Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus marine drugs Article Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus Xinjia Li, Wanyi Chen, Dongting Zhangsun * and Sulan Luo * Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; [email protected] (X.L.); [email protected] (W.C.) * Correspondence: [email protected] (D.Z.); [email protected] (S.L.) Received: 14 August 2020; Accepted: 10 September 2020; Published: 14 September 2020 Abstract: The venom of various Conus species is composed of a rich variety of unique bioactive peptides, commonly referred to as conotoxins (conopeptides). Most conopeptides have specific receptors or ion channels as physiologically relevant targets. In this paper, high-throughput transcriptome sequencing was performed to analyze putative conotoxin transcripts from the venom duct of a vermivorous cone snail species, Conus litteratus native to the South China Sea. A total of 128 putative conotoxins were identified, most of them belonging to 22 known superfamilies, with 43 conotoxins being regarded as belonging to new superfamilies. Notably, the M superfamily was the most abundant in conotoxins among the known superfamilies. A total of 15 known cysteine frameworks were also described. The largest proportion of cysteine frameworks were VI/VII (C-C-CC-C-C), IX (C-C-C-C-C-C) and XIV (C-C-C-C). In addition, five novel cysteine patterns were also discovered. Simple sequence repeat detection results showed that di-nucleotide was the major type of repetition, and the codon usage bias results indicated that the codon usage bias of the conotoxin genes was weak, but the M, O1, O2 superfamilies differed in codon preference. Gene cloning indicated that there was no intron in conotoxins of the B1- or J superfamily, one intron with 1273–1339 bp existed in a mature region of the F superfamily, which is different from the previously reported gene structure of conotoxins from other superfamilies. This study will enhance our understanding of conotoxin diversity, and the new conotoxins discovered in this paper will provide more potential candidates for the development of pharmacological probes and marine peptide drugs. Keywords: conotoxin; diversity; superfamily; cysteine framework; gene structure 1. Introduction The genus Conus is a large family of gastropods belonging to mollusks. There are about 800 species of Conus worldwide, which are distributed in tropical seas [1,2]. According to their diet habits, cone snails can be divided into three groups, vermivorous (V), molluscivorous (M), and piscivorous (P) species [3–5]. Although they move slowly, cone snails can prey on creatures with quick movement by skillfully injecting a small amount of a complex cocktail containing potent venom peptides. These venom peptides are commonly named conotoxins or conopeptides, and are a mixture of different bioactive compounds for defense and preying. These peptides, with different pharmacological activities, are composed of a small number of amino-acid residues that are especially rich in cysteines, and have become one of the main sources of peptide medicine [6–8]. With structural stability, target specificity and high affinity, conotoxins are able to skillfully target different ion channels and receptors, displaying massive potential in the study of peptide drugs and probes [9–12]. In 1978, one conotoxin, called myotoxin, from Conus geographus venom was purified and characterized for the first time. Since then, researchers have been engaged in the systematic study Mar. Drugs 2020, 18, 464; doi:10.3390/md18090464 www.mdpi.com/journal/marinedrugs Mar. Drugs 2020, 18, 464 2 of 17 Mar. Drugs 2020, 18, x 2 of 18 of conotoxins [7,13]. As is well known, !-MVIIA (ziconotide) has already approved by the FDA forsystematic clinical study application of conotoxins in the treatment [7,13]. As ofis well severe known, pain ω‐ [14MVIIA–16]. Generally, (ziconotide) conopeptide has already precursors approved possessby the FDA a conserved for clinical topological application organization, in the treatment which of issevere composed pain [14–16]. of three Generally, regions, including conopeptide an N-terminusprecursors possess signal regiona conserved (including topological about organization, 20 hydrophobic which amino is composed acids and of highly three regions, conserved including in the samean N‐terminus gene superfamily), signal region an intervening(including about propeptide 20 hydrophobic region, and amino a mature acids toxinand highly region conserved (hypervariable in the region)same gene [17 ,superfamily),18]. an intervening propeptide region, and a mature toxin region (hypervariable region)So [17,18]. far, there are three main classification methods for conotoxins. According to the similarity of the signalSo far, peptide there are region, three various main classification conotoxins are methods mainly for divided conotoxins. into 29 According gene superfamilies, to the similarity i.e., A, B1, of B2,the B3,signal and peptide C, etc. Thereregion, are various also 15 conotoxins temporary are gene mainly superfamilies divided into identified 29 gene in superfamilies, early divergent i.e., clade A, species.B1, B2, B3, For and conotoxins C, etc. There rich inare cysteines, also 15 temporary according gene to the superfamilies latest update identified of ConoServer in early on divergent Monday, 31clade August species. 2020, Forthere conotoxins are 31 kinds rich of in confirmed cysteines, cysteineaccording frameworks, to the latest designated update of as ConoServer I, II, III, IV, etc.on OnMonday, the basis 31 ofAugust pharmacological 2020, there activityare 31 kinds and target, of confirmed 12 pharmacological cysteine frameworks, families of designated conotoxins as (α -,I, γII,-, δIII,-, "IV,-, ι-, etc.κ-, µOn-, ρ -,theσ-, basisτ-, χ- of and pharmacological!-families) have activity been defined and target, [19–21 12]. pharmacological families of conotoxinsPrevious (α‐ studies, γ‐, δ‐, ε‐ have, ι‐, shown κ‐, μ‐, ρ‐ that, σ‐ each, τ‐, χ‐ Conusand ω‐speciesfamilies) contains have thousands been defined of conopeptides, [19–21]. which meansPrevious that there studies may have be more shown than that 1,000,000 each Conus natural species conotoxins contains thousands in cone snails of conopeptides, (about 800 species) which allmeans over that the there world may [22 be–25 more]. According than 1,000,000 to the natural latest conotoxins ConoServer in cone statistics, snails less(about than 800 only species) 1% all of conopeptideover the world sequences [22–25]. According have been to reported. the latest Fewer ConoServer than 300 statistics, conopeptides less than have only been 1% of characterized conopeptide pharmacologicallysequences have been [21]; therefore,reported. a largeFewer portion than of300 conotoxins conopeptides still remain have tobeen be discovered characterized and characterized.pharmacologically Nowadays, [21]; therefore, conotoxins a large are widelyportion used of conotoxins in the research still remain and development to be discovered of marine and peptidecharacterized. drugs, Nowadays, providing conotoxins a new ligand are toolwidely for used the study in the of research receptors, and ion development channels, etc.of marine [9–12]. Traditionalpeptide drugs, methods, providing including a new isolation ligand tool and for Sanger the study sequencing, of receptors, are generally ion channels, considered etc. [9–12]. to be time-consuming,Traditional methods, of lower including efficiency, isolation and and often Sanger limited sequencing, by sample are availability. generally considered to be time‐ consuming,With the of development lower efficiency, of high-throughput and often limited sequencing by sample platforms, availability. the combination of transcriptomic or proteomicWith the sequencing development with bioinformaticalof high‐throughput screening sequencing is expected platforms, to accelerate the ligandcombination and target of discoverytranscriptomic [26–28 or]. Inproteomic the present sequencing work, the with Hiseq bioinformatical Xten sequencing screening approach is wasexpected applied to to accelerate uncover theligand venom and ducttarget transcriptome discovery [26–28]. of a worm-hunting In the present species work, ofthe cone Hiseq snail, XtenC. sequencing litteratus, of approach different sizes was (Smallapplied 6–7cm, to uncover Middle the 8–10cm, venom Big duct 10–12cm; transcriptome Figure1). Weof furthera worm characterized‐hunting species its conotoxin of cone diversitysnail, C. oflitteratus cysteine, of framework, different sizes pharmacological (Small 6–7cm, activity Middle and gene8–10cm, superfamily. Big 10–12cm; The simple Figure sequence 1). We repeatsfurther (SSRs),characterized codon usageits conotoxin bias, and diversity gene structure of cysteine of the conotoxinsframework, were pharmacological also analyzed. activity This research and gene will supportsuperfamily. novel The bioactive simple peptide sequence discovery repeats and (SSRs), genomic codon feature usage studies bias, and for thegene exploitation structure ofof thisthe speciesconotoxins in the were future. also analyzed. This research will support novel bioactive peptide discovery and genomic feature studies for the exploitation of this species in the future. Figure 1. TheThe shell shell and and venom venom duct duct of of C.C. litteratus litteratus. (.(A)A Small) Small conus conus (SC), (SC), (B) (middleB) middle
Recommended publications
  • The Cone Collector N°23
    THE CONE COLLECTOR #23 October 2013 THE Note from CONE the Editor COLLECTOR Dear friends, Editor The Cone scene is moving fast, with new papers being pub- António Monteiro lished on a regular basis, many of them containing descrip- tions of new species or studies of complex groups of species that Layout have baffled us for many years. A couple of books are also in André Poremski the making and they should prove of great interest to anyone Contributors interested in Cones. David P. Berschauer Pierre Escoubas Our bulletin aims at keeping everybody informed of the latest William J. Fenzan developments in the area, keeping a record of newly published R. Michael Filmer taxa and presenting our readers a wide range of articles with Michel Jolivet much and often exciting information. As always, I thank our Bernardino Monteiro many friends who contribute with texts, photos, information, Leo G. Ros comments, etc., helping us to make each new number so inter- Benito José Muñoz Sánchez David Touitou esting and valuable. Allan Vargas Jordy Wendriks The 3rd International Cone Meeting is also on the move. Do Alessandro Zanzi remember to mark it in your diaries for September 2014 (defi- nite date still to be announced) and to plan your trip to Ma- drid. This new event will undoubtedly be a huge success, just like the two former meetings in Stuttgart and La Rochelle. You will enjoy it and of course your presence is indispensable! For now, enjoy the new issue of TCC and be sure to let us have your opinions, views, comments, criticism… and even praise, if you feel so inclined.
    [Show full text]
  • Taxonomic Revision of West African Cone Snails (Gastropoda: Conidae) Based Upon Mitogenomic Studies: Implications for Conservation
    European Journal of Taxonomy 663: 1–89 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.663 www.europeanjournaloftaxonomy.eu 2020 · Tenorio M.J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:78E7049C-F592-4D01-9D15-C7715119B584 Taxonomic revision of West African cone snails (Gastropoda: Conidae) based upon mitogenomic studies: implications for conservation Manuel J. TENORIO 1,*, Samuel ABALDE 2, José R. PARDOS-BLAS 3 & Rafael ZARDOYA 4 1 Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Torre Norte, 1ª Planta, Universidad de Cadiz, 11510 Puerto Real, Cadiz, Spain. 2,3,4 Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:24B3DC9A-3E34-4165-A450-A8E86B0D1231 2 urn:lsid:zoobank.org:author:C72D4F45-19A1-4554-9504-42D1705C85A3 3 urn:lsid:zoobank.org:author:1CAB2718-4C97-47EE-8239-0582C472C40E 4 urn:lsid:zoobank.org:author:C55129E8-7FF7-41B2-A77C-4097E61DDD2E Abstract. In the last few years, a sharp increase in the number of descriptions of new species of West African cone snails, particularly from the Cabo Verde Archipelago, has taken place. In previous studies, we used mitogenome sequences for reconstructing robust phylogenies, which comprised in total 120 individuals representing the majority of species (69.7%) described from this biogeographical region (except Angolan endemics) and grouped into seven genera within the family Conidae.
    [Show full text]
  • The Hawaiian Species of Conus (Mollusca: Gastropoda)1
    The Hawaiian Species of Conus (Mollusca: Gastropoda) 1 ALAN J. KOHN2 IN THECOURSE OF a comparative ecological currents are factors which could plausibly study of gastropod mollus ks of the genus effect the isolation necessary for geographic Conus in Hawaii (Ko hn, 1959), some 2,400 speciation . specimens of 25 species were examined. Un­ Of the 33 species of Conus considered in certainty ofthe correct names to be applied to this paper to be valid constituents of the some of these species prompted the taxo­ Hawaiian fauna, about 20 occur in shallow nomic study reported here. Many workers water on marine benches and coral reefs and have contributed to the systematics of the in bays. Of these, only one species, C. ab­ genus Conus; nevertheless, both nomencla­ breviatusReeve, is considered to be endemic to torial and biological questions have persisted the Hawaiian archipelago . Less is known of concerning the correct names of a number of the species more characteristic of deeper water species that occur in the Hawaiian archi­ habitats. Some, known at present only from pelago, here considered to extend from Kure dredging? about the Hawaiian Islands, may (Ocean) Island (28.25° N. , 178.26° W.) to the in the future prove to occur elsewhere as island of Hawaii (20.00° N. , 155.30° W.). well, when adequate sampling methods are extended to other parts of the Indo-West FAUNAL AFFINITY Pacific region. As is characteristic of the marine fauna of ECOLOGY the Hawaiian Islands, the affinities of Conus are with the Indo-Pacific center of distribu­ Since the ecology of Conus has been dis­ tion .
    [Show full text]
  • Biogeography of Coral Reef Shore Gastropods in the Philippines
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274311543 Biogeography of Coral Reef Shore Gastropods in the Philippines Thesis · April 2004 CITATIONS READS 0 100 1 author: Benjamin Vallejo University of the Philippines Diliman 28 PUBLICATIONS 88 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: History of Philippine Science in the colonial period View project Available from: Benjamin Vallejo Retrieved on: 10 November 2016 Biogeography of Coral Reef Shore Gastropods in the Philippines Thesis submitted by Benjamin VALLEJO, JR, B.Sc (UPV, Philippines), M.Sc. (UPD, Philippines) in September 2003 for the degree of Doctor of Philosophy in Marine Biology within the School of Marine Biology and Aquaculture James Cook University ABSTRACT The aim of this thesis is to describe the distribution of coral reef and shore gastropods in the Philippines, using the species rich taxa, Nerita, Clypeomorus, Muricidae, Littorinidae, Conus and Oliva. These taxa represent the major gastropod groups in the intertidal and shallow water ecosystems of the Philippines. This distribution is described with reference to the McManus (1985) basin isolation hypothesis of species diversity in Southeast Asia. I examine species-area relationships, range sizes and shapes, major ecological factors that may affect these relationships and ranges, and a phylogeny of one taxon. Range shape and orientation is largely determined by geography. Large ranges are typical of mid-intertidal herbivorous species. Triangualar shaped or narrow ranges are typical of carnivorous taxa. Narrow, overlapping distributions are more common in the central Philippines. The frequency of range sizesin the Philippines has the right skew typical of tropical high diversity systems.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • CONE SHELLS - CONIDAE MNHN Koumac 2018
    Living Seashells of the Tropical Indo-Pacific Photographic guide with 1500+ species covered Andrey Ryanskiy INTRODUCTION, COPYRIGHT, ACKNOWLEDGMENTS INTRODUCTION Seashell or sea shells are the hard exoskeleton of mollusks such as snails, clams, chitons. For most people, acquaintance with mollusks began with empty shells. These shells often delight the eye with a variety of shapes and colors. Conchology studies the mollusk shells and this science dates back to the 17th century. However, modern science - malacology is the study of mollusks as whole organisms. Today more and more people are interacting with ocean - divers, snorkelers, beach goers - all of them often find in the seas not empty shells, but live mollusks - living shells, whose appearance is significantly different from museum specimens. This book serves as a tool for identifying such animals. The book covers the region from the Red Sea to Hawaii, Marshall Islands and Guam. Inside the book: • Photographs of 1500+ species, including one hundred cowries (Cypraeidae) and more than one hundred twenty allied cowries (Ovulidae) of the region; • Live photo of hundreds of species have never before appeared in field guides or popular books; • Convenient pictorial guide at the beginning and index at the end of the book ACKNOWLEDGMENTS The significant part of photographs in this book were made by Jeanette Johnson and Scott Johnson during the decades of diving and exploring the beautiful reefs of Indo-Pacific from Indonesia and Philippines to Hawaii and Solomons. They provided to readers not only the great photos but also in-depth knowledge of the fascinating world of living seashells. Sincere thanks to Philippe Bouchet, National Museum of Natural History (Paris), for inviting the author to participate in the La Planete Revisitee expedition program and permission to use some of the NMNH photos.
    [Show full text]
  • Fossil Conus from Italian Piacenzian Pliocene Giancarlo Paganelli
    Fossil Conus from Italian Piacenzian Pliocene Giancarlo Paganelli In the last 220 years about twenty species of fossil Conus Sammlungen. from the Italian Piacenzian Pliocene layers (3.6 to 1.8 mya), mainly in the Apennine Mountains of Piedmont, Caprotti E., 1971. Liguria, Emilia and Tuscany were found. he irst fos- Considerazioni generali sulla Malacofauna dello sil taxon described was Conus antidiluvianus Bruguière, stratotipo Piacenzia-no (Castell’Arquato, Piacenza). 1792, then Lamarck, Brocchi most of all, Orbigny, Sacco and others described all the currently known Cavallo O, & Repetto G., 1992. Italian fossil cones. Conchiglie fossili del Roero. Atlante Iconograico. C. ventricosus Gmelin, 1791 is the only known living Chirli C., 1997. species. his species was recognized as fossil only later. Malacofauna Pliocenica To-scana vol. I. Superfamiglia Brocchi doesn’t mention it in his work. he irst record Conoidea. I found is in Philippi, 1836 as C. mediterraneus Hwass, 1792. Crosse J. C. H., 1865. Description de Cönes nouveaux provenant de la he species shown represent nearly all the ones present in collection Cuming. the Italian Pliocene. hey were collected mainly in the gullies of Rio Stramonte, Diolo, Province of Piacenza Fontannes F., 1880. (in person) and in Tuscany, Province of Siena. Often it Les Invertébrés du Bassin Tertiare du Sud-est de la is not easy to identify the right taxon as the variability France. detected and the lacking of the colour pattern. Lamarck J. B. P., 1810. All the specimens represented were from my collection Sur la determination des especes. and myself photographed. Many of them are not in my availability any longer.
    [Show full text]
  • Some Economically Important Bivalves and Gastropods Found in the Island of Hadji Panglima Tahil, in the Province of Sulu, Philippines
    International Research Journal of Biological Sciences ___________________________________ ISSN 2278-3202 Vol. 2(7), 30-36, July (2013) Int. Res. J. Biological Sci. Some Economically Important Bivalves and Gastropods found in the Island of Hadji Panglima Tahil, in the province of Sulu, Philippines Sharon Rose M. Tabugo 1, Jocelyn O. Pattuinan 1, Nathanie Joy J. Sespene 1 and Aldren J. Jamasali 2 1Department of Biological Sciences,College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City 2Mindanao State University- Jolo, SULU Available online at: www.isca.in Received 17th April 2013, revised 26 th April 2013, accepted 4th May 2013 Abstract The Philippines is a haven of a rich diversity of marine organisms. Unraveling this diversity had posed a tremendous challenge. The existing security threat in some areas of the archipelago had led to a dearth of information with regard to the diversity of organisms especially the islands located in the province of Sulu. Marine mollusc studies are still among those that are overseen by many researchers. To date, there is still a lack of basic information such as diversity and species checklist that make it impossible to assess the rate of population lost among existing marine molluscs. There is no published information on the actual number of marine shelled molluscan species in the area. This work assessed, described and identified some economically important molluscs in the island of Hadji Panglima Tahil, in the province of Sulu, Philippines. There were a total of 18 molluscs (marine bivalves & gastropods) species found and identified in the island. The molluscs served as food, ornaments and as source of livelihood by residents in the area, which is separated by sea from Jolo, the capital municipality of the province.
    [Show full text]
  • 12 - October 2009 the Note from CONE the Editor
    THE CONE COLLECTOR #12 - October 2009 THE Note from CONE the editor COLLECTOR It is always a renewed pleasure to put together another issue of Th e Cone Collector. Th anks to many contributors, we have managed so far to stick to the set schedule – André’s eff orts are greatly to be Editor praised, because he really does a great graphic job from the raw ma- António Monteiro terial I send him – and, I hope, to present in each issue a wide array of articles that may interest our many readers. Remember we aim Layout to present something for everybody, from beginners in the ways of André Poremski Cone collecting to advanced collectors and even professional mala- cologists! Contributors Randy Allamand In the following pages you will fi nd the most recent news concern- Kathleen Cecala ing new publications, new taxa, rare species, interesting or outstand- Ashley Chadwick ing fi ndings, and many other articles on every aspect of the study Paul Kersten and collection of Cones (and their relationship to Mankind), as well Gavin Malcolm as the ever popular section “Who’s Who in Cones” that helps to get Baldomero Olivera Toto Olivera to know one another better! Alexander Medvedev Donald Moody You will also fi nd a number of comments, additions and corrections Philippe Quiquandon to our previous issue. Keep them coming! Th ese comments are al- Jon Singleton ways extremely useful to everybody. Don’t forget that Th e Cone Col- lector is a good place to ask any questions you may have concerning the identifi cation of any doubtful specimens in your collections, as everybody is always willing to express an opinion.
    [Show full text]
  • (Gastropods and Bivalves) and Notes on Environmental Conditions of Two
    Journal of Entomology and Zoology Studies 2014; 2 (5): 72-90 ISSN 2320-7078 The molluscan fauna (gastropods and bivalves) JEZS 2014; 2 (5): 72-90 © 2014 JEZS and notes on environmental conditions of two Received: 24-08-2014 Accepted: 19-09-2014 adjoining protected bays in Puerto Princesa City, Rafael M. Picardal Palawan, Philippines College of Fisheries and Aquatic Sciences, Western Philippines University Rafael M. Picardal and Roger G. Dolorosa Roger G. Dolorosa Abstract College of Fisheries and Aquatic Sciences, Western Philippines With the rising pressure of urbanization to biodiversity, this study aimed to obtain baseline information University on species richness of gastropods and bivalves in two protected bays (Turtle and Binunsalian) in Puerto Princesa City, Philippines before the establishment of the proposed mega resort facilities. A total of 108 species were recorded, (19 bivalves and 89 gastropods). The list includes two rare miters, seven recently described species and first record of Timoclea imbricata (Veneridae) in Palawan. Threatened species were not encountered during the survey suggesting that both bays had been overfished. Turtle Bay had very low visibility, low coral cover, substantial signs of ecosystem disturbances and shift from coral to algal communities. Although Binunsalian Bay had clearer waters and relatively high coral cover, associated fish and macrobenthic invertebrates were of low or no commercial values. Upon the establishment and operations of the resort facilities, follow-up species inventories and habitat assessment are suggested to evaluate the importance of private resorts in biodiversity restoration. Keywords: Binunsalian Bay, bivalves, gastropods, Palawan, species inventory, Turtle Bay 1. Introduction Gastropods and bivalves are among the most fascinating groups of molluscs that for centuries have attracted hobbyists, businessmen, ecologists and scientists among others from around the globe.
    [Show full text]
  • University of Copenhagen
    Non-Peptidic Small Molecule Components from Cone Snail Venoms Lin, Zhenjian; Torres, Joshua P.; Watkins, Maren; Paguigan, Noemi; Niu, Changshan; Imperial, Julita S.; Tun, Jortan; Safavi-Hemami, Helena; Finol-Urdaneta, Rocio K.; Neves, Jorge L. B.; Espino, Samuel; Karthikeyan, Manju; Olivera, Baldomero M.; Schmidt, Eric W. Published in: Frontiers in Pharmacology DOI: 10.3389/fphar.2021.655981 Publication date: 2021 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Lin, Z., Torres, J. P., Watkins, M., Paguigan, N., Niu, C., Imperial, J. S., Tun, J., Safavi-Hemami, H., Finol- Urdaneta, R. K., Neves, J. L. B., Espino, S., Karthikeyan, M., Olivera, B. M., & Schmidt, E. W. (2021). Non- Peptidic Small Molecule Components from Cone Snail Venoms. Frontiers in Pharmacology, 12, [655981]. https://doi.org/10.3389/fphar.2021.655981 Download date: 30. sep.. 2021 REVIEW published: 13 May 2021 doi: 10.3389/fphar.2021.655981 Non-Peptidic Small Molecule Components from Cone Snail Venoms Zhenjian Lin 1, Joshua P. Torres 1, Maren Watkins 1, Noemi Paguigan 1, Changshan Niu 1, Julita S. Imperial 1, Jortan Tun 1, Helena Safavi-Hemami 1,2, Rocio K. Finol-Urdaneta 3, Jorge L. B. Neves 4, Samuel Espino 1, Manju Karthikeyan 1, Baldomero M. Olivera 1* and Eric W. Schmidt 1* 1Departments of Medicinal Chemistry and Biochemistry, School of Biological Sciences, University of Utah, Salt Lake City, UT, United States, 2Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark, 3Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia, 4Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/ CIMAR, Faculty of Sciences, University of Porto, Porto, Portugal Venomous molluscs (Superfamily Conoidea) comprise a substantial fraction of tropical marine biodiversity (>15,000 species).
    [Show full text]
  • Peptidomic Analysis and Characterization of the Venom from Conus Purpurascens
    Peptidomic Analysis and Characterization of the Venom from Conus purpurascens by Alena Rodriguez A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Medicine In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida May 2015 Copyright 2015 by Alena Rodriguez ii Acknowledgements I am eternally thankful for Dr. Frank Marí for giving me the opportunity to work in his research lab and for mentoring me during my project. His guidance has provided the foundation of my scientific career and has inspired me to continue in the field of biochemistry and neuroscience. I would also like to thank Dr. Keith Brew and Dr. Ewa Wojcikiewicz for being a part of my committee and taking time to assist my efforts and provide guidance during my project. I would like to send a special thanks to Dr. Mari Heghinian for mentoring me so patiently since I was a DIS student and teaching me most of the techniques used in my project. Thank you to Alberto Padilla and Mickelene Hackman for being the most supportive and helpful lab mates that anyone could ever ask for. Thank you to all the DIS students of Dr. Marí’s lab for assisting me with my research and allowing me the privilege to mentor you, including Belinda Mouradian, Jordan Kogen, Maxine Cronin Mull, Isabella Torres, Mary Mansour, Jordan Batt, Kim Cabrera, and Isaac Haddy. Finally, I would like to thank my father and mother, Nestor Rodriguez and Nikki Carbone, and my sister and brother, Alexis Rodriguez and Armando Rodriguez, for their unconditional support and love through this process.
    [Show full text]