Rose-Hulman Undergraduate Mathematics Journal Volume 7 Issue 2 Article 8 Upper Bound for Ropelength of Pretzel Knots Safiya Moran Columbia College, South Carolina,
[email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Moran, Safiya (2006) "Upper Bound for Ropelength of Pretzel Knots," Rose-Hulman Undergraduate Mathematics Journal: Vol. 7 : Iss. 2 , Article 8. Available at: https://scholar.rose-hulman.edu/rhumj/vol7/iss2/8 Upper Bound for Ropelength of Pretzel Knots Safiya Moran ∗ February 27, 2007 Abstract A model of the pretzel knot is described. A method for predicting the ropelength of pretzel knots is given. An upper bound for the minimum ro- pelength of a pretzel knot is determined and shown to improve on existing upper bounds. 1 Introduction A (p,q,r) pretzel knot is composed of 3 twists which are connected at the tops and bottoms of each twist. The p,q, and r are integers representing the number of crossings in the given twist. However, a general pretzel knot can contain any number n of twists, as long as n 3, where the knot is denoted by ≥ (p1,p2,p3, ..., pn) and is illustrated by a diagram of the form shown in figure 1. Fig. 1: A 2-dimensional representation of a pretzel knot. Here, the pi’s denote integers, some of which may be negative, designating the left- or right-handedness of all the crossings in each of the various twists. Note that such a ”knot” might turn out to not be knot, which has just one component, but instead a link of more than one component.