense. Leaves dimorphic: juvenile leaves 2-ranked and forming an oblong-ovate branchlet outline, linear, not scalelike; adult leaves needlelike or scalelike, falcate, bilaterally or bifacially flattened, or not flattened, 0.8–1.5 mm. Pollen cones lateral (rarely terminal), solitary or few together; microsporophylls numerous, imbricate; microsporangia 2, abaxial. Seed-bearing structures terminal and often borne on short, lateral branchlets, pedunculate, with appressed or spreading, bractlike leaves at base of peduncle; apical 1 or 2 bracts fertile; basal bracts fused to form a succulent, warty receptacle; ovule inverted. Epimatium wholly enveloping seed, united with fertile bract(s) and together bearing a short, free apex forming an asymmetrically projecting crest on immature seed-bearing structure. Seed large. Nine species: from China and Myanmar to Fiji Islands and New Zealand; one species in China. 1. Dacrycarpus imbricatus (Blume) de Laubenfels var. patulus de Laubenfels, J. Arnold Arbor. 50: 320. 1969. 鸡毛松 ji mao song Bracteocarpus kawaii (Hayata) A. V. Bobrov & Meli- kyan; Podocarpus kawaii Hayata. Trees to 40 m tall; trunk to 2 m d.b.h.; bark superficially dark brown or blackish, weathering gray, red-brown and granular fibrous within, flaking in thin strips; crown spreading; branchlets stiff, erect. Juvenile leaves borne at 60–75° to branchlet axis, 0.2– 0.7 mm apart (branchlets 3–4 × 1.2–1.6 cm in outline), sessile, green or ± glaucous, linear, falcate to “S”- shaped, 6–10(–17) × 0.9–1.2 mm, stomata arranged in 2 whitish rows on abaxial surface, base decurrent, margin entire, apex obliquely incurved-apiculate, apiculus 0.2–0.3 mm. -
Dacrydium Elatum (Podocarpaceae) in the Montane Cloud Forest of Bokor Mountain, Cambodia
90 P.W. Rundel et al. Dacrydium elatum (Podocarpaceae) in the montane cloud forest of Bokor Mountain, Cambodia Philip W. RUNDEL1,*, M. Rasoul SHARIFI1, Judith KING-RUNDEL2 & David J. MIDDLETON3 1 Department of Ecology and Evolutionary Biology, University of California, 621 Charles E. Young Drive South, Los Angeles, California 90095, USA. 2 Department of Earth Sciences, California State University, Dominguez Hills, 1000 E. Victoria Street, Carson, California 90747, USA. 3 Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore 259569, Singapore. * Corresponding author. Email [email protected] Paper submitted 20 May 2016, revised manuscript accepted 29 July 2016. ɊɮɍɅʂɋɑɳȶɆſ əDŽɒɌɀɿ ƺȴɸɌɊɮ ɯɋɵɅɵƙɈɳɁȟɳǷǂɊɉɸƒɵɅɵƙɈƙɁȪɈɩȷ ǕȷƙɁȪɎLJɅɳȵˊȻɳǷɁɸɆɅɽȳƕȶɽǍɆɵɅȹɯɌɉɸƒȼɸɌȲɪ ɭƒȶəɃǚɅƺɁɩɆɮȲɳƵʆ ȹƙNjɍɳƸɃɳǷɃɩɑƴȶɁƓɮȶɵɅȹɯɌɉɸƒ Ʌɩȶ ȹɩɁɑɊɭƙɃɆɳȶˊžɁƺɁɸɆɅɽNjɅɍȲſȳʂɀƋ ɳɑˊɊȳɭɑƙɆƙȲɁɪ ɴȼɍNjɅȲɊƕɑɽɃɫȲɳɉƚȣȶɳɍˊɑ Ɉɪ ʕʐʐʐ Ɋ.Ɋ ɵɅȲɊƕɑɽɃɫȲɳɉƚȣȶƙɆƸɸƹƒ ɸ NjɅɑǁƊ Ʌƽȷɽʉ ɅɩȶNjɅǕɑɭɪɁȳƕɑɽʆ ɍȲſȳʂɀƋ DŽɸȶɳɅɹɆɳȶˊžɁɤƘNjɅɵƙɈɳɁȟ Ʌɩȶ Ƀɪ ȷɭɍƙɈɫȲƞɴȼɍNJȴɳƙȷˊɅƺƙɆɳɉɃ Dacrydiumȱ elatumȱ (Podocarpaceae)ʆ ɆɴƙɊɆƙɊȫɍɃɸɒɸɳȼˊɊɳȺˊƙɁȪɎLJɅƙɆɃɹɳȵˊȻ ȲɊƕɑɽƸɆɽɈɪ ʕ-ʗ Ɋ. ɳǷǂɊȹƙNjɍȹɩɁȲɸɈɮɍɅɩȶɆɅƎɌɒɮɁǂɊɁɸɆɅɽɆɴƙɊɆƙɊɍȫ Ʌɩȶ ȲɊƕɑɽȼɍɽ ʑʕ Ɋ. ȲɭƒȶɁɸɆɅɽɴȲƓɌɃɫȲDžƚ Ȳɽ ɈɈȲɎɍʆɩ ɑɫȲɴȼɍNjɅɑǁƚ Ɗ ɅȼɮȷȯɑƳɵɅɳȼˊɊɳȺˊɳɈȻɎɋʂ Ʌɩȶ ɑǁƊ ɅƙɃɴɎȶȯɑȷȷȫ ɭȶɵɅȲɮɅɌȲɭ ſƺɁɩƙɆɳɉɃ D.ȱ elatum ɆƷƟ ȻɈɪɃɸɳdžɌȲɃɩɑɈɅɬƚɳɄˊɌɑƛ ɪɑƗ ɸɳnjȴ ɳɒˊɋɍȲſɀɺɳɅɹȲʁɆƷƟ ȻɈɪƳɌɆɅǜɸɳǵɅɫȶɍȲſȳʂɀƋ ɈɈȲɳƙȷˊɅɵɅȹƙɊȲɳǷɉɸƒɆɮȲɳƵʆ ɃƙɊȶɽDŽɸȶɈɪɌLJɅƻɅȼɍɽ ʕʐ% ɵɅɔƙǂɔɁɩɆɌNjɵɅƳɌƙƺɆǃɊɈɍɈɅɬƚȲƙɊɩɁDŽɆȴɬƙɁɫɊɴɁ ʒʐʐɊɪƙȲȪɊɻɮɍ/ɴɊɻƙɁ/ ɎdžɃɩ ɪʆ ɔƙǂɔɁɩɆɌNjɵɅƳɌƙƺɆǃɊɈɍɈɅɬƚɳɓˊȶȳƕɑɽɌɒɮɁȼɍɽƙɆɴɒɍ ʘʐʐ ɊɪƙȲȪɊɻɮɍ/ɴɊɻƙɁ/ ɎdžɃɩ -
Republic of Fiji: the State of the World's Forest Genetic Resources
REPUBLIC OF FIJI This country report is prepared as a contribution to the FAO publication, The Report on the State of the World’s Forest Genetic Resources. The content and the structure are in accordance with the recommendations and guidelines given by FAO in the document Guidelines for Preparation of Country Reports for the State of the World’s Forest Genetic Resources (2010). These guidelines set out recommendations for the objective, scope and structure of the country reports. Countries were requested to consider the current state of knowledge of forest genetic diversity, including: Between and within species diversity List of priority species; their roles and values and importance List of threatened/endangered species Threats, opportunities and challenges for the conservation, use and development of forest genetic resources These reports were submitted to FAO as official government documents. The report is presented on www. fao.org/documents as supportive and contextual information to be used in conjunction with other documentation on world forest genetic resources. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO may not be held responsible for the use which may be made of the information contained in this report. STATE OF THE FOREST GENETIC RESOURCES IN FIJI Department of Forests Ministry of Fisheries and Forests for The Republic of Fiji Islands and the Secreatriat of Pacific Communities (SPC) State of the Forest Genetic Resources in Fiji _____________________________________________________________________________________________________________________ Table of Contents Executve Summary ………………………………………………………………………………………………………………………..…….. 5 Introduction ………………………………………………………………………………………………………………………………..…….. 6 Chapter 1: The Current State of the Forest Genetic Resources in Fiji ………………………………………………………………….……. -
Genetic Structure in Natural Populations of Dacrydium Elatum (Roxb.) Wall
E3S Web of Conferences 265, 01030 (2021) https://doi.org/10.1051/e3sconf/202126501030 APEEM 2021 Genetic structure in natural populations of Dacrydium elatum (Roxb.) Wall. (Podocarpaceae) in the Central Highlands of Vietnam inferred by Microsatellites Dinh Duy Vu1*, Quoc Khanh Nguyen1 and Mai Phuong Pham1 Institute of Tropical Ecology, Vietnam - Russia Tropical Center, 63 Nguyen Van Huyen, Ha Noi, Vietnam Abstract: To provide a reference for the conservation and application of breeding parentallines resource of Dacrydium elatum (Roxb.). Genetic diversity and population structure of eighty individuals from four populations (Kon Tum, Gia Lai, Dak Lak and Lam Dong) in Central Highlands were evaluated using eight SSR markers. Based on the SSR data, 21 alleles were detected by eight SSR with high polymorphism. The genetic diversity of levels within the populations were moderately high (Ho = 0.555, He = 0.429). The average number of shannon information index were 0.618 and genetic differentiation among populations was low (Fst=0.097). The AMOVA revealed high genetic variation within individuals (87%) compared among populations (13%). The UPGMA phenogram showed that the results of molecular clustering largely agreed with the pedigree and geographic origin. Three populations (NL, KCR and BDNB) were clustered together and CYS population was separated. The maximum quantity ΔK was observed for K=2 in population structure analysis, indicating that the entire collection could be divided into two main groups of genes. This study can provide a theoretical basis for genetic resource management and varieties identification of D. elatum resources, and provide reference basis for breeding. 1 Introduction Dacrydium elatum (Roxb.) Wall. -
Mangrove Guidebook for Southeast Asia
RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat.