Three Methods to Evaluate the Use of Evaporative Cooling for Human Thermal Comfort
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electriq AC60E EVAPORATIVE COOLER with HUMIDIFIER User
USER MANUAL EVAPORATIVE COOLER WITH HUMIDIFIER AC60E Thank you for choosing electriQ Please read this user manual before using this innovative Air Cooler and keep it safe for future reference. Visit our page www.electriQ.co.uk for our entire range of Intelligent Electricals CONTENTS SAFETY INSTRUCTIONS 3 FEATURES AND OPERATION 4 PARTS LIST AND INSTALLATION 5 CONTROL PANEL AND SETTINGS 6 REMOTE CONTROL 7 CLEANING AND MAINTENANCE 7 TROUBLE SHOOTING 8 APPENDIX 8 Page 2 of 9 SAFETY INSTRUCTIONS IMPORTANT! Carefully read the instructions before operating the unit This appliance is for indoor use only. Rating: This unit must only be connected to a 220-240 V / 50 Hz earthed outlet. Installation must be in accordance with regulations of the country where the unit is used. If you are in any doubt about the suitability of your electrical supply have it checked and, if necessary, modified by a qualified electrician. This air cooler has been tested and is safe to use. However, as with any electrical appliance - use it with care. Disconnect the appliance from the power socket before changing filters, dismantling, assembling or cleaning. Avoid touching any moving parts within the appliance. Never insert fingers, pencils or any other objects though the guard. This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities. It is also not intended for use by those with a lack of experience and knowledge, unless they have been given supervision or instruction concerning the use of the appliance by a person responsible for their safety. -
Evaporative Cooler Parts Accessories
COOLER PUMPS DIAL CTN CTN MODEL CFM /GPH* VOLTS COLOR APPROVAL** P/N QTY WT RESIDENTIAL CONCENTRIC UL Classified Flame Retardant Motor Housing Heavy Duty Motor Auto Reset Thermal Overload Grounded 3 Prong Plug Low Level Pump 1150 UL5500 Premium Pump 5,500 / 240 115V Black UL/UЯ 12 24.5 1175 UL7500 Premium Pump 7,500 / 360 115V Blue UL/UЯ 12 27.9 1195 UL11000 Premium Pump 11,000 / 420 115V Green UL/UЯ 12 32.5 1279 UL7500-2 Premium Pump 7,500 / 360 230V Orange/Black UL/UЯ 6 14.1 1286 UL11000-2 Premium Pump 11,000 / 420 230V Orange/Black UL/UЯ 6 15.4 COMMERCIAL CONCENTRIC UL Classified & City of L.A. Approved Molded 3 Prong Plug Low Level Operation Auto Reset Thermal Overload Grounded Round SJT Power Cord Low Level Splash Protection Flame Retardant Motor Housing Extra Heavy Duty Motor 1414 UL7500LA Pump 7,500 / 375 115V Black UL/UЯ/ COLA 12 31.5 1424 UL11000LA Pump 11,000 / 440 115V Black UL/UЯ/ COLA 12 35.6 1428 UL7500-2LA Pump 7,500 / 375 230V Orange/Black UL/UЯ/ COLA 6 15.2 1429 UL11000-2LA Pump 11,000 / 440 230V Orange/Black UL/UЯ/ COLA 6 16.5 INDUSTRIAL CONCENTRIC Same features as Commercial Pumps 6 Ft Grounded Round SJT Power Cord Requires 5/8 Or 3/4 Inch I.D.Pump Hose 1387 UL15000LA Pump 12 to 21,000 / 505 115V Black UL/UЯ/ COLA 6 17.4 1400 UL25000LA Pump 15 to 25,000 / 580 115V Black UL/UЯ/ COLA 6 17.3 1396 UL15000-2LA Pump 12 to 21,000 / 505 230V Orange/Black UL/UЯ/ COLA 6 17.6 1402 UL25000-2LA Pump 15 to 25,000 / 580 230V Orange/Black UL/UЯ/ COLA 6 16.3 REPLACEMENT FOR MASTERCOOL®/ARCTIC CIRCLE® Replacement Pumps for Mastercool® (using 8” and 12” Media) and Arctic Circle® Coolers UL Classified Exceeds OEM Pump Performance and Longevity Includes Mesh Basket and Mounting Bracket 1442 MC8500UL Pump 4 to 8,500 / 360 115V Tan UL/UЯ 6 14.0 1443 MC8500-2UL Pump 4 to 8,500 / 360 230V Orange/Black UL/UЯ 6 14.5 *Gallons per hour flow rate at 1 foot head height. -
Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan
applied sciences Article Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan Hafiz M. U. Raza 1, Hadeed Ashraf 1, Khawar Shahzad 1, Muhammad Sultan 1,* , Takahiko Miyazaki 2,3, Muhammad Usman 4,* , Redmond R. Shamshiri 5 , Yuguang Zhou 6 and Riaz Ahmad 6 1 Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan 60800, Pakistan; [email protected] (H.M.U.R.); [email protected] (H.A.); [email protected] (K.S.) 2 Faculty of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan; [email protected] 3 International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan 4 Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany 5 Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam-Bornim, Germany; [email protected] 6 Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; [email protected] (Y.Z.); [email protected] (R.A.) * Correspondence: [email protected] (M.S.); [email protected] (M.U.); Tel.: +92-333-610-8888 (M.S.); Fax: +92-61-9210298 (M.S.) Received: 4 June 2020; Accepted: 24 June 2020; Published: 28 June 2020 Abstract: In the 21st century, the poultry sector is a vital concern for the developing economies including Pakistan. The summer conditions of the city of Multan (Pakistan) are not comfortable for poultry birds. -
Thermal Science Cooling Tower Performance Vs. Relative Humidity
thermal science Cooling Tower Performance vs. Relative Humidity BASIC THEORY AND PRACTICE Total Heat Exchange A mechanical draft cooling tower is a specialized heat exchanger G = mass rate of dry air [lb/min] in which two fluids (air and water) are in direct contact with each L = mass rate of circulating water [lb/min] other to induce the transfer of heat. Le = mass rate of evaporated water [lb/min] THW = temperature of hot water entering tower [°F] Ignoring any negligible amount of sensible heat exchange that TCW = temperature of cold water leaving tower [°F] hin = enthalpy of air entering [Btu/lb/dry air] may occur through the walls (casing) of the cooling tower, the heat hout = enthalpy of air leaving [Btu/lb/dry air] gained by the air must equal the heat lost by the water. This is Cp = specific heat of water = 4.18 [Btu/lb-°F] an enthalpy driven process. Enthalpy is the internal energy plus Win = humidity ratio of air entering [lb water/lb dry air] the product of pressure and volume. When a process occurs at Wout = humidity ratio of air leaving [lb water/lb dry air] constant pressure (atmospheric for cooling towers), the heat In order to know how much heat the air flowing through a cooling absorbed in the air is directly correlated to the change in enthalpy. tower can absorb, the enthalpy of the air entering the tower must This is shown in Equation 1. be known. This is shown on the psychrometric chart Figure 1. G (hout - hin) = L x Cp (THW - 32°) - Cp (L - Le)(TCW - 32°) (1) The lines of constant enthalpy are close to parallel to the lines of constant wet bulb. -
Recommended Qualification Test Procedure for Solar Absorber.Pdf
Date: 2004-09-10 Editor Bo Carlsson1 IEA Solar Heating and Cooling Program Task 27 Performance of Solar Façade Components Project: Service life prediction tools for Solar Collectors Recommended qualification test procedure for solar absorber surface durability 1 Address: SP Swedish National Testing and Research Institute, P.O.Box 857, SE-50115 Borås, e-mail: [email protected] Contents Page Foreword.............................................................................................................................................................iv Introduktion .........................................................................................................................................................v 1 Scope ......................................................................................................................................................1 2 Normative references ............................................................................................................................1 3 Terms and definitions ...........................................................................................................................2 4 Requirements and classification..........................................................................................................3 5 Test methods for assessing material properties as measure of absorber performance...............4 5.1 Sampling and preparation of test specimens.....................................................................................4 -
Evaluation of the Effect of Relative Humidity of Air on the Coefficients of Critical Flow Venturi Nozzles
Evaluation of the Effect of Relative Humidity of Air on the Coefficients of Critical Flow Venturi Nozzles K. Chahine and M. Ballico National Measurement Institute, Australia P O Box 264, Lindfield, NSW 2070, Australia [email protected] Abstract atmospheric pressures. To establish stable sonic conditions in the nozzle, the down-stream end of the nozzle is usually connected to a high-capacity vacuum At NMIA, volumetric standards such as Brooks pump, with the up-stream end connected to the meter- or bell provers are used to calibrate critical flow Venturi under-test. During calibration the test-flowmeter draws nozzles or “sonic nozzles”. These nozzles, which are air from the laboratory at or near atmospheric pressures extremely stable, are used by both NMIA and Australian and temperature, and with relative humidity varying accredited laboratories to establish continuous flows for between 40% and 60%. The mass flowrate produced by the calibration of gas flow meters. For operational the nozzles is calculated based on the calibrated values of reasons, sonic nozzles are generally calibrated using dry the nozzle coefficient, the measured up-stream pressure air but later used with standard atmospheric air at various and the density calculated from the air temperature, humidity levels either drawn or blown through the meter- pressure and humidity [2]. under-test. Although the accepted theoretical calculations for determining the mass flow through a sonic nozzle At present, any effect of the relative humidity on the incorporate corrections for the resulting change in air nozzle coefficients is considered as negligible, as various density, as laboratories seek to reduce uncertainties the authors have estimated the systematic error at 0.02% for validity of this assumption warrants further examination. -
Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2
Research Toward Zero Energy Homes October 2006 • NREL/TP-550-39342 Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2 Chuck Kutscher and Mark Eastment National Renewable Energy Laboratory Golden, Colorado Ed Hancock Mountain Energy Partnership Boulder, Colorado Paul Reeves Partnership for Resource Conservation Golden, Colorado ENT OF TM EN R E U.S. Department of Energy A R P G E Y D U A Energy Efficiency and Renewable Energy N C I I Building Technologies Program T R E D E M ST A Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable ATES OF Projected Benefits of New Technical Report NREL/TP-550-39342 Residential Evaporative Cooling October 2006 Systems: Progress Report #2 C. Kutscher and M. Eastment National Renewable Energy Laboratory Golden, Colorado E. Hancock Mountain Energy Partnership Boulder, Colorado P. Reeves Partnership for Resource Conservation Golden, Colorado Prepared under Task No.BET6.8004 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. -
Psychrometrics Outline
Psychrometrics Outline • What is psychrometrics? • Psychrometrics in daily life and food industry • Psychrometric chart – Dry bulb temperature, wet bulb temperature, absolute humidity, relative humidity, specific volume, enthalpy – Dew point temperature • Mixing two streams of air • Heating of air and using it to dry a product 2 Psychrometrics • Psychrometrics is the study of properties of mixtures of air and water vapor • Water vapor – Superheated steam (unsaturated steam) at low pressure – Superheated steam tables are on page 817 of textbook – Properties of dry air are on page 818 of textbook – Psychrometric charts are on page 819 & 820 of textbook • What are these properties of interest and why do we need to know these properties? 3 Psychrometrics in Daily Life • Sea breeze and land breeze – When and why do we get them? • How do thunderstorms, hurricanes, and tornadoes form? • What are dew, fog, mist, and frost and when do they form? • When and why does the windshield of a car fog up? – How do you de-fog it? Is it better to blow hot air or cold air? Why? • Why do you feel dry in a heated room? – Is the moisture content of hot air lower than that of cold air? • How does a fan provide relief from sweating? • How does an air conditioner provide relief from sweating? • When does a soda can “sweat”? • When and why do we “see” our breath? • Do sailboats perform better at high or low relative humidity? Key factors: Temperature, Pressure, and Moisture Content of Air 4 Do Sailboats Perform Better at low or High RH? • Does dry air or moist air provide more thrust against the sail? • Which is denser – humid air or dry air? – Avogadro’s law: At the same temperature and pressure, the no. -
Instruction Manual Evaporative Air Cooler
Instruction Manual Evaporative Air Cooler It is important that you read these Model No. SF-610 instructions before using your new cooler and we strongly recommend that you keep in a safe place for future reference. CONTENTS A. PRODUCT INTRODUCTION ………………………………………2 B. BRIEF INTRODUCTION OF FEATURES ………………………….2 C. CONTROL PANEL AND PARTS IDENTIFICATION ………………3 D. OPERATING INSTRUCTIONS AND FUNCTIONS ……………….4 E. CARE AND MAINTENANCE …………………………………………6 F. CAUTION ……………………………………………………………….7 G. TECHNICAL PARAMETER …………………………………………8 DEFECTIVE NOTICE …………………………………………………8 WARRANTY ……………………………………………………………9 1 A、PRODUCT INTRODUCTION The Evaporative Air Cooler is capable of providing various types of airflows: quiet and soft air like the spring breeze; fresh air simulating the Coastal breeze; cool, damp air like after a rainfall. The different type of airflows will accommodate your needs to provide a comfortable environment and reduce the heat of summer. The humidifying function will help keep your skin in good condition. The Ionizer feature cleans the air for a pure and clean breathing space. Thank you for purchasing SPT Evaporative Air Cooler. To have an in-depth understanding of the product and to ensure its proper usage, please read this instructions manual thoroughly, especially the relevant information marked Warning and Caution. B、BRIEF INTRODUCTION OF FEATURES 1. High quality computer-controlled system. 2. Mechanical and full function remote control operation. 3. Features humidifier, air filter and Ionizer. 4. The composition of filter, water curtain and ionizer produces fresher air. 5. Supplies moisture to the environment in dry climates. 6. 0.5 to 7.5-hour timer. 7. Ice compartment for extra cooling. 8. Oxygen Bar with Negative Ions: Negative ions have the effect of cleaning the air, providing you a clean healthy surrounding. -
Model 1830, 1850 & 1850W Dehumidifier Owner's Manual
Model 1830, 1850 & 1850W Dehumidifier Owner’s Manual PLEASE LEAVE THIS MANUAL WITH THE HOMEOWNER Installed by: _________________________________ Installer Phone: _______________________ Date Installed: _______________ ON/OFF button Up/Down Dehumidifer Control Outlet used to turn buttons used to dehumidifier on change humidity and off setting MODE button used for optional ventilation feature Inlet Filter Access Drain Power Door Switch 90-1874 WHOLE HOME Dehumidification The Aprilaire® Dehumidifier controls the humidity level in your entire home. A powerful blower inside the dehumidifier draws air into the cabinet, filters the air and removes moisture, then discharges the dry air into the HVAC system or dedicated area of the home. Inside the cabinet, a sealed refrigeration system removes moisture by moving the air through a series of tubes and fins that are kept colder than the dew point of the incoming air. The dew point is the temperature at which moisture in the air will condense, much like what occurs on the outside of a cold glass on a hot summer day. The condensed moisture drips into the dehumidifier drain pan to a drain tube routed to the nearest floor drain or condensate pump. After the moisture is removed, the air moves through a second coil where it is reheated before being sent back into the home. The air leaving the dehumidifier will be warmer and drier than the air entering the dehumidifier. SETTING THE DESIRED HUMIDITY LEVEL The dehumidifier on-board control will display the humidity setting when not running, and ENERGY SavinGS TIPS displays the measured humidity when running. Energy Savings Tip #1: Adjust the humidity setting to be as high as is comfortable to reduce dehumidifier run time. -
Factors Affecting Indoor Air Quality
Factors Affecting Indoor Air Quality The indoor environment in any building the categories that follow. The examples is a result of the interaction between the given for each category are not intended to site, climate, building system (original be a complete list. 2 design and later modifications in the Sources Outside Building structure and mechanical systems), con- struction techniques, contaminant sources Contaminated outdoor air (building materials and furnishings, n pollen, dust, fungal spores moisture, processes and activities within the n industrial pollutants building, and outdoor sources), and n general vehicle exhaust building occupants. Emissions from nearby sources The following four elements are involved n exhaust from vehicles on nearby roads Four elements— in the development of indoor air quality or in parking lots, or garages sources, the HVAC n loading docks problems: system, pollutant n odors from dumpsters Source: there is a source of contamination pathways, and or discomfort indoors, outdoors, or within n re-entrained (drawn back into the occupants—are the mechanical systems of the building. building) exhaust from the building itself or from neighboring buildings involved in the HVAC: the HVAC system is not able to n unsanitary debris near the outdoor air development of IAQ control existing air contaminants and ensure intake thermal comfort (temperature and humidity problems. conditions that are comfortable for most Soil gas occupants). n radon n leakage from underground fuel tanks Pathways: one or more pollutant pathways n contaminants from previous uses of the connect the pollutant source to the occu- site (e.g., landfills) pants and a driving force exists to move n pesticides pollutants along the pathway(s). -
Indoor Air Quality in Commercial and Institutional Buildings
Indoor Air Quality in Commercial and Institutional Buildings OSHA 3430-04 2011 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibili- ties which are set forth in OSHA standards, and the Occupational Safety and Health Act of 1970. More- over, because interpretations and enforcement poli- cy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Indoor Air Quality in Commercial and Institutional Buildings Occupational Safety and Health Administration U.S. Department of Labor OSHA 3430-04 2011 The guidance is advisory in nature and informational in content. It is not a standard or regulation, and it neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act.