MSA Newsletter and Discounted Registra- Secretary Carmel Mcdougall Tion at the Molluscs 2015 Conference

Total Page:16

File Type:pdf, Size:1020Kb

MSA Newsletter and Discounted Registra- Secretary Carmel Mcdougall Tion at the Molluscs 2015 Conference NEWSLETTER ISSN 1834-4259 NO. 149 JANUARY 2014 Sinistrality in the gastropod Zemira australis (Sowerby, 1833) (Pseudolividae) from the NSW south coast Simon Grove and Don Hird, Tasmanian Museum and Art Gallery Hobart, Tasmania Email: [email protected] With a few notable exceptions, chirality (or munities in the South East Fisheries between south- ‘handedness’) in gastropods is generally fixed: all ern New South Wales, eastern Victoria and north- members of a given species coil either dextrally (the eastern Tasmania (CSIRO, 1993). The sample in usual arrangement) or sinistrally. Despite this, rare question was collected on 03/09/1993, and came examples of the ‘wrong’ chirality are now known from east of Disaster Bay, NSW (Station 136), in 72 among a wide range of species. To this select club, –67 m of water at latitude 37°17.7´S, longitude 150° we now add the ‘false-olive’ Zemira australis 03.8´E. (Sowerby, 1833). We checked other available samples from the The genus Zemira is endemic to eastern same survey. Four others, from off Disaster Bay Australia; indeed the two species in the genus are and Bermagui in NSW and from off Point Hicks in Australia’s only representatives of the small but geo- Victoria, produced a total of another 11 Zemira graphically widespread neogastropod family Pseu- specimens; all were from waters 24–32 m deep and dolividae. Zemira australis occurs in the shallow sub- all had been live-caught apart from the five from tidal down to a depth of about 150 m, and can be Bermagui, whose shells were occupied by hermit- found from near Bicheno in north-eastern Tasma- crabs. All were dextral. nia, through eastern Bass Strait, along the coast of (Continued on page 3) New South Wales as far north as Fraser Island, Queensland. According to Des Beechey’s Seashells of The eight Zemira australis specimens, two of them sinistral, NSW website (http://seashellsofnsw.org.au), the extracted from a 1993 benthic sled sample from east of Disas- ranges of Z. australis and the second species in the ter Bay, NSW and now held at TMAG. Shell lengths range genus, Z. bodalla, overlap near Tweed Heads, with Z. from 22 to 29 mm. Photo: S. Grove. bodalla extending further north in Queensland to about Swain Reefs and tending to live in deeper waters (150–350 m). While processing and curat- ing material recently from a series of benthic sled samples from the Tasman Sea and eastern Bass Strait, we came across two sinistral speci- mens and six dextral specimens of Z. australis. All appeared to have been live-caught, though some lacked their operculum and their shells bore various encrustations. The samples had been col- lected in 1993, as part of a survey investigating the demersal fish com- 1 Society information President Rachel Przeslawski Membership fees 2014 Vice President Kirsten Benkendorff Includes Molluscan Research (published four times per Treasurer Don Colgan year) the MSA Newsletter and discounted registra- Secretary Carmel McDougall tion at the Molluscs 2015 conference. Membership Secretary Kathleen Hayes Public Relations Officer Caitlin Woods Ordinary members (Aust., Asia, w. Pacific) $A70 Journal Editor Winston Ponder Ordinary members (rest of the world) $A100 Newsletter Editors Mandy Reid Extra family member $A5 Jonathan Parkyn Affiliate organisation $A100 Website Administrator Shane Penny Student member/concession $A45 Council Members Simon Hills Jonathan Parkyn Membership fees can be paid (preferably) via the Platon Vafiadis Society’s website. All enquiries and orders should be sent to the Send subscriptions via mail to: Malacological Society Secretary, Carmel McDougall, at of Australasia, c/o Kathleen Hayes, 8 Hordern Rd, [email protected] Mt Evelyn, VIC 3796. Newsletter Victorian branch Editors: Mandy Reid, Malacology Department, Secretary Michael Lyons, 19 Banksia Street, Black- Australian Museum, 6 College St, Sydney, NSW burn, VIC 3130. Phone (03) 9894 1526 or Email: 2010. Phone (02) 9320 6412 (W), [email protected]. Meetings at the Email: [email protected] and Melbourne Camera Club, cnr Dorcas and Farrars Jonathan Parkyn, Streets, South Melbourne, on the third Monday of Email: [email protected] each month. No meeting in January, July or Decem- ber. Deadline for articles for the next issue of the News- letter: 21 March 2014. This publication is not deemed to be valid for taxonomic purposes (See article 8.2 in the International Code of Zoological Nomenclature 4th Edition.) MSA website http://www.malsocaus.org 2 (Continued from page 1) We then asked colleagues in other Australian muse- Intriguingly, we have not been able to unearth any ums to check their Zemira holdings (Z. australis and/ other instances of sinistrality in members of the fam- or Z. bodalla) and to let us know whether any of their ily Pseudolividae. However, the phenomenon occurs specimens were sinistral. The response was gratify- in other neogastropod families. Indeed there is some ingly rapid, but disappointing in that no further sin- suggestion that it occurs more in neogastropods than istral specimens came to light. Winston Ponder in other gastropod clades; of the 102 reverse-coiled (AM) reported 96 dry and 35 wet lots of Z. australis, gastropod species amassed by Florida collector Har- and 16 dry lots of Z. bodalla, many with multiple old G. Lee, all but 11 are neogastropods (see http:// specimens; Richard Willan (MAGNT) reported 15 www.jaxshells.org/reverse.htm). Why this might be shells in six dry lots (one lot of two shells comprised so is not clear; the separate sexes and copulatory Z. bodalla); John Healy (QM) reported six Z. australis mating systems of neogastropods, including false- and six Z. bodalla; Julian Finn (MV) reported 6o lots, olives (Ponder and Darragh, 1975) ought to militate many with multiple specimens (two of these Z. bodal- against the propagation of reverse-coiling, since chi- la); and Andrea Crowther (SAM) reported six lots of rality has a bearing on the orientation of the genita- 32 specimens, all Z. australis. Lisa Kirkendale (WAM) lia. This means that successful interchiral matings reported no Zemira holdings. In total, these reports (between dextral and sinistral individuals) seem high- account for well over 200 specimens, and perhaps ly improbable, particularly for low-spired species that closer to 300. engage in ‘face-to-face’ mating (Schilthuizen and Our findings beg the question as to why a Davison, 2005), as would be the case for many neo- single sampling event was able to produce not one gastropods. This copulatory barrier implies that the but two sinistral specimens, contrasting with the proportion of sinistral individuals in an otherwise complete absence of sinistrality amongst all the oth- dextral species should seldom rise to the equilibrium er samples held in museum collections around Aus- that would be predicted by population genetics tralia. It is unlikely that the cause of sinistrality was a alone, even if there were no other selection pressure developmental hiccup — after all, why would this disfavouring reverse-coiled individuals. happen twice, and in the same location at the same However, chance may at times dictate that time? More likely, it was the result of past mutation. two sinistral individuals do indeed meet and mate. In It is believed that while several genes may be such rare circumstances, there would be no copula- involved in orchestrating chirality, a mutation in one tory barrier, and the proportion of sinistrality in the of these may cause an individual’s chirality to ‘flip’. local population could indeed climb. This must be a Typically, the standard (and usually dominant) allele rare occurrence, since there are very few document- codes for the species’ ‘right’ chirality while a mutant ed cases of established sinistral populations of other- version (usually recessive) codes for the ‘wrong’ chi- wise dextral neogastropod species. Valero (1972) rality (reverse coiling). Under a normal Mendelian reported finding nine live sinistral specimens of Co- system of inheritance, the reverse-coiled offspring nus ventricosus (Conidae) in close proximity to each could arise if at least one parent was itself reverse- other, near the shores of the Mediterranean at Cap coiled, or if both parents were normal but each was Benat, near Toulon in France. Also on Mediterrane- heterozygous, bearing a single copy of the recessive an shores, Donati et al. (1984) reported finding elev- allele coding for reverse coiling. But in a peculiar en sinistral specimens of Conus mediterraneus form of inheritance displayed by some pulmonate (Conidae) over a period of two days in the vicinity of gastropods, chirality is not determined by which al- Mediba, Sardinia; this find followed discovering five leles the individual itself carries, but by which alleles sinistral specimens in the same area in 1973. its mother carried; this is known as maternal delayed Our finds leave open the possibility, there- inheritance (Freeman and Lundelius, 1982). In such fore, that there is a self-sustaining population of sin- species, an individual’s chirality is decided very early istral Zemira australis in the vicinity of the point of on in its development, and is mediated by maternal origin of our two specimens. Twenty years on, per- messenger RNA or proteins acting on the as-yet un- haps it’s time someone with a boat and some sort of fertilised egg; those agents are of course the product benthic sampling device revisited the locality to try of the maternal genotype, so the phenotype of the and find out? offspring reflects her genotype rather than theirs (Schilthuizen and Davison, 2005). Postscript Of course, pondering modes of inheritance Having written this article, we heard from Lynton cannot solve the question as to the origin of sinistrali- Stephens that there is a sinistral specimen of Zemira ty in the sampled Zemira; at best, it only pushes the australis on display at the Griffiths Sea Shell Museum possible origin back by one generation.
Recommended publications
  • Cone Snail Case
    Cone Snail case Cone snail molecular phylogeny Cone snail video Snail Venom Yields Potent Painkiller, But Delivering The Drug Is Tricky Updated August 4, 201510:52 AM ETPublished August 3, 20153:30 PM ET http://www.npr.org/sections/health-shots/2015/08/03/428990755/snail-venom- yields-potent-painkiller-but-delivering-the-drug-is-tricky Magician’s cone (Conus magus) The magician’s cone, Conus magus, is a fish-hunting, or piscivorous cone snail found in the Western Pacific. It is so common in some of small Pacific islands, especially in the Philippines, that it is routinely sold in the market as food. The magician’s cone attacks its fish prey by sticking out its light yellowish proboscis, from which venom is pushed through a harpoon-like tooth. It hunts by the hook-and-line method and so will engulf its prey after it has been paralyzed. To learn more about hook-and-line hunters, click here. Scientists have analyzed the venom of the magician’s cone and one of its venom components was discovered to have a unique pharmacological activity by blocking a specific calcium channel (N-type). After this venom component was isolated and characterized in a laboratory, researchers realized that it had potential medical application. By blocking N-type calcium channels, the venom blocks channels that when open convey pain from nerve cells. If this is blocked, the brain cannot perceive these pain signals. It was developed as a pain management drug, and is now chemically synthesized and sold under the trade name Prialt. This drug is given to patients who have very severe pain that is not alliviated by morphine.
    [Show full text]
  • Glycymeris Longior (Sowerby, 1832) Clam at the Southern Edge of Its Distribution (Argentine Sea) Lucas H
    Gimenez et al. Helgol Mar Res (2020) 74:2 https://doi.org/10.1186/s10152-020-0534-x Helgoland Marine Research ORIGINAL ARTICLE Open Access Age and growth of Glycymeris longior (Sowerby, 1832) clam at the southern edge of its distribution (Argentine Sea) Lucas H. Gimenez1,2†, María del Socorro Doldan1,3,4*† , Paula C. Zaidman1,3,4 and Enrique M. Morsan1,3 Abstract Even though Glycymeris longior is a clam widely distributed in the SW Atlantic Ocean, little is known about its biology and life history. The present study assessed the periodicity of the internal growth increments of G. longior using thin shell sections. Each internal growth increment was composed of two alternating bands: a translucent band (light- coloured when viewed with transmitted light) and an opaque band (dark-coloured). Annual formation for each pair of bands was demonstrated. The formation of the annual growth increments was synchronous among individuals. Growth was determined from live clams collected at El Sótano, Argentine Sea (age range 29 to 69 years). Accord- ing to the growth model, G. longior grows fast during the frst 5 years of life and then growth= becomes slower in later years; individuals reached 50% and 90% of maximum size at 5 and 13 years of age, respectively. High variability was found in shell height for the frst 10 years: diferences up to 5–7 mm among individuals were registered for the frst 2 years of age, and up to 11 mm between the ages of 3 and 9 years. The growth performance index phi-prime (φ′) and the index of growth performance (P) of G.
    [Show full text]
  • Taxonomic Revision of West African Cone Snails (Gastropoda: Conidae) Based Upon Mitogenomic Studies: Implications for Conservation
    European Journal of Taxonomy 663: 1–89 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.663 www.europeanjournaloftaxonomy.eu 2020 · Tenorio M.J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:78E7049C-F592-4D01-9D15-C7715119B584 Taxonomic revision of West African cone snails (Gastropoda: Conidae) based upon mitogenomic studies: implications for conservation Manuel J. TENORIO 1,*, Samuel ABALDE 2, José R. PARDOS-BLAS 3 & Rafael ZARDOYA 4 1 Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Torre Norte, 1ª Planta, Universidad de Cadiz, 11510 Puerto Real, Cadiz, Spain. 2,3,4 Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:24B3DC9A-3E34-4165-A450-A8E86B0D1231 2 urn:lsid:zoobank.org:author:C72D4F45-19A1-4554-9504-42D1705C85A3 3 urn:lsid:zoobank.org:author:1CAB2718-4C97-47EE-8239-0582C472C40E 4 urn:lsid:zoobank.org:author:C55129E8-7FF7-41B2-A77C-4097E61DDD2E Abstract. In the last few years, a sharp increase in the number of descriptions of new species of West African cone snails, particularly from the Cabo Verde Archipelago, has taken place. In previous studies, we used mitogenome sequences for reconstructing robust phylogenies, which comprised in total 120 individuals representing the majority of species (69.7%) described from this biogeographical region (except Angolan endemics) and grouped into seven genera within the family Conidae.
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Multi-Gene Analyses of the Phylogenetic Relationships Among the Mollusca, Annelida, and Arthropoda Donald J
    Zoological Studies 47(3): 338-351 (2008) Multi-Gene Analyses of the Phylogenetic Relationships among the Mollusca, Annelida, and Arthropoda Donald J. Colgan1,*, Patricia A. Hutchings2, and Emma Beacham1 1Evolutionary Biology Unit, The Australian Museum, 6 College St. Sydney, NSW 2010, Australia 2Marine Invertebrates, The Australian Museum, 6 College St., Sydney, NSW 2010, Australia (Accepted October 29, 2007) Donald J. Colgan, Patricia A. Hutchings, and Emma Beacham (2008) Multi-gene analyses of the phylogenetic relationships among the Mollusca, Annelida, and Arthropoda. Zoological Studies 47(3): 338-351. The current understanding of metazoan relationships is largely based on analyses of 18S ribosomal RNA ('18S rRNA'). In this paper, DNA sequence data from 2 segments of 28S rRNA, cytochrome c oxidase subunit I, histone H3, and U2 small nuclear (sn)RNA were compiled and used to test phylogenetic relationships among the Mollusca, Annelida, and Arthropoda. The 18S rRNA data were included in the compilations for comparison. The analyses were especially directed at testing the implication of the Eutrochozoan hypothesis that the Annelida and Mollusca are more closely related than are the Annelida and Arthropoda and at determining whether, in contrast to analyses using only 18S rRNA, the addition of data from other genes would reveal these phyla to be monophyletic. New data and available sequences were compiled for up to 49 molluscs, 33 annelids, 22 arthropods, and 27 taxa from 15 other metazoan phyla. The Porifera, Ctenophora, and Cnidaria were used as the outgroup. The Annelida, Mollusca, Entoprocta, Phoronida, Nemertea, Brachiopoda, and Sipuncula (i.e., all studied Lophotrochozoa except for the Bryozoa) formed a monophyletic clade with maximum likelihood bootstrap support of 81% and a Bayesian posterior probability of 0.66 when all data were analyzed.
    [Show full text]
  • Population Dynamics of Pomacea Flagellata
    Limnetica, 29 (2): x-xx (2011) Limnetica, 34 (1): 69-78 (2015). DOI: 10.23818/limn.34.06 c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Population dynamics of the native apple snail Pomacea flagellata (Ampullariidae) in a coastal lagoon of the Mexican Caribbean Frank A. Ocaña∗, Alberto de Jesús-Navarrete, José Juan Oliva-Rivera, Rosa María de Jesús- Carrillo and Abel Abraham Vargas-Espósitos1 Departamento de Sistemática y Ecología Acuática. El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal. Av. Centenario km 5.5, Chetumal, Quintana Roo, México ∗ Corresponding author: [email protected] 2 Received: 25/07/2014 Accepted: 20/11/2014 ABSTRACT Population dynamics of the native apple snail Pomacea flagellata (Ampullariidae) in a coastal lagoon of the Mexican Caribbean Apple snails Pomacea spp inhabit tropical and subtropical freshwater environments and are of ecological and economic importance. To evaluate the population dynamics of P. flagellata, monthly samples were collected from Guerrero Lagoon (Yucatán Peninsula) from June 2012 to May 2013. The measured environmental variables did not differ significantly among the sampling stations. However, salinity was lower during the rainy season, and the temperature was lower during the north season (i.e., the season dominated by cold fronts). The snails were more abundant during the rainy season, and they were restricted to the portion of the lagoon that receives freshwater discharges. The snails ranged from 4 to 55 mm in size, with a –1 maximum estimated length of L∞ = 57.75 mm and a growth rate of K = 0.68 y (the abbreviation “y” means “year”) with a seasonal oscillation; the lowest growth rate occurred in early December.
    [Show full text]
  • THE NAUTILUS (Quarterly)
    americanmalacologists, inc. PUBLISHERS OF DISTINCTIVE BOOKS ON MOLLUSKS THE NAUTILUS (Quarterly) MONOGRAPHS OF MARINE MOLLUSCA STANDARD CATALOG OF SHELLS INDEXES TO THE NAUTILUS {Geographical, vols 1-90; Scientific Names, vols 61-90) REGISTER OF AMERICAN MALACOLOGISTS JANUARY 30, 1984 THE NAUTILUS ISSN 0028-1344 Vol. 98 No. 1 A quarterly devoted to malacology and the interests of conchologists Founded 1889 by Henry A. Pilsbry. Continued by H. Burrington Baker. Editor-in-Chief: R. Tucker Abbott EDITORIAL COMMITTEE CONSULTING EDITORS Dr. William J. Clench Dr. Donald R. Moore Curator Emeritus Division of Marine Geology Museum of Comparative Zoology School of Marine and Atmospheric Science Cambridge, MA 02138 10 Rickenbacker Causeway Miami, FL 33149 Dr. William K. Emerson Department of Living Invertebrates Dr. Joseph Rosewater The American Museum of Natural History Division of Mollusks New York, NY 10024 U.S. National Museum Washington, D.C. 20560 Dr. M. G. Harasewych 363 Crescendo Way Dr. G. Alan Solem Silver Spring, MD 20901 Department of Invertebrates Field Museum of Natural History Dr. Aurele La Rocque Chicago, IL 60605 Department of Geology The Ohio State University Dr. David H. Stansbery Columbus, OH 43210 Museum of Zoology The Ohio State University Dr. James H. McLean Columbus, OH 43210 Los Angeles County Museum of Natural History 900 Exposition Boulevard Dr. Ruth D. Turner Los Angeles, CA 90007 Department of Mollusks Museum of Comparative Zoology Dr. Arthur S. Merrill Cambridge, MA 02138 c/o Department of Mollusks Museum of Comparative Zoology Dr. Gilbert L. Voss Cambridge, MA 02138 Division of Biology School of Marine and Atmospheric Science 10 Rickenbacker Causeway Miami, FL 33149 EDITOR-IN-CHIEF The Nautilus (USPS 374-980) ISSN 0028-1344 Dr.
    [Show full text]
  • The Malacological Society of London
    ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45
    [Show full text]
  • Porin Expansion and Adaptation to Hematophagy in the Vampire Snail
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Piercing Fishes: Porin Expansion and Adaptationprovided by Archivio to istituzionale della ricerca - Università di Trieste Hematophagy in the Vampire Snail Cumia reticulata Marco Gerdol,1 Manuela Cervelli,2 Marco Oliverio,3 and Maria Vittoria Modica*,4,5 1Department of Life Sciences, Trieste University, Italy 2Department of Biology, Roma Tre University, Italy 3Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Roma, Italy 4Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy 5UMR5247, University of Montpellier, France *Corresponding author: E-mail: [email protected]. Associate Editor: Nicolas Vidal Downloaded from https://academic.oup.com/mbe/article-abstract/35/11/2654/5067732 by guest on 20 November 2018 Abstract Cytolytic pore-forming proteins are widespread in living organisms, being mostly involved in both sides of the host– pathogen interaction, either contributing to the innate defense or promoting infection. In venomous organisms, such as spiders, insects, scorpions, and sea anemones, pore-forming proteins are often secreted as key components of the venom. Coluporins are pore-forming proteins recently discovered in the Mediterranean hematophagous snail Cumia reticulata (Colubrariidae), highly expressed in the salivary glands that discharge their secretion at close contact with the host. To understand their putative functional role, we investigated coluporins’ molecular diversity and evolu- tionary patterns. Coluporins is a well-diversified family including at least 30 proteins, with an overall low sequence similarity but sharing a remarkably conserved actinoporin-like predicted structure. Tracking the evolutionary history of the molluscan porin genes revealed a scattered distribution of this family, which is present in some other lineages of predatory gastropods, including venomous conoidean snails.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Biogeography of Coral Reef Shore Gastropods in the Philippines
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274311543 Biogeography of Coral Reef Shore Gastropods in the Philippines Thesis · April 2004 CITATIONS READS 0 100 1 author: Benjamin Vallejo University of the Philippines Diliman 28 PUBLICATIONS 88 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: History of Philippine Science in the colonial period View project Available from: Benjamin Vallejo Retrieved on: 10 November 2016 Biogeography of Coral Reef Shore Gastropods in the Philippines Thesis submitted by Benjamin VALLEJO, JR, B.Sc (UPV, Philippines), M.Sc. (UPD, Philippines) in September 2003 for the degree of Doctor of Philosophy in Marine Biology within the School of Marine Biology and Aquaculture James Cook University ABSTRACT The aim of this thesis is to describe the distribution of coral reef and shore gastropods in the Philippines, using the species rich taxa, Nerita, Clypeomorus, Muricidae, Littorinidae, Conus and Oliva. These taxa represent the major gastropod groups in the intertidal and shallow water ecosystems of the Philippines. This distribution is described with reference to the McManus (1985) basin isolation hypothesis of species diversity in Southeast Asia. I examine species-area relationships, range sizes and shapes, major ecological factors that may affect these relationships and ranges, and a phylogeny of one taxon. Range shape and orientation is largely determined by geography. Large ranges are typical of mid-intertidal herbivorous species. Triangualar shaped or narrow ranges are typical of carnivorous taxa. Narrow, overlapping distributions are more common in the central Philippines. The frequency of range sizesin the Philippines has the right skew typical of tropical high diversity systems.
    [Show full text]