Mutational Analysis of Candidate Genes in 24 Amelogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tooth Enamel and Its Dynamic Protein Matrix
International Journal of Molecular Sciences Review Tooth Enamel and Its Dynamic Protein Matrix Ana Gil-Bona 1,2,* and Felicitas B. Bidlack 1,2,* 1 The Forsyth Institute, Cambridge, MA 02142, USA 2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA * Correspondence: [email protected] (A.G.-B.); [email protected] (F.B.B.) Received: 26 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation. -
Amelogenesis Imperfecta - Literature Review
IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 13, Issue 1 Ver. IX. (Feb. 2014), PP 48-51 www.iosrjournals.org Amelogenesis Imperfecta - Literature Review GemimaaHemagaran1 ,Arvind. M2 1B.D.S.,Saveetha Dental College, Chennai, India 2B.D.S., M.D.S., Dip Oral medicine, Prof. of Oral Medicine, Saveetha Dental College, Chennai, India. Abstract: Amelogenesis Imperfecta (AI) is a group of inherited disorder of dental enamel formation in the absence of systemic manifestations. AI is also known as Hereditary enamel dysplasia, Hereditary brown enamel, Hereditary brown opalescent teeth. Since the mesodermal components of the teeth is normal, this defect is entirely ectodermal in origin. Variants of AI generally are classified as hypoplastic, hypocalcified, or hypomineralised types based on the primary enamel defect. The affected teeth may be discoloured, sensitive or prone to disintegration, leading to loss of occlusal vertical dimensions and very poor aesthetics. They exists in isolation or associated with other abnormalities in syndromes. It may show autosomal dominant, autosomal recessive, sex-linked and sporadic inheritance patterns. Mutations in the amelogenin, enamelin, and kallikrein-4 genes have been demonstrated to different types of AI. Keywords: AmelogenesisImperfecta, Hypoplastic, Hypocalcific, Hypomineralised. I. Introduction: Amelogenesis imperfecta (AI) is a term for a clinically and genetically heterogeneous group of conditions that affect the dental enamel, occasionally in conjunction with other dental, oral and extraoral tissues.[1] Dental enamel formation is divided into secretory, transition, and maturation stages. During the secretory stage, enamel crystals grow primarily in length. During the maturation stage, mineral is deposited exclusively on the sides of the crystallites, which grow in width and thickness to coalesce with adjacent crystals.[2]The main structural proteins in forming enamel are amelogenin, ameloblastin, and enamelin. -
Protein Nanoribbons Template Enamel Mineralization
Protein nanoribbons template enamel mineralization Yushi Baia, Zanlin Yub, Larry Ackermana, Yan Zhangc, Johan Bonded,WuLic, Yifan Chengb, and Stefan Habelitza,1 aDepartment of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA 94143; bDepartment of Biochemistry and Biophysics, School of Medicine, University of California, San Francisco, CA 94158; cDepartment of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA 94143; and dDivision of Pure and Applied Biochemistry, Center for Applied Life Sciences, Lund University, Lund, SE-221 00, Sweden Edited by Patricia M. Dove, Virginia Tech, Blacksburg, VA, and approved July 2, 2020 (received for review April 22, 2020) As the hardest tissue formed by vertebrates, enamel represents early tissue-based transmission electron microscopy (TEM) nature’s engineering masterpiece with complex organizations of studies also show the presence of filamentous protein assemblies fibrous apatite crystals at the nanometer scale. Supramolecular (18–20) that share great structural similarity with the recombi- assemblies of enamel matrix proteins (EMPs) play a key role as nant amelogenin nanoribbons (7, 12). Even though previous the structural scaffolds for regulating mineral morphology during XRD and TEM characterizations suggest that nanoribbons may enamel development. However, to achieve maximum tissue hard- represent the structural nature of the in vivo observed filamen- ness, most organic content in enamel is digested and removed at tous proteins, they do not provide sufficient resolution to make the maturation stage, and thus knowledge of a structural protein detailed comparison. In addition, the filamentous proteins in the template that could guide enamel mineralization is limited at this DEM match the size and alignment of apatite crystal ribbons date. -
Oral Histology
Oral Histology Lec-6 Dr. Nada AL.Ghaban Amelogenesis (Enamel formation) Amelogenesis begins at cusp tips and the incisal edges of the E.organ of the tooth germ and then it separated down the cusp slopes until all the cells of inner enamel epithelium(IEE) differentiate into ameloblasts. Amelogenesis begins shortly after dentinogenesis at the advanced or late bell stage. The delicate basement membrane between IEE and odontoblasts will disintegrate after dentinogenesis and before amelogenesis. During the early stages of tooth development, the IEE cells proliferate and contribute to the growth of the developing tooth. Ameloblasts fully differentiate at the growth centers located at cusp tips of the forming crown and this differentiation pattern spreads towards the cervical loop (the future cervical line in a fully formed tooth). However, once the IEE has fully differentiated into ameloblasts there is no more proliferation as these highly differentiated cells do not divide again. Amelogenesis is a complex process, it involves 2 stages which are: 1- E. matrix deposition. 2- Maturation or mineralization of the E. matrix. E. matrix deposition: It means the secretion of the E. matrix by ameloblasts. The freshly secreted E. matrix contain 30% minerals as hydroxy apatite crystals and 70% waters and E. proteins which include 90% amelogenine protein and 10% non-amelogenins protein( enameline and ameloblastin). These E. proteins which are secreted by ameloblasts are responsible for creating and 1 maintaining an extracellular environment favorable to mineral deposition. When the first layer of E. is laid down, the ameloblasts will begins to retreat from DEJ towards E. surface and begins to secrete the next layer of E. -
The Pitx2:Mir-200C/141:Noggin Pathway Regulates Bmp Signaling
3348 RESEARCH ARTICLE STEM CELLS AND REGENERATION Development 140, 3348-3359 (2013) doi:10.1242/dev.089193 © 2013. Published by The Company of Biologists Ltd The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation Huojun Cao1,*, Andrew Jheon2,*, Xiao Li1, Zhao Sun1, Jianbo Wang1, Sergio Florez1, Zichao Zhang1, Michael T. McManus3, Ophir D. Klein2,4 and Brad A. Amendt1,5,‡ SUMMARY The mouse incisor is a remarkable tooth that grows throughout the animal’s lifetime. This continuous renewal is fueled by adult epithelial stem cells that give rise to ameloblasts, which generate enamel, and little is known about the function of microRNAs in this process. Here, we describe the role of a novel Pitx2:miR-200c/141:noggin regulatory pathway in dental epithelial cell differentiation. miR-200c repressed noggin, an antagonist of Bmp signaling. Pitx2 expression caused an upregulation of miR-200c and chromatin immunoprecipitation assays revealed endogenous Pitx2 binding to the miR-200c/141 promoter. A positive-feedback loop was discovered between miR-200c and Bmp signaling. miR-200c/141 induced expression of E-cadherin and the dental epithelial cell differentiation marker amelogenin. In addition, miR-203 expression was activated by endogenous Pitx2 and targeted the Bmp antagonist Bmper to further regulate Bmp signaling. miR-200c/141 knockout mice showed defects in enamel formation, with decreased E-cadherin and amelogenin expression and increased noggin expression. Our in vivo and in vitro studies reveal a multistep transcriptional program involving the Pitx2:miR-200c/141:noggin regulatory pathway that is important in epithelial cell differentiation and tooth development. -
Overview of Morphological Changes Inenamel Organ Cells Associated
Int..J.Dc,". BioI. 39: ]53-161 (l1J1J5) 153 Overview of morphological changes in enamel organ cells associated with major events in amelogenesis CHARLES E. SMITH" and ANTONIO NANCI2 J Departments of Anatomy and Cell Biology, and Oral Biology, McGill University and ]Departments of Anatomy and Stomatology, Universite de Montreal, Montreal, Quebec, Canada ABSTRACT The formation and mineralization of enamel is controlled by epithelial cells of the enamel organ which undergo marked, and in some cases repetitive, alterations in cellular morphology as part of the developmental process. The most dramatic changes are seen in ameloblasts which reverse their secretory polarity during differentiation to allow for extracellular release of large amounts of proteins from plasma membrane surfaces that were originally the embryonic bases of the cells. Secreted enamel proteins at first do not accumulate in a layer but, in part, percolate into the developing predentin and subjacent odontoblast layer. Appositional growth of an enamel layer begins with mineralization of the dentin, and ameloblasts develop a complicated functional apex (Tome's processes) to direct release of matrix proteins, and perhaps proteinases, at interrod and rod growth sites. Once the full thickness of enamel is produced, some ameloblasts degenerate, and the surviving cells shorten in height and spread out at the enamel surface. They reform a basal lamina to cover the immature enamel, and continue producing small amounts of enamel proteins that pass through the basal lamina into the enamel. Ameloblasts also undergo cycles of modulation where apical invaginations enriched in Ca-ATPases and other enzymes are formed and shed on a repetitive basis Iruffle-endedl smooth-ended transitions). -
TOOTH DEVELOPMENT REVISION by Calvin Wong BUD STAGE CAP STAGE BELL STAGE
TOOTH DEVELOPMENT REVISION By Calvin Wong BUD STAGE CAP STAGE BELL STAGE Early Late Early Late 6 7 8 9 10 11 12 13 14 15 16 17 18 INITIATION MORPHOGENESIS HISTODIFFERENTIATION INITIATION BUD STAGE CAP STAGE BELL STAGE Early Late Early Late 6 7 8 9 10 11 12 13 14 15 16 17 18 INITIATION MORPHOGENESIS HISTODIFFERENTIATION INITIATION 6 7 Week 6 = Primary epithelial band (oral epithelium thickening which invaginates into underlying mesenchyme Week 7 = PEB develops into dental lamina and vestibular lamina MORPHOGENESIS BUD STAGE CAP STAGE BELL STAGE Early Late Early Late 6 7 8 9 10 11 12 13 14 15 16 17 18 INITIATION MORPHOGENESIS HISTODIFFERENTIATION BUD STAGE Week 8 - 10 = Tooth bud (enamel organ?) surrounded by condensed ectomesenchyme CAP STAGE Week 11 (Early Cap Stage) - Enamel organ becomes concave = cap shape HISTODIFFERENTIATION BUD STAGE CAP STAGE BELL STAGE Early Late Early Late 6 7 8 9 10 11 12 13 14 15 16 17 18 INITIATION MORPHOGENESIS HISTODIFFERENTIATION Week 12 - 13 (Late Cap Stage) - Dental papilla - Stellate reticulum formation begins in the enamel organ (cells connected by __________?) - External enamel epithelium and internal enamel epithelium begins forming from peripheral cells of EO - Enamel knot??? ENAMEL KNOT = for molars in late cap stage ‘Centre that releases genes controlling cuspal development’ BELL STAGE Week 14 - 16 (Early bell stage) 2 main markers: 1. Dental lamina degeneration begins 2. 4 distinct layers - SR - EEE - IEE - Stratum intermedium Cervical loop involved in root formation Week 17 – 18? (Late bell stage) Permanent tooth germs For 1 – 5 = lingual down growth of EEE For 6 – 8 = posterior extension of EEE Accessional lamina = Not preceded by a tooth (i.e. -
AMELOGENSIS Mean the Process of Production & Development (Mineralization) of Enamel, and Begins When the Crown Is Forming During the Bell Stage of Tooth Development
Lec. 6 Dr. Ali H. Murad AMELOGENSIS Mean the process of production & development (mineralization) of enamel, and begins when the crown is forming during the bell stage of tooth development. A- Life cycle of the ameloblast: The life span of the cells of the inner enamel epithelium can be divided into six stages. 1-morphogenic stage: the inner enamel epithelium interacts with the adjacent mesenchymal cells of dental papillae, determining the shape of the dentinioenamel junction & the crown. During this morphogenic stage the cells are short columnar, with large oval nuclei. Terminal bars appear represent points of close contact between cells. The inner enamel epithelium is separated from the C.T of dental papillae by basal lamina. 2-organizing stage: the inner enamel epithelium cells become longer & come into close contact with C.T. cells of the pulp which differentiate into odontoblasts. The 1st appearance of dentin is a critical phase in the life cycle of the inner enamel epithelium as it’s in contact with the C.T. of dental papillae; it receives nutrient material from the blood vessels of this tissue. When dentin forms, it cuts off the ameloblasts from their original source of nourishment, then they are supplied by the capillaries that surround & penetrate the outer enamel epithelium. 3-formative stage: the ameloblasts enter their formative stage after the 1st layer of dentin has been formed. During formation of the enamel matrix the ameloblasts retain the same length & arrangement. The earliest change is the development of cell process on the ameloblast surface, which penetrate the predentin & known as Tome’s processes. -
Ameloblast Differentiation and Function: Exploring the Effects of Microrna, Fluoride, and Iron
Ameloblast Differentiation and Function: Exploring the Effects of microRNA, Fluoride, and Iron by Michael Huan Le DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Oral and Craniofacial Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Copyright by Michael Huan Le 2016 ii Dedication and acknowledgements This project would not have been possible without the mentorship of my advisor, Dr. Pamela Den Besten, who has provided me with significant advice, feedback, and wisdom in the scientist portion of my clinician scientist training. I have been able to do many things that I would have otherwise thought I was not capable of doing during my PhD training at UCSF. I would also like to thank Dr. Yukiko Nakano, whose guidance in laboratory techniques, data analysis, subject matter expertise, and limitless patience were crucial to obtaining the results I report in this dissertation. I would also like to thank Drs. Li Zhu, and Yan Zhang, and all those I worked with in the Den Besten laboratory for their support and encouragement over the past five years. I would also like to thank Drs. Wu Li, Noelle L’Etoile, and Stefan Habelitz for being a part of my dissertation committee, providing an additional source of insight, encouragement, and support. I would also like to thank my present and past peers in the both Oral and Craniofacial Sciences PhD program who have provided me with numerous opportunities to take a (brief) break from research and enjoy the many of little things that life offers daily, while making many incredible memories in the process. -
Evolutionary Analysis of the Mammalian Tuftelin Sequence Reveals Features of Functional Importance S
Evolutionary Analysis of the Mammalian Tuftelin Sequence Reveals Features of Functional Importance S. Delgado, D. Deutsch, J. Y. Sire To cite this version: S. Delgado, D. Deutsch, J. Y. Sire. Evolutionary Analysis of the Mammalian Tuftelin Sequence Reveals Features of Functional Importance. Journal of Molecular Evolution, Springer Verlag, 2017, pp.1-11. 10.1007/s00239-017-9789-5. hal-01516886 HAL Id: hal-01516886 https://hal.sorbonne-universite.fr/hal-01516886 Submitted on 2 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript R4 Click here to download Manuscript Manuscript R4.docx Click here to view linked References 1 Evolutionary analysis of the mammalian tuftelin sequence reveals features of functional 1 2 importance 3 4 5 6 7 1* 2 1 8 S. Delgado , D. Deutsch and J.Y. Sire 9 10 11 1 12 Evolution et Développement du Squelette, UMR7138- Evolution Paris-Seine, Institut de 13 14 Biologie (IBPS), Université Pierre et Marie Curie, Paris, France. 15 16 17 2 Dental Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, The 18 19 Hebrew University of Jerusalem-Hadassah, Jerusalem, Israel. 20 21 22 23 * corresponding author: [email protected] 24 25 26 27 28 Running title: Evolutionary analysis of TUFT1 29 30 31 32 33 Keywords 34 35 36 Tuftelin, TUFT1, MYZAP, Evolution, Mineralization, Mammals 37 38 39 40 41 42 Acknowledgements 43 44 This collaborative study was initiated at the Tooth Morphogenesis and Differentiation 45 46 47 conference in Lalonde-les-Maures (France) in Spring 2013. -
Hypoplastic Amelogenesis Imperfecta with Multiple Impacted Teeth – Report of Two Cases
J Clin Exp Dent. 2010;2(4):e207-11. Hypoplastic amelogenesis imperfecta. Journal section: Oral Medicine and Pathology doi:10.4317/jced.2.e207 Publication Types: Case report Hypoplastic amelogenesis imperfecta with multiple impacted teeth – report of two cases Sujatha S. Reddy 1, Aarthi Nisha V 2, Harish BN 3 1 Professor, Departament of Oral Medicine, Diagnosis and Radiology, M. S. Ramaiah Dental College & Hospital, Msrit Post, New Bel Road, Bangalore, Karnataka, India. 2 PG student, Departament of Oral Medicine, Diagnosis and Radiology, M. S. Ramaiah Dental College & Hospital, Msrit Post, New Bel Road, Bangalore, Karnataka, India. 3 Lecturer, Departament of Oral Medicine, Diagnosis and Radiology, M. S. Ramaiah Dental College & Hospital, Msrit Post, New Bel Road, Bangalore, Karnataka, India. Correspondence: Departament of Oral Medicine, Diagnosis and Radiology M.S.Ramaiah Dental College & Hospital, Msrit Post, new bel road, Bangalore-560054 e-mail id: [email protected] Received: 17/06/2010 Accepted: 30/07/2010 Reddy SS, Aarthi Nisha V, Harish BN. Hypoplastic amelogenesis imperfecta with multiple impacted teeth – report of two cases. J Clin Exp Dent. 2010;2(4):e207-11. http://www.medicinaoral.com/odo/volumenes/v2i4/jcedv2i4p207.pdf Article Number: 50332 http://www.medicinaoral.com/odo/indice.htm © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989-5488 eMail: [email protected] Abstract Amelogenesis Imperfecta (AI) represents a group of developmental conditions, genomic in origin, which affect the structure and clinical appearance of enamel of all or nearly all the teeth in a more or less equal manner. It is usually inherited either as an X-linked, autosomal dominant or autosomal recessive trait. -
Amelogenesis
Amelogenesis Dr. Gábor Varga Department of Oral Biology February, 2016 Amelogenesis - introduction • Amelogenesis as a part of tooth formation • Secretory phase of amelogenesis • Maturation phase of amelogenesis • Proteins involved in amelogenesis Molar Pulp Horn longitudinal section the enamel covers the dentin Tooth development LAMINA BUD STAGE CAP STAGE BELL STAGE ERUPTION Gene activation during tooth development Epithelium Mesenchyme Tooth development – details 1 Tooth development – details 2 Section of tooth – enamel and dentin formation Formal and structural changes of ameloblasts during enamel formation 1 2 3 4 5 6 7 1. morphogenetic, 2. inductive, 3. early secretory, 4 secretory, 5. maturation - ruffle-ended, 6. maturation – smooth-ended, 7. protective Amelogenesis 1st - Secretory phase . Secretion of proteins . Foundation of the mineral structure 2nd – Maturation phase . Reabsorption of proteins and water removal . Secretion of mineral ions The initiation of enamel formation on the surface of the already formed, unstructured mantle-dentin zománc=enamel . The arrangement of ameloblasts during enamel formation Outer enamel epithelium Stellate reticulum Stratum intermedium Ameloblasts Enamel matrix Fully differentiated secretory ameloblasts Secretory ameloblasts and surrounding cells Ultrastucture of secretory ameloblasts Tomes process sorrounded by freshly produced enamel SG – secretory granule, PZ – prismatic (rod) enamel, IPZ – interprismatic (interrod) enamel Enamel structure Proximal Secretory ameloblasts – formation of prismatic enamel N (PE) and interprismatic enamel GA (IPE) N: Nucleus SG GA: Golgo apparatus SG: Secretory granule TP: Tomes process Sh: Sheath region PE: Prismatic enamel IPE: Interprismatic enamel TP TP IPE PE Distal PE PE Sh Sh IPE Three dimensional arrangement of crystal rods (prismatic enamel) in the vincinity of Tomes processes Parallel running crystallites (Kr) in the early phase of enamel development Amelogenesis • 1st - Secretory phase • 2nd – Maturation phase 2.a.