On the Development of Culture Industry of Shaanxi Province And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study on the Effects of Extreme Precipitation for Seven Growth Stages of Winter Wheat in Northern Weihe Loess Plateau, China
Journal of Water Resource and Protection, 2020, 12, 358-380 https://www.scirp.org/journal/jwarp ISSN Online: 1945-3108 ISSN Print: 1945-3094 Study on the Effects of Extreme Precipitation for Seven Growth Stages of Winter Wheat in Northern Weihe Loess Plateau, China Ouk Sereyrorth1,2, Baowen Yan1*, Khem Chunpanha1,2, Porn Lybun1,2, Pich Linvolak1,2 1College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China 2Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnompenh, Cambodia How to cite this paper: Sereyrorth, O., Abstract Yan, B.W., Chunpanha, K., Lybun, P. and Linvolak, P. (2020) Study on the Effects of The research on the characteristic frequency of precipitation is a great signi- Extreme Precipitation for Seven Growth ficance for guiding regional agricultural planning, water conservancy project Stages of Winter Wheat in Northern Weihe designs, and drought and flood control. Droughts and floods occurred in Loess Plateau, China. Journal of Water Resource and Protection, 12, 358-380. northern Weihe Loess Plateau, affecting growing and yield of winter wheat in https://doi.org/10.4236/jwarp.2020.124021 the area. Based on the daily precipitation data of 29 meteorological stations from 1981 to 2012, this study is to address the analysis of three different fre- Received: February 29, 2020 quencies of annual precipitation at 5%, 50%, and 95%, and to determine the Accepted: April 18, 2020 Published: April 21, 2020 amount of rainfall excess and water shortage during seven growth stages of winter wheat at 5%, 10%, and 20% frequencies, respectively. Pearson type III Copyright © 2020 by author(s) and curve was selected for this study to analyze the distribution frequency of an- Scientific Research Publishing Inc. -
Summary Environmental Impact Assessment Shaanxi
SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT SHAANXI ROADS DEVELOPMENT PROJECT IN THE PEOPLE’S REPUBLIC OF CHINA February 2001 CURRENCY EQUIVALENTS (as of 14 February 2001) Currency Unit – Yuan (Y) Y1.00 = $0.1208 $1.00 = Y8.2786 ABBREVIATIONS ADB – Asian Development Bank BOD – biochemical oxygen demand CO – carbon monoxide COD – chemical oxygen demand EIA – environmental impact assessment GB – Chinese National Standards HC – hydrocarbon IEE – initial environmental examination NOx – nitrogen oxides PRC – People’s Republic of China SPEPB – Shaanxi Provincial Environmental Protection Bureau SPCD – Shaanxi Provincial Communications Department SPHB – Shaanxi Provincial Highway Bureau SEIA – summary environmental impact assessment SPHSDI – Shaanxi Provincial Highway Survey and Design Institute TSP – total suspended particulate matter VOC – volatile organic compounds WEIGHTS AND MEASURES dB – decibel h – hour ha – hectare kg – kilogram km – kilometer km2 – square kilometer m – meter m2 – square meter m3 – cubic meter mg/l – milligram per liter mg/Nm3 – milligram per normal cubic meter t – ton (metric) NOTE In this report, “$” refers to US dollars. CONTENTS Page MAP i I. INTRODUCTION 1 II. DESCRIPTION OF THE PROJECT 1 III. DESCRIPTION OF THE ENVIRONMENT 2 A. Physical Setting 2 B. Biological Environment 3 C. Social and Economic Environment 3 IV. ALTERNATIVES 4 V. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 6 A. Physical Setting 6 B. Socioeconomic Impacts 12 VI. ECONOMIC ASSESSMENT 14 VII. INSTITUTIONAL REQUIREMENTS AND ENVIRONMENTAL 16 MONITORING PROGRAM VIII. PUBLIC INVOLVEMENT 18 IX. CONCLUSIONS 18 APPENDIX 20 I. INTRODUCTION 1. The environmental impact assessment (EIA) for the Shaanxi Roads Development Project was undertaken by the Xi’an Highway University and the November 1999 EIA report was approved by the State Environmental Protection Administration on 1 March 2000. -
Download Article
Advances in Economics, Business and Management Research, volume 70 International Conference on Economy, Management and Entrepreneurship(ICOEME 2018) Research on Brand Cultivation and Management of Tourism Industry Cluster Taking Shaanxi Province as an Example* Xiaoyan Liu Xi'an FanYi University Xi'an, China 710105 Abstract—The construction of tourism industry clusters is the development of Shaanxi tourism industry still has some characterized by strong spatial agglomeration, large resource limitations, such as low intensity of integrated development, intensity and strong correlation. It is an inevitable trend of unsound brand cultivation and management mechanism of regional tourism industry innovation, internal cooperation, industrial clusters, weak brand influence of industrial clusters, brand building and environmental governance of tourism low synergy of main body of industrial clusters brand destinations. The tourism industry cluster brand is the cultivation. To make the advancement with the times and embodiment of the highest level of development and make the innovation with the tendency, promote the specifications of the tourism industry cluster, and is an innovation of Shaanxi tourism industry cluster brand important endogenous force for the development of tourism cultivation and management model, and highlight the industry clusters. This paper takes Shaanxi Province as an characteristics of tourism industry are key issues for the example. Through the identification of tourism industry clusters, the analysis of the factors affecting the cultivation of development of Shaanxi tourism industry cluster under the industrial clusters in tourism industry, and the research on the new situation. cultivation and management of tourism industry clusters, it breaks the obstacles to the development of tourism industry II. -
Poverty Mapping in China: Do Environmental Variables Matter
UNIVERSITY OF WAIKATO Hamilton New Zealand Mapping Poverty in Rural China: How Much Does the Environment Matter? Susan Olivia University of California, Davis John Gibson University of Waikato Scott Rozelle Stanford University Jikun Huang and Xiangzheng Deng Chinese Academy of Sciences Department of Economics Working Paper in Economics 14/08 September 2008 Corresponding Author John Gibson Department of Economics University of Waikato, Private Bag 3105, Hamilton, New Zealand Fax: +64 (7) 838 4331 Email: [email protected] Abstract In this paper, we apply a recently developed small-area estimation technique to derive geographically detailed estimates of consumption-based poverty and inequality in rural Shaanxi, China. We also investigate whether using environmental variables derived mainly from satellite remote sensing improves upon traditional approaches that only use household survey and census data. According to our results, ignoring environmental variables in statistical analyses that predict small-area poverty rates leads to targeting errors. In other words, using environmental variables both helps more accurately identify poor areas (so they should be able to receive more transfers of poor area funds) and identify non-poor areas (which would allow policy makers to reduce poverty funds in these better off areas and redirect them to poor areas). Using area-based targeting may be an efficient way to reach the poor since many counties and townships in rural Shaanxi have low levels of inequality, even though, on average, there is more within-group than between-group inequality. Using information on locations that are, in fact, receiving poverty assistance, our analysis also produces evidence that official poverty policy in Shaanxi targets particular areas which in reality are no poorer than other areas that do not get targeted. -
Chinacoalchem
ChinaCoalChem Monthly Report Issue May. 2019 Copyright 2019 All Rights Reserved. ChinaCoalChem Issue May. 2019 Table of Contents Insight China ................................................................................................................... 4 To analyze the competitive advantages of various material routes for fuel ethanol from six dimensions .............................................................................................................. 4 Could fuel ethanol meet the demand of 10MT in 2020? 6MTA total capacity is closely promoted ....................................................................................................................... 6 Development of China's polybutene industry ............................................................... 7 Policies & Markets ......................................................................................................... 9 Comprehensive Analysis of the Latest Policy Trends in Fuel Ethanol and Ethanol Gasoline ........................................................................................................................ 9 Companies & Projects ................................................................................................... 9 Baofeng Energy Succeeded in SEC A-Stock Listing ................................................... 9 BG Ordos Started Field Construction of 4bnm3/a SNG Project ................................ 10 Datang Duolun Project Created New Monthly Methanol Output Record in Apr ........ 10 Danhua to Acquire & -
Download Itinerary
5d4n5d4n BestBest ofof Xi’anXi’an ++ HuashanHuashan (CXIY5B) HIGHLIGHT: EXCLUSIVE ARRANGEMENT OF XI’AN-YAN’AN ROUND-TRIP, TAKING HIGH-SPEED RAILWAY XI’AN / HUASHAN 12 PLANNED MEALS 04 BREAKFASTS 04 LUNCHES MEAL PLAN 04 DINNERS CHINA MAP N SHAANXI JINGBIANJINGBIAN 2 YANAN HUKOU WATERFALL MT. HUASHAN 1 START/END 4 3 XI’AN NIGHT STAY BY FLIGHT BY COACH by Dynasty Travel BY TRAIN CHINA CXIY8B 66 Terracotta Army DAY 1 DAY 2 SINGAPORE XI’AN XI’AN HUASHAN (ABOUT 2.5 HRS) Welcome to a unique experience! • Terra-cotta Museum (Electric car ride included), visit number 1, • Assemble at airport for departure, take transit flight toXi’an. 2, 3 pits, Bronze Chariots and Horses pit. • Hancheng Site Attraction (Electric car ride included), boat tour • DIY Terracotta Warriors, make your own pieces. of Hancheng Lake, Silk Road Museum, Hancheng Corner Tower • The Qin Shi Huang Mausoleum. Site, ascend the Dafeng Pavilion, watch the Curved Screen • Drive to Huashan. Movie. Breakfast – Hotel International Buffet | Lunch | Dinner – Lamb Steamboat • Experience the welcome ceremony while dressed in Han Dynasty traditional clothes. Enjoy the highest level of Royal Welcome DAY 3 Etiquette in Han Dynasty. (ABOUT 2.5 HRS) • Bell Drum Tower Square. HUASHAN XI’AN • Muslim Food Street – famous food culture district in Xi’an, take • Proceed to Huashan (By eco-bus and take cable car to Northern local snacks own expense. Peaks) - It is famous for natural vista of steep and narrow paths, precipitous crags and a high mountain range. Its five peaks are Lunch – Chang’an Welcome Banquet | Dinner – Han Tang Dynasty Noodle the representative attractions and each has its distinctive charms. -
ATTACHMENT 1 Barcode:3800584-02 C-570-107 INV - Investigation
ATTACHMENT 1 Barcode:3800584-02 C-570-107 INV - Investigation - Chinese Producers of Wooden Cabinets and Vanities Company Name Company Information Company Name: A Shipping A Shipping Street Address: Room 1102, No. 288 Building No 4., Wuhua Road, Hongkou City: Shanghai Company Name: AA Cabinetry AA Cabinetry Street Address: Fanzhong Road Minzhong Town City: Zhongshan Company Name: Achiever Import and Export Co., Ltd. Street Address: No. 103 Taihe Road Gaoming Achiever Import And Export Co., City: Foshan Ltd. Country: PRC Phone: 0757-88828138 Company Name: Adornus Cabinetry Street Address: No.1 Man Xing Road Adornus Cabinetry City: Manshan Town, Lingang District Country: PRC Company Name: Aershin Cabinet Street Address: No.88 Xingyuan Avenue City: Rugao Aershin Cabinet Province/State: Jiangsu Country: PRC Phone: 13801858741 Website: http://www.aershin.com/i14470-m28456.htmIS Company Name: Air Sea Transport Street Address: 10F No. 71, Sung Chiang Road Air Sea Transport City: Taipei Country: Taiwan Company Name: All Ways Forwarding (PRe) Co., Ltd. Street Address: No. 268 South Zhongshan Rd. All Ways Forwarding (China) Co., City: Huangpu Ltd. Zip Code: 200010 Country: PRC Company Name: All Ways Logistics International (Asia Pacific) LLC. Street Address: Room 1106, No. 969 South, Zhongshan Road All Ways Logisitcs Asia City: Shanghai Country: PRC Company Name: Allan Street Address: No.188, Fengtai Road City: Hefei Allan Province/State: Anhui Zip Code: 23041 Country: PRC Company Name: Alliance Asia Co Lim Street Address: 2176 Rm100710 F Ho King Ctr No 2 6 Fa Yuen Street Alliance Asia Co Li City: Mongkok Country: PRC Company Name: ALMI Shipping and Logistics Street Address: Room 601 No. -
Late Quaternary Activity of the Huashan Piedmont Fault and Associated Hazards in the Southeastern Weihe Graben, Central China
Vol. 91 No. 1 pp.76–92 ACTA GEOLOGICA SINICA (English Edition) Feb. 2017 Late Quaternary Activity of the Huashan Piedmont Fault and Associated Hazards in the Southeastern Weihe Graben, Central China DU Jianjun1, 2, *, LI Dunpeng3, WANG Yufang4 and MA Yinsheng1, 2 1 Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China 2 Key Laboratory of Neotectonic Movement and Geohazard, Ministry of Land and Resources, Beijing 100081, China 3 College of Zijin Mining, Fuzhou University, Fuzhou 350108, China 4 Center of Oil and Gas Resources Survey, China Geological Survey, Beijing 100029, China Abstract: The Weihe Graben is not only an important Cenozoic fault basin in China but also a significant active seismic zone. The Huashan piedmont fault is an important active fault on the southeast side of the Weihe Graben and has been highly active since the Cenozoic. The well–known Great Huaxian County Earthquake of 1556 occurred on the Huashan piedmont fault. This earthquake, which claimed the lives of approximately 830000 people, is one of the few large earthquakes known to have occurred on a high–angle normal fault. The Huashan piedmont fault is a typical active normal fault that can be used to study tectonic activity and the associated hazards. In this study, the types and characteristics of late Quaternary deformation along this fault are discussed from geological investigations, historical research and comprehensive analysis. On the basis of its characteristics and activity, the fault can be divided into three sections, namely eastern, central and western. The eastern and western sections display normal slip. Intense deformation has occurred along the two sections during the Quaternary; however, no deformation has occurred during the Holocene. -
Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility -
Addition of Clopidogrel to Aspirin in 45 852 Patients with Acute Myocardial Infarction: Randomised Placebo-Controlled Trial
Articles Addition of clopidogrel to aspirin in 45 852 patients with acute myocardial infarction: randomised placebo-controlled trial COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) collaborative group* Summary Background Despite improvements in the emergency treatment of myocardial infarction (MI), early mortality and Lancet 2005; 366: 1607–21 morbidity remain high. The antiplatelet agent clopidogrel adds to the benefit of aspirin in acute coronary See Comment page 1587 syndromes without ST-segment elevation, but its effects in patients with ST-elevation MI were unclear. *Collaborators and participating hospitals listed at end of paper Methods 45 852 patients admitted to 1250 hospitals within 24 h of suspected acute MI onset were randomly Correspondence to: allocated clopidogrel 75 mg daily (n=22 961) or matching placebo (n=22 891) in addition to aspirin 162 mg daily. Dr Zhengming Chen, Clinical Trial 93% had ST-segment elevation or bundle branch block, and 7% had ST-segment depression. Treatment was to Service Unit and Epidemiological Studies Unit (CTSU), Richard Doll continue until discharge or up to 4 weeks in hospital (mean 15 days in survivors) and 93% of patients completed Building, Old Road Campus, it. The two prespecified co-primary outcomes were: (1) the composite of death, reinfarction, or stroke; and Oxford OX3 7LF, UK (2) death from any cause during the scheduled treatment period. Comparisons were by intention to treat, and [email protected] used the log-rank method. This trial is registered with ClinicalTrials.gov, number NCT00222573. or Dr Lixin Jiang, Fuwai Hospital, Findings Allocation to clopidogrel produced a highly significant 9% (95% CI 3–14) proportional reduction in death, Beijing 100037, P R China [email protected] reinfarction, or stroke (2121 [9·2%] clopidogrel vs 2310 [10·1%] placebo; p=0·002), corresponding to nine (SE 3) fewer events per 1000 patients treated for about 2 weeks. -
Agricultural Structure Adjustment and Rural Poverty Alleviation in the Agro-Pastoral Transition Zone of Northern China: a Case Study of Yulin City
sustainability Article Agricultural Structure Adjustment and Rural Poverty Alleviation in the Agro-Pastoral Transition Zone of Northern China: A Case Study of Yulin City Yongsheng Wang 1,*, Yan Chen 2,* and Zhengjia Liu 1 1 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 2 School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China * Correspondence: [email protected] (Y.W.); [email protected] (Y.C.) Received: 23 April 2020; Accepted: 18 May 2020; Published: 20 May 2020 Abstract: Poverty restricts rural sustainable development and urban–rural integration. Agricultural development is an engine of rural economic development and poverty elimination. Agricultural structure adjustment and rural poverty alleviation in Yulin City from the agro-pastoral transition zone of Northern China were studied using statistical data. Our results showed that the rural poverty ratio in Yulin was 7.70% in 2017, with clearly higher trends in southeast regions and lower trends in northeast regions. Northern Yulin had a lower proportion of primary industry to gross domestic production and ratio of agriculture to animal husbandry than southern Yulin. The agricultural structure variability index and agricultural specialization index have changed little, while the actual growth rate of the rural per capita net income has dramatically declined in the last decade. The rural poverty ratio was positively correlated with proportion of primary industry and ratio of agriculture to animal husbandry. These results suggest that a reduced proportion of primary industry and animal husbandry development will promote rural poverty alleviation and future rural revitalization. -
Analysis of the Spatial-Temporal Change of the Vegetation Index in the Upper Reach of Han River Basin in 2000–2016
Innovative water resources management – understanding and balancing interactions between humankind and nature Proc. IAHS, 379, 287–292, 2018 https://doi.org/10.5194/piahs-379-287-2018 Open Access © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000–2016 Jinkai Luan1, Dengfeng Liu1,2, Lianpeng Zhang1, Qiang Huang1, Jiuliang Feng3, Mu Lin4, and Guobao Li5 1State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China 2Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA 3Shanxi Provincal Water and Soil Conservation and Ecological Environment Construction Center, Taiyuan 030002, China 4School of statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China 5Work team of hydraulic of Yulin City, Yulin 719000, China Correspondence: Dengfeng Liu ([email protected]) Received: 29 December 2017 – Revised: 25 March 2018 – Accepted: 26 March 2018 – Published: 5 June 2018 Abstract. Han River is the water source region of the middle route of South-to-North Water Diversion in China and the ecological projects were implemented since many years ago. In order to monitor the change of vegetation in Han River and evaluate the effect of ecological projects, it is needed to reveal the spatial-temporal change of the vegetation in the upper reach of Han River quantitatively. The study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes of the NDVI in August from 2000 to 2016 at pixel scale in the upper reach of Han River Basin.