Enhancement of Bleomycin Production in Streptomyces Verticillus Through Global Metabolic Regulation of N-Acetylglucosamine and A

Total Page:16

File Type:pdf, Size:1020Kb

Enhancement of Bleomycin Production in Streptomyces Verticillus Through Global Metabolic Regulation of N-Acetylglucosamine and A Chen et al. Microb Cell Fact (2020) 19:32 https://doi.org/10.1186/s12934-020-01301-8 Microbial Cell Factories RESEARCH Open Access Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profling analysis Hong Chen1,2†, Jiaqi Cui1,2†, Pan Wang1,2, Xin Wang1,2 and Jianping Wen1,2* Abstract Background: Bleomycin is a broad-spectrum glycopeptide antitumor antibiotic produced by Streptomyces verticil- lus. Clinically, the mixture of bleomycin A2 and bleomycin B2 is widely used in combination with other drugs for the treatment of various cancers. As a secondary metabolite, the biosynthesis of bleomycin is precisely controlled by the complex extra-/intracellular regulation mechanisms, it is imperative to investigate the global metabolic and regula- tory system involved in bleomycin biosynthesis for increasing bleomycin production. Results: N-acetylglucosamine (GlcNAc), the vital signaling molecule controlling the onset of development and antibiotic synthesis in Streptomyces, was found to increase the yields of bleomycins signifcantly in chemically defned medium. To mine the gene information relevant to GlcNAc metabolism, the DNA sequences of dasR-dasA-dasBCD- nagB and nagKA in S. verticillus were determined by chromosome walking. From the results of Real time fuorescence quantitative PCR (RT-qPCR) and electrophoretic mobility shift assays (EMSAs), the repression of the expression of nagB and nagKA by the global regulator DasR was released under induction with GlcNAc. The relief of blmT expres- sion repression by BlmR was the main reason for increased bleomycin production. DasR, however, could not directly afect the expression of the pathway-specifc repressor BlmR in the bleomycins gene cluster. With at the beginning of bleomycin synthesis, the supply of the specifc precursor GDP-mannose played the key role in bleomycin production. Genetic engineering of the GDP-mannose synthesis pathway indicated that phosphomannose isomerase (ManA) and phosphomannomutase (ManB) were key enzymes for bleomycins synthesis. Here, the blmT, manA and manB co-expression strain OBlmT/ManAB was constructed. Based on GlcNAc regulation and assisted metabolic profling analysis, the yields of bleomycin A2 and B2 were ultimately increased to 61.79 and 36.9 mg/L, respectively. Conclusions: Under GlcNAc induction, the elevated production of bleomycins was mainly associated with the alleviation of the inhibition of BlmT, so blmT and specifc precursor synthesis pathways were genetically engineered for bleomycins production improvement. Combination with subsequent metabolomics analysis not only efectively increased the bleomycin yield, but also extended the utilization of chitin-derived substrates in microbial-based antibi- otic production. *Correspondence: [email protected] †Hong Chen and Jiaqi Cui contributed equally to this work 1 Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People’s Republic of China Full list of author information is available at the end of the article © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea- tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo- main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Chen et al. Microb Cell Fact (2020) 19:32 Page 2 of 17 Keywords: Bleomycin, GlcNAc, DasR, GDP-mannose, Metabolic profling Introduction defciency, which is delivered and sensed by Streptomy- Bleomycin is a member of glycopeptide antibiotics that ces to initiate sporulation and secondary metabolism was frst isolated from the fermentation broth of S. ver- [17]. Terefore, not only does GlcNAc or chitin provide ticillus by Umezawa et al. [1]. Te bleomycin gene cluster a source of carbon and nitrogen for strain growth, but and its structure clearly indicate that a hybrid peptide- the GlcNAc-induced regulation of antibiotic synthesis polyketide skeleton and a disaccharide unit together should be utilized to improve the bleomycin production constitute bleomycins with diferent C-terminal amines in S. verticillus. [2]. A mixture of bleomycin A2 and B2, marketed as After the onset of antibiotic synthesis, the supply of Blenoxane®, is administered by injection in clinic to treat limiting precursors is another key factor for improv- tumors, notably germ cell tumors, head and neck can- ing antibiotic yield [18]. Mannosylated glycans are com- cer and cervical carcinoma [3]. Although fermentation mon precursors of various glycoproteins and antibiotics medium optimization and manipulation of the pathway- including cell envelope polymers, polyenes, bleomycins specifc repressor blmR have been suggested to be use- and mannopeptimycins. Mannose can be sequentially ful for enhancing bleomycin production [4–6], the lower converted by phosphomannose isomerase (ManA), phos- yields and complex nutrient demands in rich medium phomannomutase (ManB), and GDP-mannose pyroph- have been major difculties in the industrial production osphorylase to form GDP-mannose. During bleomycin of bleomycins. biosynthesis, GDP-mannose and its isomer GDP-gulose Streptomyces species inhabit specifc environments are attached to the bleomycin aglycone through glyco- with changing nutrient availability, and their morpholog- sylation, which is responsible for the cellular recogni- ical development is tuned to coincide with the synthesis tion, uptake and metal ions chelation of bleomycins [19]. of secondary metabolites, including antibiotics. Under As the fnal step in the biosynthesis of most glycopep- starvation, multiple regulatory networks are employed by tide antibiotics, the genetic engineering of glycosylation Streptomyces to make a decision whether to continue veg- could not only result in hyper-susceptibility to antibiot- etative growth or form spores. Once it enters the spores ics and diverse derivatives of natural products, but its development, a series of genes are transcribed, which reaction efciency usually dictates the ultimate yield of activate the synthesis of antibiotics and morphological an antibiotic [20–23]. In addition to the glycosyl moie- diferentiation [7, 8]. Te onset of antibiotic synthesis not ties, the hybrid peptide-polyketide skeleton of bleomy- only depends on the expression of the specifc biosyn- cin is directly synthesized by nine common amino acids thetic gene clusters, but is also afected by the regulation [24], which indicate that the intracellular primary meta- of intracellular response mechanism of environmental bolic pathways of S. verticillus might also play a dominant status [9]. GlcNAc, the main component of chitin, is con- role in bleomycin biosynthesis. To further increase the sidered to be a signaling molecule with diferent efects yield of bleomycin, it is necessary to fully understand the on spore development and antibiotic yields in Streptomy- changes of global intracellular metabolites and identify ces under nutrient-rich/poor conditions [10, 11]. Actu- key modules that are associated with the synthesis of ble- ally, the regulation of the GntR/HutC family repressor omycins. Metabolic profling analysis is widely employed DasR has been found to be essential for the development for the identifcation of biomarkers and modules asso- and morphogenesis process, which controls the expres- ciated with target product synthesis. Tis approach has sion of genes involved in chitin/GlcNAc metabolism, the been used to increase the outputs of natural products development-related phosphoglucosyltransferase system and bioenergy [25, 26]. (PTS), stress response and nearly all the known antibiotic In this study, the signaling molecule GlcNAc greatly biosynthesis pathways [10, 12–15]. In vivo, DasR binds initiated the bleomycin biosynthesis in liquid medium. to a conserved element in the promoter region of its tar- To elucidate the GlcNAc induction mechanism, the get genes and represses their expression. However, the efects of the global transcription factor DasR on Glc- metabolites N-acetylglucosamine 6-phosphate (GlcNAc- NAc metabolism and bleomycin synthesis were investi- 6P) and glucosamine-6-phosphate (GlcN-6P) in GlcNAc gated by RT-qPCR and EMSAs. Te elevated expression catabolism would competitively bind to DasR, which is of the blmT gene under GlcNAc induction was found then released it from the target sites [14–16]. It has been to be the main cause of the improvement of bleomy- reported that the addition of GlcNAc to a niche simu- cin yield. To further increase bleomycin production lates a signal similar to cell wall lysis under nutritional under GlcNAc induction, gene blmT was overexpressed Chen et al. Microb
Recommended publications
  • Protective Effects of Berberis Crataegina DC. (Ranunculales: Berberidaceae) Extract on Bleomycin-Induced Toxicity in Fruit Flies (Diptera: Drosophilidae)
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 ISSN: 1851-7471 [email protected] Sociedad Entomológica Argentina Argentina Protective effects of Berberis crataegina DC. (Ranunculales: Berberidaceae) extract on Bleomycin-induced toxicity in fruit flies (Diptera: Drosophilidae) ATICI, Tuğba; ALTUN ÇOLAK, Deniz; ERSÖZ, Çağla Protective effects of Berberis crataegina DC. (Ranunculales: Berberidaceae) extract on Bleomycin-induced toxicity in fruit flies (Diptera: Drosophilidae) Revista de la Sociedad Entomológica Argentina, vol. 77, no. 4, 2018 Sociedad Entomológica Argentina, Argentina Available in: https://www.redalyc.org/articulo.oa?id=322055706003 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Artículos Protective effects of Berberis crataegina DC. (Ranunculales: Berberidaceae) extract on Bleomycin-induced toxicity in fruit flies (Diptera: Drosophilidae) Efectos protectores de extracto de Berberis crataegina DC. (Ranunculales: Berberidaceae) frente a toxicidad inducida con Bleomicina en moscas de la fruta (Diptera: Drosophilidae) Tuğba ATICI Institute of Natural and Applied Science, Erzincan Binali Yıldırım University, Turquía Deniz ALTUN ÇOLAK [email protected] Faculty of Art and Science, Erzincan Binali Yıldırım University, Turquía Çağla ERSÖZ Revista de la Sociedad Entomológica Institute of Natural and Applied Science, Erzincan Binali Yıldırım Argentina, vol. 77, no. 4, 2018 University, Turquía Sociedad Entomológica Argentina, Argentina Received: 02 October 2018 Accepted: 06 December 2018 Published: 27 December 2018 Abstract: Antineoplastic agents due to their cytotoxic effects increase the amount of free radical in cells causing cell death. e aims of this study were to assess the possible Redalyc: https://www.redalyc.org/ toxic effects of Bleomycin (BLM) on the number of offspring and survival rate of fruit articulo.oa?id=322055706003 flies as well as the protective role of Berberis crataegina DC.
    [Show full text]
  • Colonization of Lettuce Rhizosphere and Roots by Tagged Streptomyces
    PhD School of Chemistry, Biochemistry and Ecology of Pesticide (CBEA) DOCTORAL DISSERTATION Tagging biocontrol Streptomyces to study lettuce colonization Xiaoyulong Chen To be presented with the permission of the examining board, 28th cycle of the CBEA PhD school, for public examination at Aula Magna C03 (Room C03), Faculty of Agricultural and food sciences, University of Milan, on 17.12.2015. Cover figure: Colonization of lettuce root by Streptomyces cyaneus ZEA17I, examined by confocal laser scanning microscopy. Supervisor: Professor Paolo Cortesi Department of Food, Environmental, and Nutritional Sciences University of Milan, Italy Co-supervisor: Professor Marco Saracchi Department of Food, Environmental, and Nutritional Sciences University of Milan, Italy Coordinator: Professor Daniele Daffonchio Department of Food, Environmental, and Nutritional Sciences University of Milan, Italy Examination board (ordered by first letter of the family name): 1. Professor Paolo Bertolini Department of Agricultural Sciences University of Bologna, Italy 2. Dr. Jonas Bengtsson Department of Zoology Stockholm University, Sweden 3. Professor Daniele Daffonchio Department of Food, Environmental, and Nutritional Sciences University of Milan, Italy 4. Professor George Tsiamis Dep. of Environmental and Nutritional Resources Management University of Patras, Greece 5. Dr. Laura Polito Institute of Molecular Science and Technology, CNR, Italy Contents List of original publications......................................................................................................
    [Show full text]
  • Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin
    UC San Diego Research Theses and Dissertations Title Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin Permalink https://escholarship.org/uc/item/21b965z8 Author Schultz, Andrew W. Publication Date 2010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Andrew William Schultz Committee in charge: Professor Bradley Moore, Chair Professor Eric Allen Professor Pieter Dorrestein Professor William Fenical Professor William Gerwick 2010 Copyright Andrew William Schultz, 2010 All rights reserved. The Dissertation of Andrew William Schultz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Chair University of California, San Diego 2010 iii DEDICATION To my wife Elizabeth and our son Orion and To my parents Dale and Mary Thank you for your never ending love and support iv TABLE OF CONTENTS Signature Page ....................................................................................................
    [Show full text]
  • Exploring the Potential of Antibiotic Production from Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis
    fmicb-11-01540 July 27, 2020 Time: 14:51 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01540 Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis Dini Hu1,2, Chenghang Sun3, Tao Jin4, Guangyi Fan4, Kai Meng Mok2, Kai Li1* and Simon Ming-Yuen Lee5* 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China, 2 Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China, 3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 4 Beijing Genomics Institute, Shenzhen, China, 5 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China Actinobacteria are well recognized for their production of structurally diverse bioactive Edited by: secondary metabolites, but the rare actinobacterial genera have been underexploited Sukhwan Yoon, for such potential. To search for new sources of active compounds, an experiment Korea Advanced Institute of Science combining genomic analysis and tandem mass spectrometry (MS/MS) screening and Technology, South Korea was designed to isolate and characterize actinobacterial strains from a mangrove Reviewed by: Hui Li, environment in Macau. Fourteen actinobacterial strains were isolated from the collected Jinan University, China samples. Partial 16S sequences indicated that they were from six genera, including Baogang Zhang, China University of Geosciences, Brevibacterium, Curtobacterium, Kineococcus, Micromonospora, Mycobacterium, and China Streptomyces. The isolate sp.01 showing 99.28% sequence similarity with a reference *Correspondence: rare actinobacterial species Micromonospora aurantiaca ATCC 27029T was selected for Kai Li whole genome sequencing.
    [Show full text]
  • Towards Combinatorial Biosynthesis of Pyrrolamide Antibiotics in Streptomyces Celine Aubry
    Towards combinatorial biosynthesis of pyrrolamide antibiotics in Streptomyces Celine Aubry To cite this version: Celine Aubry. Towards combinatorial biosynthesis of pyrrolamide antibiotics in Streptomyces. Bio- chemistry [q-bio.BM]. Université Paris Saclay (COmUE), 2019. English. NNT : 2019SACLS245. tel-02955510 HAL Id: tel-02955510 https://tel.archives-ouvertes.fr/tel-02955510 Submitted on 2 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards combinatorial biosynthesis of pyrrolamide antibiotics in Streptomyces Thèse de doctorat de l'Université Paris-Saclay préparée à l’Université Paris-Sud École doctorale n°577 Structure et Dynamique des Systèmes Vivants (SDSV) Spécialité de doctorat : Sciences de la vie et de la Santé Thèse présentée et soutenue à Orsay, le 30/09/19, par Céline AUBRY Composition du Jury : Matthieu Jules Professeur, Agroparistech (MICALIS) Président du Jury Yanyan Li Chargée de recherche, MNHN (MCAM) Rapportrice Stéphane Cociancich Chercheur, CIRAD (BGPI) Rapporteur Annick Méjean Professeure, Université Paris-Diderot (LIED) Examinatrice Hasna Boubakri Maitre de conférences, Université Claude Bernard Lyon I (Ecologie microbienne) Examinatrice Sylvie Lautru Chargée de recherche, CNRS (I2BC) Directrice de thèse Acknowledgements J’ai insisté pour rédiger l’ensemble de ma thèse en anglais.
    [Show full text]
  • Exploration of Chemical Interactions Between Streptomyces and Eukaryotes
    i Exploration of chemical interactions between Streptomyces and eukaryotes By Louis K. Ho A thesis submitted in conformity with the requirements For the degree of Doctor of Philosophy Department of Biochemistry University of Toronto © Copyright by Louis K. Ho 2020 i Exploration of chemical interactions between Streptomyces and eukaryotes Louis K. Ho Doctor of Philosophy Department of Biochemistry University of Toronto 2020 Abstract In the environment, bacteria live in complex communities with other organisms. In this work, I characterize two new chemically-mediated ways in which bacteria and eukaryotes interact. First, I show that ingestion of Streptomyces bacteria can directly be lethal to fruit flies and that this toxicity is the result of bacterial production of insecticides. I also show that this toxicity is facilitated by airborne odors that reducesin insect progeny. Second, I show that the yeast Saccaromyces cerevisiae can trigger Streptomyces to enter a new mode of growth called ‘exploration’. I characterize ‘exploratory’ growth and identify how it is triggered by airborne chemicals and the chemical modification of the growth environment. Overall, this thesis describes two new ways in which bacteria and eukaryotes interact and highlights how chemicals play an important role in these interactions. ii ii Acknowledgements I would like to thank all past and present members of the laboratory for their support and putting up with me throughout the years. You are not only my trusted colleagues but also my friends that I hope to cherish and keep in touch with for many years to come*. I would like to thank my supervisor, Dr. Justin Nodwell for putting insurmountable faith in me from the very beginning and for shaping my view of the world.
    [Show full text]
  • A New Micromonospora Strain with Antibiotic Activity Isolated from the Microbiome of a Mid-Atlantic Deep-Sea Sponge
    marine drugs Article A New Micromonospora Strain with Antibiotic Activity Isolated from the Microbiome of a Mid-Atlantic Deep-Sea Sponge Catherine R. Back 1,* , Henry L. Stennett 1 , Sam E. Williams 1 , Luoyi Wang 2 , Jorge Ojeda Gomez 1, Omar M. Abdulle 3, Thomas Duffy 3, Christopher Neal 4, Judith Mantell 4, Mark A. Jepson 4, Katharine R. Hendry 5 , David Powell 3, James E. M. Stach 6 , Angela E. Essex-Lopresti 7, Christine L. Willis 2, Paul Curnow 1 and Paul R. Race 1,* 1 School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; [email protected] (H.L.S.); [email protected] (S.E.W.); [email protected] (J.O.G.); [email protected] (P.C.) 2 School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK; [email protected] (L.W.); [email protected] (C.L.W.) 3 Summit Therapeutics, Merrifield Centre, Rosemary Lane, Cambridge CB1 3LQ, UK; [email protected] (O.M.A.); [email protected] (T.D.); [email protected] (D.P.) 4 Woolfson Bioimaging Facility, University of Bristol, University Walk, Bristol BS8 1TD, UK; [email protected] (C.N.); [email protected] (J.M.); [email protected] (M.A.J.) 5 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; [email protected] 6 School of Natural and Environmental Sciences, Newcastle University, King’s Road, Newcastle upon Tyne NE1 7RU, UK; [email protected] Citation: Back, C.R.; Stennett, H.L.; 7 Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK; Williams, S.E.; Wang, L.; Ojeda [email protected] Gomez, J.; Abdulle, O.M.; Duffy, T.; * Correspondence: [email protected] (C.R.B.); [email protected] (P.R.R.) Neal, C.; Mantell, J.; Jepson, M.A.; et al.
    [Show full text]
  • Drugs Against Cancer: Stories of Discovery and the Quest for a Cure
    1 Bleomycin - version 200214ab Drugs Against Cancer: Stories of Discovery and the Quest for a Cure Kurt W. Kohn, MD, PhD Scientist Emeritus Laboratory of Molecular Pharmacology Developmental Therapeutics Branch National Cancer Institute Bethesda, Maryland [email protected] CHAPTER 13 Bleomycin, an anticancer drug with a unique mode of action. In 1957, Hamao Umezawa at the Institute for Microbial Chemistry in Tokyo was running a program to discover anticancer drugs that microbes might produce. His group was testing samples for their ability to act against sarcoma tumors transplanted in mice. In 1962, they detected an active material produced by Streptomyces verticillus bacteria of the actinomyces family that was the source of several antibiotics. The purified active material became the anticancer drug bleomycin, which actually is a mixture of chemical cousins, of which bleomycins A2 and B2 are the maJor components (Umezawa et al., 1967). Bleomycin became important in the cure of Hodgkins lymphoma and germ cell cancers of testis and ovary. As of 1967, what was known about bleomycin was that it inhibited the growth of a sarcoma tumor in mice and inhibited the synthesis of DNA, but not RNA. It went to the lung and kidney, but not liver or brain. Chemically, it was water-soluble and had a tightly bound copper atom (Umezawa et al., 1967). The surprising significance of the bound copper atom only came to light years later, and we will tell this story as it unfolded. Throughout the next decade, it became evident that bleomycin could break DNA strands, but that some kind of chemical activation was reQuired.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The comparative genomics of salinispora and the distribution and abundance of secondary metabolite genes in marine plankton Permalink https://escholarship.org/uc/item/56q4h4bt Author Penn, Kevin Matthew Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The Comparative Genomics of Salinispora and the Distribution and Abundance of Secondary Metabolite Genes in Marine Plankton A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Kevin Matthew Penn Committee in charge: Paul R. Jensen, Chair Eric Allen Lin Chao Bradley Moore Brian Palenik Forest Rohwer 2012 Copyright Kevin Matthew Penn, 2012 All rights reserved The Dissertation of Kevin Matthew Penn is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION I dedicate this dissertation to my Mom Gail Penn and my Father Lawrence Penn they deserve more credit then any person could imagine. They have supported me through the good times and the bad times. They have never given up on me and they are always excited to know that I am doing well. They just want the best for me. They have encouraged my education from both a philosophical and financial point of view. I also thank my sister Heather Kalish and brother in-law Michael Kalish for providing me with support during the beginning of my academic career and introducing me to Jonathan Eisen who ended opening the door for me to an endless bounty of intellectual pursuits.
    [Show full text]
  • Mangrove Derived Streptomyces Sp. MUM265 As a Potential Source Of
    Tan et al. BMC Microbiology (2019) 19:38 https://doi.org/10.1186/s12866-019-1409-7 RESEARCH ARTICLE Open Access Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents Loh Teng-Hern Tan1,2,3, Kok-Gan Chan4,5*, Priyia Pusparajah6, Wai-Fong Yin5, Tahir Mehmood Khan1,2,6, Learn-Han Lee3,7,8* and Bey-Hing Goh2,7,8* Abstract Background: Colon cancer is the third most commonly diagnosed cancer worldwide, with a commensurately high mortality rate. The search for novel antioxidants and specific anticancer agents which may inhibit, delay or reverse the development of colon cancer is thus an area of great interest; Streptomyces bacteria have been demonstrated to be a source of such agents. Results: The extract from Streptomyces sp. MUM265— a strain which was isolated and identified from Kuala Selangor mangrove forest, Selangor, Malaysia— was analyzed and found to exhibit antioxidant properties as demonstrated via metal-chelating ability as well as superoxide anion, DPPH and ABTS radical scavenging activities. This study also showed that MUM265 extract demonstrated cytotoxicity against colon cancer cells as evidenced by the reduced cell viability of Caco-2 cell line. Treatment with MUM265 extract induced depolarization of mitochondrial membrane potential and accumulation of subG1 cells in cell cycle analysis, suggesting that MUM265 exerted apoptosis-inducing effects on Caco-2 cells. Conclusion: These findings indicate that mangrove derived Streptomyces sp. MUM265 represents a valuable bioresource
    [Show full text]
  • Deanship of Graduate Studies Al-Quds University Antimicrobial
    Deanship of Graduate Studies Al-Quds University Antimicrobial activity of a Number of Streptomyces species Ibtehal Mahmoud Rabie Ayyad M.Sc. Thesis Jerusalem - Palestine 1437 -2016 Antimicrobial activity of a Number of Streptomyces species Prepared by: Ibtehal Mahmoud Rabie Ayyad B.Sc Degree in Biology from Alquds University palestine Supervisor: Dr. Sameer A. Barghouthi A thesis submitted in partial fulfillment of requirements for the degree of Master of Medical Laboratory Sciences Department of Medical Laboratory Sciences / Al-Quds University . 1437 – 2016 Deanship of Graduate Studies Al-Quds University Medical Laboratory Science Thesis Approval Antimicrobial activity of a Number of Streptomyces species Prepared by: Ibtehal Mahmoud Rabie Ayyad Registration No: 20913376 Supervisor: Dr. Sameer A. Barghouthi Master Thesis Submission and acceptance date: 17/5/2016. The names and signatures of examining committee members are as Follows: 1. Head of committee Dr. Sameer A. Barghouthi 2. The internal examiner Dr. Ibrahim Abassi 3. The external examiner Dr. Robin Abu Ghazaleh Jerusalem – Palestine 1437- 2016 Dedication: I dedicate my work to those dearest to me. To my husband, who faced a great deal of time and difficulties for the sake of my success, Ahmad I could not have done it without your support. To my lovely daughters Zeinab, Jana and ro’aa. And finally to my precious family and friends. Ibtehal Mahmoud Rabie Ayyad. i Acknowledgments I offer my deepest feelings of gratitude and acknowledgment to my supervisor Dr. Sameer A. Barghouthi for his sincere efforts in my training, supervision, and guidance. The study was conducted in the research lab of the faculty of health professions in Al-Quds University.
    [Show full text]
  • Pang Li Mei Thesis (Final) 21 May 2018.Pdf
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Bioprospecting indigenous actinomycetes for natural product discovery Pang, Li Mei 2018 Pang, L. M. (2018). Bioprospecting indigenous actinomycetes for natural product discovery. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/75687 https://doi.org/10.32657/10356/75687 Downloaded on 30 Sep 2021 11:26:30 SGT Bioprospecting Indigenous Actinomycetes for Natural Product Discovery Pang Li Mei SCHOOL OF BIOLOGICAL SCIENCES 2018 Bioprospecting Indigenous Actinomycetes for Natural Product Discovery Pang Li Mei SCHOOL OF BIOLOGICAL SCIENCES A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2018 ii Acknowledgements First and foremost, I would like to express my gratitude to my supervisor, Assoc. Prof Liang Zhao-Xun for the opportunity to pursue a PhD programme in his laboratory. I am thankful for his patience, support and guidance throughout the past four years allowing me to experience different aspects of research life. His inspirational and motivational talks have brought me through the darkest moments of my research life. I would also like to thank my co-supervisor, Dr Tan Lik Tong (NIE) and thesis advisory committee, Prof James P Tam, Assoc. Prof Liu Chuan Fa and Assoc. Prof Newman Sze for their invaluable advice throughout my PhD. I am thankful for the research platform that NTU and MOE had provided for me to pursue my research. Next, I would like to thank National Parks Board for their assistance in our sample collection from Sungei Buloh Wetland Reserve.
    [Show full text]