Introduction to Geometric Knot Theory

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Geometric Knot Theory Introduction to Geometric Knot Theory Elizabeth Denne Smith College CCSU Math Colloquium, October 9, 2009 What is a knot? Definition A knot K is an embedding of a circle in R3. (Intuition: a smooth or polygonal closed curve without self-intersections.) A link is an embedding of a disjoint union of circles in R3. Trefoil knot Figure 8 knot Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 2 / 24 When are two knots the same? K1 and K2 are equivalent if K1 can be continuously moved to K2. (Technically, they are ambient isotopic.) A knot is trivial or unknotted if it is equivalent to a circle. A knot is tame if it is equivalent to a smooth knot. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 3 / 24 When are two knots the same? K1 and K2 are equivalent if K1 can be continuously moved to K2. (Technically, they are ambient isotopic.) A knot is trivial or unknotted if it is equivalent to a circle. A knot is tame if it is equivalent to a smooth knot. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 3 / 24 When are two knots the same? K1 and K2 are equivalent if K1 can be continuously moved to K2. (Technically, they are ambient isotopic.) A knot is trivial or unknotted if it is equivalent to a circle. A knot is tame if it is equivalent to a smooth knot. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 3 / 24 Tame knots A wild knot p :: Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 4 / 24 How can you tell if two knots are equivalent? Idea Use topological invariants denoted by I. If K1 is equivalent to K2 then I(K1) = I(K2), Crossing number (knot tables) cr(K ) = min ( min (# crossings of K )) K 2[K ] directions Alexander or Jones polynomial 3 Knot group π1(R n K ) Principle If I(K1) 6= I(K2) then K1 is not equivalent to K2. Knots are distinguished using invariants. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 5 / 24 How can you tell if two knots are equivalent? Idea Use topological invariants denoted by I. If K1 is equivalent to K2 then I(K1) = I(K2), Crossing number (knot tables) cr(K ) = min ( min (# crossings of K )) K 2[K ] directions Alexander or Jones polynomial 3 Knot group π1(R n K ) Principle If I(K1) 6= I(K2) then K1 is not equivalent to K2. Knots are distinguished using invariants. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 5 / 24 How can you tell if two knots are equivalent? Idea Use topological invariants denoted by I. If K1 is equivalent to K2 then I(K1) = I(K2), Crossing number (knot tables) cr(K ) = min ( min (# crossings of K )) K 2[K ] directions Alexander or Jones polynomial 3 Knot group π1(R n K ) Principle If I(K1) 6= I(K2) then K1 is not equivalent to K2. Knots are distinguished using invariants. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 5 / 24 How can you tell if two knots are equivalent? Idea Use topological invariants denoted by I. If K1 is equivalent to K2 then I(K1) = I(K2), Crossing number (knot tables) cr(K ) = min ( min (# crossings of K )) K 2[K ] directions Alexander or Jones polynomial 3 Knot group π1(R n K ) Principle If I(K1) 6= I(K2) then K1 is not equivalent to K2. Knots are distinguished using invariants. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 5 / 24 Knot and Link Table Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 6 / 24 Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 7 / 24 Total curvature κ(γ) of a curve γ For a polygon P, κ(P) is the sum of exterior angles. For a curve γ, take polygons P with vertices on γ, then κ(γ) = max κ(P) P Equivalently for a smooth knot K , κ(K ) is the total angle through which the unit tangent vector turns through. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 8 / 24 Total curvature κ(γ) of a curve γ For a polygon P, κ(P) is the sum of exterior angles. For a curve γ, take polygons P with vertices on γ, then κ(γ) = max κ(P) P Equivalently for a smooth knot K , κ(K ) is the total angle through which the unit tangent vector turns through. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 8 / 24 Some history ... 1929 Fenchel proved that for a closed curve γ in R3, the total curvature κ(γ) ≥ 2π with equality iff γ is a convex planar curve. 1947 Borsuk proved same for γ in Rn and conjectured that the total curvature of a nontrivial knot ≥ 4π. Theorem (1950 Fáry-Milnor) For any nontrivial tame knot K , the total curvature κ(K ) ≥ 4π. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 9 / 24 Bridge number Definition The bridge number br(K ) of a knot K is br(K ) = min ( min (# maxima of K )) K 2[K ] directions br(Unknot)=1, br(Trefoil)= 2 = br(Figure 8) br(810) = 3 Theorem (1949 Milnor) Given a tame knot K , κ(K ) > 2πbr(K ) and br(K ) ≥ 2 for nontrivial knots. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 10 / 24 The ropelength problem Goal Minimize ropelength — the length of a knot or link which has a tube of fixed diameter around it. Tight knots are those knots which minimize ropelength. Question What do tight knots look like? What is the ropelength of a tight knot? Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 11 / 24 Definition The ropelength R(K ) of a knot K is the quotient of its length over thickness R(K ) = Len(K )/τ(K ). Definition The thickness τ(K ) is the diameter of the largest embedded normal tube around the knot K . Consider local and global conditions here. 1 K g 2 g 1 2 K Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 12 / 24 Theorem (2002 CKS and GMSvdM) There is a ropelength minimizer in any (tame) link type; any minimizer is C1;1, with bounded curvature. CKS also described a family of tight links. Alas, there are many links for which the minimum ropelength is not known. For example a keychain with ≥ 7 keys. The minimum ropelength is not known for any knot type. Numerical simulations have shown that the trefoil is the shortest possible knot with minimum ropelength about 16.372. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 13 / 24 Theorem (2002 CKS and GMSvdM) There is a ropelength minimizer in any (tame) link type; any minimizer is C1;1, with bounded curvature. CKS also described a family of tight links. Alas, there are many links for which the minimum ropelength is not known. For example a keychain with ≥ 7 keys. The minimum ropelength is not known for any knot type. Numerical simulations have shown that the trefoil is the shortest possible knot with minimum ropelength about 16.372. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 13 / 24 Theorem (2002 CKS and GMSvdM) There is a ropelength minimizer in any (tame) link type; any minimizer is C1;1, with bounded curvature. CKS also described a family of tight links. Alas, there are many links for which the minimum ropelength is not known. For example a keychain with ≥ 7 keys. The minimum ropelength is not known for any knot type. Numerical simulations have shown that the trefoil is the shortest possible knot with minimum ropelength about 16.372. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 13 / 24 Difficult Problem Relate the ropelength to link type using topological invariants. Example: Let L be a link type with minimum crossing number n and minimum ropelength R(L). Find constants c1; c2; p; q such that p q c1n ≤ R(L) ≤ c2n 3=4 There are families of torus links for which c1n ≤ R(L). 3=2 Diao, Ernst and Yu (2004) proved R(L) ≤ c2n . 1 It is conjectured that R(L) ≤ c3n . Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 14 / 24 Difficult Problem Relate the ropelength to link type using topological invariants. Example: Let L be a link type with minimum crossing number n and minimum ropelength R(L). Find constants c1; c2; p; q such that p q c1n ≤ R(L) ≤ c2n 3=4 There are families of torus links for which c1n ≤ R(L). 3=2 Diao, Ernst and Yu (2004) proved R(L) ≤ c2n . 1 It is conjectured that R(L) ≤ c3n . Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 14 / 24 Quadrisecants secant quadrisecant (alternating) Secant = 2-secant trisecant Trisecant = 3-secant Quadrisecant = 4-secant quadrisecant (simple) Definition An n-secant line is an oriented line in R3 which intersects K in at least n places. An n-secant is an ordered n-tuple of points in K which lie on an n-secant line. Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 15 / 24 Quadrisecants Three types of quadrisecants: simple, flipped and alternating. Determined by comparing the order of abcd along the line and along the unoriented knot — there are jS4=D4j = 3 dihedral orderings. ab c d a b c d a b c d Order:abcd abdc acbd simple flipped alternating Elizabeth Denne (Smith College) Geometric Knot Theory 9th October 2009 16 / 24 Theorem (D-, 2004) Every nontrivial tame knot in R3 has at least one alternating quadrisecant.
Recommended publications
  • The Borromean Rings: a Video About the New IMU Logo
    The Borromean Rings: A Video about the New IMU Logo Charles Gunn and John M. Sullivan∗ Technische Universitat¨ Berlin Institut fur¨ Mathematik, MA 3–2 Str. des 17. Juni 136 10623 Berlin, Germany Email: {gunn,sullivan}@math.tu-berlin.de Abstract This paper describes our video The Borromean Rings: A new logo for the IMU, which was premiered at the opening ceremony of the last International Congress. The video explains some of the mathematics behind the logo of the In- ternational Mathematical Union, which is based on the tight configuration of the Borromean rings. This configuration has pyritohedral symmetry, so the video includes an exploration of this interesting symmetry group. Figure 1: The IMU logo depicts the tight config- Figure 2: A typical diagram for the Borromean uration of the Borromean rings. Its symmetry is rings uses three round circles, with alternating pyritohedral, as defined in Section 3. crossings. In the upper corners are diagrams for two other three-component Brunnian links. 1 The IMU Logo and the Borromean Rings In 2004, the International Mathematical Union (IMU), which had never had a logo, announced a competition to design one. The winning entry, shown in Figure 1, was designed by one of us (Sullivan) with help from Nancy Wrinkle. It depicts the Borromean rings, not in the usual diagram (Figure 2) but instead in their tight configuration, the shape they have when tied tight in thick rope. This IMU logo was unveiled at the opening ceremony of the International Congress of Mathematicians (ICM 2006) in Madrid. We were invited to produce a short video [10] about some of the mathematics behind the logo; it was shown at the opening and closing ceremonies, and can be viewed at www.isama.org/jms/Videos/imu/.
    [Show full text]
  • Arxiv:1502.03029V2 [Math.GT] 16 Apr 2015 De.Then Edges
    COUNTING GENERIC QUADRISECANTS OF POLYGONAL KNOTS ALDO-HILARIO CRUZ-COTA, TERESITA RAMIREZ-ROSAS Abstract. Let K be a polygonal knot in general position with vertex set V . A generic quadrisecant of K is a line that is disjoint from the set V and intersects K in exactly four distinct points. We give an upper bound for the number of generic quadrisecants of a polygonal knot K in general position. This upper bound is in terms of the number of edges of K. 1. Introduction In this article, we study polygonal knots in three dimensional space that are in general position. Given such a knot K, we define a quadrisecant of K as an unoriented line that intersects K in exactly four distinct points. We require that these points are not vertices of the knot, in which case we say that the quadrisecant is generic. Using geometric and combinatorial arguments, we give an upper bound for the number of generic quadrisecants of a polygonal knot K in general position. This bound is in terms of the number n ≥ 3 of edges of K. More precisely, we prove the following. Main Theorem 1. Let K be a polygonal knot in general position, with exactly n n edges. Then K has at most U = (n − 3)(n − 4)(n − 5) generic quadrisecants. n 12 Applying Main Theorem 1 to polygonal knots with few edges, we obtain the following. (1) If n ≤ 5, then K has no generic quadrisecant. (2) If n = 6, then K has at most three generic quadrisecants. (3) If n = 7, then K has at most 14 generic quadrisecants.
    [Show full text]
  • 1 Introduction
    Contents | 1 1 Introduction Is the “cable spaghetti” on the floor really knotted or is it enough to pull on both ends of the wire to completely unfold it? Since its invention, knot theory has always been a place of interdisciplinarity. The first knot tables composed by Tait have been motivated by Lord Kelvin’s theory of atoms. But it was not until a century ago that tools for rigorously distinguishing the trefoil and its mirror image as members of two different knot classes were derived. In the first half of the twentieth century, knot theory seemed to be a place mainly drivenby algebraic and combinatorial arguments, mentioning the contributions of Alexander, Reidemeister, Seifert, Schubert, and many others. Besides the development of higher dimensional knot theory, the search for new knot invariants has been a major endeav- our since about 1960. At the same time, connections to applications in DNA biology and statistical physics have surfaced. DNA biology had made a huge progress and it was well un- derstood that the topology of DNA strands matters: modeling of the interplay between molecules and enzymes such as topoisomerases necessarily involves notions of ‘knot- tedness’. Any configuration involving long strands or flexible ropes with a relatively small diameter leads to a mathematical model in terms of curves. Therefore knots appear almost naturally in this context and require techniques from algebra, (differential) geometry, analysis, combinatorics, and computational mathematics. The discovery of the Jones polynomial in 1984 has led to the great popularity of knot theory not only amongst mathematicians and stimulated many activities in this direction.
    [Show full text]
  • Introduction to Geometric Knot Theory 2: Ropelength and Tight Knots
    Introduction to Geometric Knot Theory 2: Ropelength and Tight Knots Jason Cantarella University of Georgia ICTP Knot Theory Summer School, Trieste, 2009 Review from first lecture: Definition (Federer 1959) The reach of a space curve is the largest so that any point in an -neighborhood of the curve has a unique nearest neighbor on the curve. Idea reach(K ) (also called thickness) is controlled by curvature maxima (kinks) and self-distance minima (struts). Cantarella Geometric Knot Theory Ropelength Definition The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ). Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave 2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002) Ropelength minimizers (called tight knots) exist in each knot and link type and are C1,1. We can bound Rop in terms of Cr. Cantarella Geometric Knot Theory Ropelength Definition The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ). Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave 2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002) Ropelength minimizers (called tight knots) exist in each knot and link type and are C1,1. We can bound Rop in terms of Cr. Cantarella Geometric Knot Theory Ropelength Definition The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ). Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave 2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002) Ropelength minimizers (called tight knots) exist in each knot and link type and are C1,1. We can bound Rop in terms of Cr. Cantarella Geometric Knot Theory Ropelength Definition The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ).
    [Show full text]
  • Total Curvature, Ropelength and Crossing Number of Thick Knots
    Total Curvature, Ropelength and Crossing Number of Thick Knots Yuanan Diao and Claus Ernst Abstract. We first study the minimum total curvature of a knot when it is embedded on the cubic lattice. Let K be a knot or link with a lattice embedding of minimum total curvature ¿(K) among all possible lattice embeddingsp of K. We show that there exist positive constants c1 and c2 such that c1 Cr(K) · ¿(K) · c2Cr(K) for any knot type K. Furthermore we show that the powers of Cr(K) in the above inequalities are sharp hence cannot be improved in general. Our results and observations show that lattice embeddings with minimum total curvature are quite different from those with minimum or near minimum lattice embedding length. In addition, we discuss the relationship between minimal total curvature and minimal ropelength for a given knot type. At the end of the paper, we study the total curvatures of smooth thick knots and show that there are some essential differences between the total curvatures of smooth thick knots and lattice knots. 1. Introduction An essential field in the area of geometric knot theory concerns questions about the behavior of thick knots. One such question is about the ropelength of a knot. That is, if we are to tie a given knot with a rope of unit thickness, how long does the rope needs to be? In particular, for a given knot K whose crossing number is Cr(K), can we express the ropelength L(K) of K as a function of Cr(K)? Or alternatively, can we find a lower and upper bound of L(K) in terms of Cr(K)? For a general lower bound, it is shown in [3, 4] that there exists a constant a > 0 such that for any knot type K, L(K) ¸ a ¢ (Cr(K))3=4.
    [Show full text]
  • Closed Curves with No Quadrisecants
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology Vol.‘ZI. No. 3. PP. 235-243. 1982 004&9383/82/030235-09SO3.00/0 Printed in Great Britain. @ 1982 Pergamon Press Ltd. CLOSED CURVES WITH NO QUADRISECANTS H. R. MORTON and D. M. Q. MONDt (Receioed 18 December 1980) $1. INTRODUCTION IN HIS PAPER[ 11, Wall discusses the idea of a generically embedded curve in BP’,related to the local appearance of the radially projected curve as viewed from different points in R3. Wall shows that a generic curve never meets a straight line in five points. There may, however, be finitely many straight lines, quadrisecants, which meet the curve in four points. The local view of the curve from distant points on a quadrisecant will have four branches crossing transversely. In this paper we ask how simple the embedding of a closed curve must be if the curve has no quadrisecants. Under a slight extension of Wall’s term generic to ensure a similar regularity of appearance of the curve when viewed from other points of the curve itself, we prove: THEOREM. A generically embedded closed curve with no quadrisecants is unknotted. We expect that in the non-generic case a knotted closed curve will have a genuine quadrisecant. (If we widened the definition of quadrisecant to allow the intersections of a line with the curve to be counted with multiplicity, including, e.g. a tangent line which meets the curve in two further points, then a limiting argument would produce at least a “fake” quadrisecant for a knotted closed curve.) Although the theorem deals with differentiable embeddings, it can be proved by a similar argument that a knotted PL curve in general position must have a quadrise- cant, other than one of its own straight edges.
    [Show full text]
  • Upper Bound for Ropelength of Pretzel Knots
    Rose-Hulman Undergraduate Mathematics Journal Volume 7 Issue 2 Article 8 Upper Bound for Ropelength of Pretzel Knots Safiya Moran Columbia College, South Carolina, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Moran, Safiya (2006) "Upper Bound for Ropelength of Pretzel Knots," Rose-Hulman Undergraduate Mathematics Journal: Vol. 7 : Iss. 2 , Article 8. Available at: https://scholar.rose-hulman.edu/rhumj/vol7/iss2/8 Upper Bound for Ropelength of Pretzel Knots Safiya Moran ∗ February 27, 2007 Abstract A model of the pretzel knot is described. A method for predicting the ropelength of pretzel knots is given. An upper bound for the minimum ro- pelength of a pretzel knot is determined and shown to improve on existing upper bounds. 1 Introduction A (p,q,r) pretzel knot is composed of 3 twists which are connected at the tops and bottoms of each twist. The p,q, and r are integers representing the number of crossings in the given twist. However, a general pretzel knot can contain any number n of twists, as long as n 3, where the knot is denoted by ≥ (p1,p2,p3, ..., pn) and is illustrated by a diagram of the form shown in figure 1. Fig. 1: A 2-dimensional representation of a pretzel knot. Here, the pi’s denote integers, some of which may be negative, designating the left- or right-handedness of all the crossings in each of the various twists. Note that such a ”knot” might turn out to not be knot, which has just one component, but instead a link of more than one component.
    [Show full text]
  • The Second Hull of a Knotted Curve
    The Second Hull of a Knotted Curve 1, 2, 3, 4, Jason Cantarella, ∗ Greg Kuperberg, y Robert B. Kusner, z and John M. Sullivan x 1Department of Mathematics, University of Georgia, Athens, GA 30602 2Department of Mathematics, University of California, Davis, CA 95616 3Department of Mathematics, University of Massachusetts, Amherst, MA 01003 4Department of Mathematics, University of Illinois, Urbana, IL 61801 (Dated: May 5, 2000; revised April 4, 2002) The convex hull of a set K in space consists of points which are, in a certain sense, “surrounded” by K. When K is a closed curve, we define its higher hulls, consisting of points which are “multiply surrounded” by the curve. Our main theorem shows that if a curve is knotted then it has a nonempty second hull. This provides a new proof of the Fary/Milnor´ theorem that every knotted curve has total curvature at least 4π. A space curve must loop around at least twice to become knotted. This intuitive idea was captured in the celebrated Fary/Milnor´ theorem, which says the total curvature of a knot- ted curve K is at least 4π. We prove a stronger result: that there is a certain region of space doubly enclosed, in a precise sense, by K. We call this region the second hull of K. The convex hull of a connected set K is characterized by the fact that every plane through a point in the hull must in- teresect K. If K is a closed curve, then a generic plane inter- sects K an even number of times, so the convex hull is the set of points through which every plane cuts K twice.
    [Show full text]
  • Polygonal Approximation of Unknots by Quadrisecants
    Gyo Taek Jin Polygonal approximation of unknots by quadrisecants Abstract: If a knot K in R3 has only finitely many quadrisecants which meet K at finitely many points, we use these points to form a polygonal approximation called the quadrisecant approximation which is denoted by Kb. The quadrisecant approxima- tion conjecture states that Kb has the knot type of K if K is nontrivial. We give examples of unknots, some polygonal and some smooth, having finitely many but at least two quadrisecants, for which the conjecture holds. Keywords: knots, quadrisecants, polygonal approximation MSC: 57M25 8.1 Introduction A knot K is the image of a locally flat embedding of S1 in R3, i.e., we do not consider wild knots. A quadrisecant of a knot K is a straight line which meets K at four distinct places. The existence of quadrisecants for nontrivial knots was first announced by Pannwitz in 1933 for polygonal knots and later by Morton and Mond for smooth knots and by Kuperberg for tame knots. Fig. 8.1: A quadrisecant Theorem 8.1.1 ([10, 9, 8]). Every nontrivial knot has a quadrisecant. It is not hard to see that every knot can be perturbed to have infinitely many quadrise- cants. On the other hand, every knot can be perturbed to have only finitely many quadrisecants which meet the knot at finitely many points. Gyo Taek Jin, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu Dae- jeon Korea 34141, E-mail: [email protected] https://doi.org/10.1515/9783110571493-007 Open Access.
    [Show full text]
  • Introduction to Geometric Knot Theory 1: Knot Invariants Defined by Minimizing Curve Invariants
    Introduction to Geometric Knot Theory 1: Knot invariants defined by minimizing curve invariants Jason Cantarella University of Georgia ICTP Knot Theory Summer School, Trieste, 2009 Crossing Number Distortion Ropelength and Tight Knots Main question Every field has a main question: Open Question (Main Question of Topological Knot Theory) What are the isotopy classes of knots and links? Open Question (Main Question of Global Differential Geometry) What is the relationship between the topology and (sectional, scalar, Ricci) curvature of a manifold? Open Question (Main Question of Geometric Knot Theory) What is the relationship between the topology and geometry of knots? Cantarella Geometric Knot Theory Crossing Number Distortion Ropelength and Tight Knots Main question Every field has a main question: Open Question (Main Question of Topological Knot Theory) What are the isotopy classes of knots and links? Open Question (Main Question of Global Differential Geometry) What is the relationship between the topology and (sectional, scalar, Ricci) curvature of a manifold? Open Question (Main Question of Geometric Knot Theory) What is the relationship between the topology and geometry of knots? Cantarella Geometric Knot Theory Crossing Number Distortion Ropelength and Tight Knots Main question Every field has a main question: Open Question (Main Question of Topological Knot Theory) What are the isotopy classes of knots and links? Open Question (Main Question of Global Differential Geometry) What is the relationship between the topology and (sectional, scalar, Ricci) curvature of a manifold? Open Question (Main Question of Geometric Knot Theory) What is the relationship between the topology and geometry of knots? Cantarella Geometric Knot Theory Crossing Number Distortion Ropelength and Tight Knots Two Main Strands of Inquiry Strand 1 (Knot Invariants defined by minima) Given a geometric invariant of curves, define a topological invariant of knots by minimizing over all curves in a knot type.
    [Show full text]
  • The Ropelength of Complex Knots
    The Ropelength of Complex Knots Alexander R. Klotz∗ and Matthew Maldonado Department of Physics and Astronomy, California State University, Long Beach The ropelength of a knot is the minimum contour length of a tube of unit radius that traces out the knot in three dimensional space without self-overlap, colloquially the minimum amount of rope needed to tie a given knot. Theoretical upper and lower bounds have been established for the asymptotic relationship between crossing number and ropelength and stronger bounds have been conjectured, but numerical bounds have only been calculated exhaustively for knots and links with up to 11 crossings, which are not sufficiently complex to test these conjectures. Existing ropelength measurements also have not established the complexity required to reach asymptotic scaling with crossing number. Here, we investigate the ropelength of knots and links beyond the range of tested crossing numbers, past both the 11-crossing limit as well as the 16-crossing limit of the standard knot catalog. We investigate torus knots up to 1023 crossings, establishing a stronger upper bound for T(p,2) knots and links and demonstrating power-law scaling in T(p,p+1) below the proven limit. We investigate satellite knots up to 42 crossings to determine the effect of a systematic crossing- increasing operation on ropelength, finding that a satellite knot typically has thrice the ropelength of its companion. We find that ropelength is well described by a model of repeated Hopf links in which each component adopts a minimal convex hull around the cross-section of the others, and derive formulae that heuristically predict the crossing-ropelength relationship of knots and links without free parameters.
    [Show full text]
  • Counterexamples to the Quadrisecant Approximation Conjecture
    COUNTEREXAMPLES TO THE QUADRISECANT APPROXIMATION CONJECTURE SHENG BAI, CHAO WANG, AND JIAJUN WANG Abstract. A quadrisecant of a knot is a straight line intersecting the knot at four points. If a knot has finitely many quadrisecants, one can replace each subarc between two adjacent secant points by the line segment between them to get the quadrisecant approximation of the original knot. It was conjectured that the quadrisecant approximation is always a knot with the same knot type as the original knot. We show that every knot type contains two knots, the quadrisecant approximation of one knot has self intersections while the quadrisecant approximation of the other knot is a knot with different knot type. 1. Introduction A quadrisecant for a knot is a line that intersects the knot in four points. In 1933, Pannwitz [10] showed that a generic polygonal knot in any nontrivial knot type must have at least two quadrisecants. This result was extended to smooth knots by Morton and Mond [9] and to tame knots by Kuperberg [8]. Quadrisecants was used to give lower bounds of the ropelength of a knot in [4]. The quadrisecant approximation of a knot was introduced by Jin in [6]. For a knot K with finitely many quadrisecants, let W be the set of intersection points of K with the quadrisecants. The quadrise- cant approximation of K, denoted by Kb, is obtained from K by replacing each subarc of K between two points in W adjacent along K with the straight line segment between them. If K has no quadrise- cants (which has to be an unknot), we let Kb = K.
    [Show full text]