Amelogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Amelogenesis Amelogenesis Dr. Gábor Varga Department of Oral Biology February, 2016 Amelogenesis - introduction • Amelogenesis as a part of tooth formation • Secretory phase of amelogenesis • Maturation phase of amelogenesis • Proteins involved in amelogenesis Molar Pulp Horn longitudinal section the enamel covers the dentin Tooth development LAMINA BUD STAGE CAP STAGE BELL STAGE ERUPTION Gene activation during tooth development Epithelium Mesenchyme Tooth development – details 1 Tooth development – details 2 Section of tooth – enamel and dentin formation Formal and structural changes of ameloblasts during enamel formation 1 2 3 4 5 6 7 1. morphogenetic, 2. inductive, 3. early secretory, 4 secretory, 5. maturation - ruffle-ended, 6. maturation – smooth-ended, 7. protective Amelogenesis 1st - Secretory phase . Secretion of proteins . Foundation of the mineral structure 2nd – Maturation phase . Reabsorption of proteins and water removal . Secretion of mineral ions The initiation of enamel formation on the surface of the already formed, unstructured mantle-dentin zománc=enamel . The arrangement of ameloblasts during enamel formation Outer enamel epithelium Stellate reticulum Stratum intermedium Ameloblasts Enamel matrix Fully differentiated secretory ameloblasts Secretory ameloblasts and surrounding cells Ultrastucture of secretory ameloblasts Tomes process sorrounded by freshly produced enamel SG – secretory granule, PZ – prismatic (rod) enamel, IPZ – interprismatic (interrod) enamel Enamel structure Proximal Secretory ameloblasts – formation of prismatic enamel N (PE) and interprismatic enamel GA (IPE) N: Nucleus SG GA: Golgo apparatus SG: Secretory granule TP: Tomes process Sh: Sheath region PE: Prismatic enamel IPE: Interprismatic enamel TP TP IPE PE Distal PE PE Sh Sh IPE Three dimensional arrangement of crystal rods (prismatic enamel) in the vincinity of Tomes processes Parallel running crystallites (Kr) in the early phase of enamel development Amelogenesis • 1st - Secretory phase • 2nd – Maturation phase 2.a. reabsorption of proteins and water removal 2.b. secretion of mineral ions Papillary layer (PL) cells between the capillaries and the maturation ameloblasts (MA). Multiple Transitions Basement membrane Enamel Dentin Maturation ameloblast phenotypes: ruffle-ended and smooth-ended maturation ameloblasts cycle back and forth during the maturation phase G Za & Zo M M E Ruffle-ended and smooth-ended maturation ameloblasts cycle back and forth during the maturation phase. Cycling of the two phenotypes involves extensive remodeling of the distal cytoplasm and junctional complexes at both ends of the cells. The Golgi complexes (G) and the lysosomal (L) apparatus are well developed in both cell configurations. Zonula adherens (Za) and zonula occludens (Zo) shift from distal position in the ruffle-ended ameloblasts to a proximal position in the smooth-ended ameloblasts. Mitochondria (M) are located primarily in the distal cytoplasm. Endosomes (E) containing enamel matrix are present both in the ruffle-ended and smooth-ended ameloblasts. The ruffle ended surface primarily supports electrolyte exchange while the smooth ended form is for cell recovery and protein absorption. The two types of ameloblasts during the absorptive phase Mineral secretion Protein and water absorption Ultrastructure of ruffle-ended maturation ameloblasts Ameloblast transporters H+ ~ H+-ATPase Tight junction CO2 CO2 CO + H O (?)PMCA Ca2+ 2 2 + CA − H 2HCO3 PAT-1 NHE1 Na+ Cl− Na+ NBCe1 − CaCC 2HCO3 (?) − - - HCO3 Cl (HCO3 ) AE2 − CFTR Cl + + K TASK2 (?) Na + (?) NKCC1 K+ Na 2Cl− H+ NHE3 (?) + Na-K- 3Na + + ~ Na ATPase 2K 2+ + NCKX4 + Ca / K (?) Maxi-K K Na+ Ca2+ NCX Na+ Basolateral Apical membrane membrane 2+ 2- + 10 Ca + 6 HPO4 + 2 H2O ↔ Ca10(PO4)6(OH)2+ 8 H Ameloblast calcium transport elements H+ ~ Tight junction CO2 CO2 CO2 + H2O PMCA Ca2+ + CA − H 2HCO3 Na+ Cl− Na+ − 2HCO3 (?) − - - HCO3 Cl (HCO3 ) − Cl + + K Na + K+ Na 2Cl− H+ + 3Na + + ~ Na 2K 2+ + NCKX4 + Ca / K K Na+ Ca2+ NCX Na+ Basolateral Apical membrane membrane 2+ 2- + 10 Ca + 6 HPO4 + 2 H2O ↔ Ca10(PO4)6(OH)2+ 8 H Ameloblast bicarbonate transport elements H+ ~ H+-ATPase Tight junction CO2 CO2 CO + H O Ca2+ 2 2 + CA − H 2HCO3 PAT-1 NHE1 Na+ Cl− Na+ NBCe1 − CaCC 2HCO3 (?) − - - HCO3 Cl (HCO3 ) AE2 − CFTR Cl + + K TASK2 (?) Na + (?) NKCC1 K+ Na 2Cl− H+ NHE3 (?) + Na-K- 3Na + + ~ Na ATPase 2K 2+ + + Ca / K (?) Maxi-K K Na+ Ca2+ Na+ Basolateral Apical membrane membrane 2+ 2- + 10 Ca + 6 HPO4 + 2 H2O ↔ Ca10(PO4)6(OH)2+ 8 H Ameloblast bicarbonate transport elements Hypothetic model for pH regulation by ruffle ended ameloblasts to neutralize liberated H+ + - + Na 2 HCO3 + 2 H 2 H2O + 2 CO2 Car 9 Nbce Bicarbonate is generated by carbonic anhydrase 2 Basolateral H2O + CO2 (Car2) and is exchanged by the pendrin (PD) anion Car 2 - - exchanger in the apical membrane for Cl . Cl is + - H HCO3 Nhe1 imported basolaterally by Ae2 and conducted into Na+ the enamel by CFTR. - HCO3 Ae2 Cl- Car 2 = carbonic anhydrase 2 (cytosolic), Car 9 = carbonic anhydrase 9 (membrane-bound), Apical Cftr = cystic fibrosis transmembrane conductance regulator - Cl Ae2 = anion exchanger 2, Cftr PD Nbce1 = sodium bicarbonate exchanger 1, Nhe1 = sodium hydrogen exchanger 1, - - HCO - P D= pendrin: HCO /Cl exchanger, Cl- 3 3 CO2 █ = tight junction H+ Apatite formation H2O Proposed pathway of enamel protein reabsorption and digestion by ruffle-ended ameloblasts A 1 2 3 4 5 6 7 B G Tj M M End End pH cycling in rodent incisior ameloblasts pH cycling in rodent incisior ameloblasts Damkier at al. Bone, 60, 2014, 227 - 234 Hypothesis on the dynamics of phosphate equilibrium in solution and enamel crystal (A) and the effect of ameloblasts on phosphate dynamics in the RA phase (B) and SA phase (C). Damkier at al. Bone, 60, 2014, 227 - 234 Rod enamel (prismatic enamel, PZ) in cross section electron microscopy picture Cross sectional scanning electron microscopy picture following acidic treatment Longitudinal sectional electron scanning microscopy of the enamel – rods are well visible Amelogenesis - enamel proteins • Amelogenin • Enamelin • Ameloblastin • Amelotin (Ben Ganss, Toronto) • Tuftelin • Osterix (Ben Ganss, Toronto) • Proteinases (enamelysin - MMP-20 kallikrein 4 – KLK4) • Phosphatases Proteins with know function are in bold Amelogenin Concept of the role of amelogenins in the mineralization of enamel The hydrophobic amelogenesis form globular aggregates (nanospheres) on secretion into the extracellular space. The nanospheres form lattices that regulate the spacing and the orientation of the C-axis of the newly forming enamel crystallites Amelogenin secretion Crystals 1 grows in thickness Assembly Hydrophylic 2 Platelike crystallites anionic terminals resorption 5 exposed of hydroxyapatite Proteinase-2 degrades the nanospheres Nanospheres act 4 Nanospheres as spacers 3 Proteinase- 1 hydrophobic between (enamelysin) crystallites removes hydrophylic tails Disorder scores of amino acid sequences of proteins participating in biomineralization Disorder frequency of amino acid chains of proteins participating in various biological functions Distribution of amelogenin and ameloblastin in enamel matrix Defect of amelogenesis in ameloblastin- null mice Role of ameloblastin in the regulation of ameloblast function Ameloblast Amelogenin Msx2 Amelogenin p75 Trks ? p21, p27 Enamel crystal Regulation of cell cycle Receptor? Ameloblastin in the enamel matrix Amelogenesis imperfecta Amelogenesis imperfecta The human amelogenin gene Amelogenin mutation leading to hypoplasia - loss of three amino acid and substitution of another one Structure of the X-chromosomal copy of the human amelogenin gene Hypoplastic Hypomineralization Amelogenesis imperfecta Amelogenesis imperfecta (X-linked) (X-linked) Genomic 1 2 3 4 5 6 7 1 2 3 4 5 6 7 sequence 56 66 48 42 45 435 160 56 66 48 42 45 435 160 9 bp deletion 5 kb deletion 1 2 3 4 5 6 7 1 2 3 4 5 6 7 mRNA Predicted protein Phenotype Thin enamel Poorly mineralized enamel The bar segments represent the introns and the boxes (1 through 7) correspond to the exons. The nucleotide numbers are indicated below the exons. (Adapted from Simmer et al.) Two mutations of the amelogenin gene that cause amelogenesis imperfecta Amelogenin (AMELX) mutations causing X-linked amelogenesis imperfecta How are changes in the AMELX gene related amelogenesis imperfecta? • One copy of the amelogenin gene is located on each of the sex chromosomes (the X and Y chromosomes). The AMELX gene, which is located on the X chromosome, makes almost all of the body's amelogenin. The copy of the amelogenin gene on the Y chromosome, AMELY, makes very little amelogenin and is not needed for enamel formation. • At least 15 mutations in the AMELX gene have been identified in people with X- linked forms of amelogenesis imperfecta. (X-linked disorders are caused by mutations in genes on the X chromosome.) Some AMELX mutations lead to the production of an abnormal version of the amelogenin protein that can interfere with the formation and organization of enamel crystals. Other AMELX mutations prevent one copy of the gene from producing any amelogenin protein at all. Enamel cannot form properly without an adequate amount of amelogenin • Males have a single copy of the X chromosome in each cell. Males who inherit a defective copy of the AMELX gene have very little amelogenin and develop almost no enamel to cover and protect their teeth. Females have two copies of the X chromosome in each cell. Females who inherit one altered copy of the AMELX gene are less severely
Recommended publications
  • Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes
    Cells and Materials Volume 3 Number 2 Article 8 1993 Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes H. Lesot Institut de Biologie Médicale C. Begue-Kirn Institut de Biologie Médicale M. D. Kubler Institut de Biologie Médicale J. M. Meyer Institut de Biologie Médicale A. J. Smith Dental School, Birmingham See next page for additional authors Follow this and additional works at: https://digitalcommons.usu.edu/cellsandmaterials Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Lesot, H.; Begue-Kirn, C.; Kubler, M. D.; Meyer, J. M.; Smith, A. J.; Cassidy, N.; and Ruch, J. V. (1993) "Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes," Cells and Materials: Vol. 3 : No. 2 , Article 8. Available at: https://digitalcommons.usu.edu/cellsandmaterials/vol3/iss2/8 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Cells and Materials by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes Authors H. Lesot, C. Begue-Kirn, M. D. Kubler, J. M. Meyer, A. J. Smith, N. Cassidy, and J. V. Ruch This article is available in Cells and Materials: https://digitalcommons.usu.edu/cellsandmaterials/vol3/iss2/8 Cells and Materials, Vol. 3, No. 2, 1993 (Pages201-217) 1051-6794/93$5. 00 +. 00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA EXPERIMENTAL INDUCTION OF ODONTOBLAST DIFFERENTIATION AND STIMULATION DURING REPARATIVE PROCESSES 1 1 1 2 2 1 H.
    [Show full text]
  • Human Identification by Amelogenin Test in Libyans
    American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Research Article Copyright@ Samir Elmrghni Human Identification by Amelogenin Test in Libyans Samir Elmrghni* and Mahmoud Kaddura Department of Forensic Medicine and Toxicology, University of Benghazi, Libya *Corresponding author: Samir Elmrghni, Faculty of Medicine, Department of Forensic Medicine and Toxicology, University of Benghazi-Libya, Benghazi, Libya. To Cite This Article: Samir Elmrghni. Human Identification by Amelogenin Test in Libyans. Am J Biomed Sci & Res. 2019 - 3(6). AJBSR. MS.ID.000737. DOI: 10.34297/AJBSR.2019.03.000737 Received: May 25, 2019 | Published: July 11, 2019 Abstract Sex typing is essential in medical diagnosis of sex-linked disease and forensic science. Gender for criminal evidence of offender is usually as reported the anomalous amelogenin results of 2 male samples (out of 238 males) represented as females (Y deletions) and another 2 samples the initial information for investigation. For individualization, identification of gender is performed in addition to the STR markers recently. We amelogenin results of the controversial samples, DNA was further used in SRY and Y-STR typing. All samples typed as males but two showed with with (X deletions) in Benghazi (Libya). The frequency in both was about 0.8%. Higher than those of the other populations reported. To confirm X chromosomes. From the results, it was highly suggested that for the controversial cases of human gender identification with amelogenin tests, amplificationKeywords: Amelogenin; of SRY gene Libyans or/and Y-STR markers will be adopted to confirm the gender [1]. Introduction gene (AMG) was precisely mapped in the p22 region on the X systems used to determine if the sample being tested is of male gene was first isolated and sequenced [2].
    [Show full text]
  • Mutational Analysis of Candidate Genes in 24 Amelogenesis
    Eur J Oral Sci 2006; 114 (Suppl. 1): 3–12 Copyright Ó Eur J Oral Sci 2006 Printed in Singapore. All rights reserved European Journal of Oral Sciences Jung-Wook Kim1,2, James P. Mutational analysis of candidate genes Simmer1, Brent P.-L. Lin3, Figen Seymen4, John D. Bartlett5, Jan C.-C. in 24 amelogenesis imperfecta families Hu1 1University of Michigan School of Dentistry, University of Michigan Dental Research 2 Kim J-W, Simmer JP, Lin BP-L, Seymen F, Bartlett JD, Hu JC-C. Mutational analysis Laboratory, Ann Arbor, MI, USA; Seoul National University, College of Dentistry, of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci 2006; 114 Department of Pediatric Dentistry & Dental (Suppl. 1): 3–12 Ó Eur J Oral Sci, 2006 Research Institute, Seoul, Korea; 3UCSF School of Dentistry, Department of Growth and Amelogenesis imperfecta (AI) is a heterogeneous group of inherited defects in dental Development, San Francisco, CA, USA; 4 enamel formation. The malformed enamel can be unusually thin, soft, rough and University of Istanbul, Faculty of Dentistry, stained. The strict definition of AI includes only those cases where enamel defects Department of Pedodontics, apa, Istanbul, Turkey; 5The Forsyth Institute, Harvard-Forsyth occur in the absence of other symptoms. Currently, there are seven candidate genes for Department of Oral Biology, Boston, MA, USA AI: amelogenin, enamelin, ameloblastin, tuftelin, distal-less homeobox 3, enamelysin, and kallikrein 4. To identify sequence variations in AI candidate genes in patients with isolated enamel defects, and to deduce the likely effect of each sequence variation on Jan C.-C.
    [Show full text]
  • Journal of Dental Research
    Journal of Dental Research http://jdr.sagepub.com/ Cell Differentiation and Matrix Organization in Engineered Teeth A. Nait Lechguer, M.L. Couble, N. Labert, S. Kuchler-Bopp, L. Keller, H. Magloire, F. Bleicher and H. Lesot J DENT RES 2011 90: 583 originally published online 4 February 2011 DOI: 10.1177/0022034510391796 The online version of this article can be found at: http://jdr.sagepub.com/content/90/5/583 Published by: http://www.sagepublications.com On behalf of: International and American Associations for Dental Research Additional services and information for Journal of Dental Research can be found at: Email Alerts: http://jdr.sagepub.com/cgi/alerts Subscriptions: http://jdr.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Apr 13, 2011 OnlineFirst Version of Record - Feb 4, 2011 What is This? Downloaded from jdr.sagepub.com at Service Commun de la Documentation Université de Strasbourg on September 6, 2013 For personal use only. No other uses without permission. © 2011 International & American Associations for Dental Research RESEARCH REPORTS Biomaterials & Bioengineering A. Nait Lechguer1,2, M.L. Couble3,4, N. Labert3,4, S. Kuchler-Bopp1,2, Cell Differentiation and L. Keller1,2, H. Magloire3,4, F. Bleicher3,4, Matrix Organization in and H. Lesot1,2* Engineered Teeth 1INSERM UMR 977, Faculté de Médecine, 11, rue Humann, F-67085 Strasbourg, France; 2Dental School, University of Strasbourg, Strasbourg, France; 3Université de Lyon, Faculté d’Odontologie, Rue Guillaume Paradin, F-69372 Lyon Cedex 08, France; and 4IGFL, CNRS UMR 5242, Ecole Normale Supérieure, 46 Allée d’Italie, 69364, Lyon Cedex 08, France; *corresponding author, [email protected] J Dent Res 90(5):583-589, 2011 ABSTRACT InTRODuCTIOn Embryonic dental cells were used to check a series of criteria to be achieved for tooth engineering.
    [Show full text]
  • Tooth Enamel and Its Dynamic Protein Matrix
    International Journal of Molecular Sciences Review Tooth Enamel and Its Dynamic Protein Matrix Ana Gil-Bona 1,2,* and Felicitas B. Bidlack 1,2,* 1 The Forsyth Institute, Cambridge, MA 02142, USA 2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA * Correspondence: [email protected] (A.G.-B.); [email protected] (F.B.B.) Received: 26 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
    [Show full text]
  • Amelogenic Transcriptome Profiling in Ameloblast-Like Cells Derived From
    www.nature.com/scientificreports OPEN Amelogenic transcriptome profling in ameloblast-like cells derived from adult gingival epithelial cells Received: 23 May 2018 Sun-Yi Hyun1, Seyoung Mun1,2, Kyung-Jung Kang1, Jong-Chan Lim1, Shin-Young Kim1, Accepted: 29 January 2019 Kyudong Han1,2 & Young-Joo Jang 1 Published: xx xx xxxx Dental enamel is the highly mineralized tissue covering the tooth surface and is formed by ameloblasts. Ameloblasts have been known to be impossible to detect in adult tooth because they are shed by apoptosis during enamel maturation and tooth eruption. Owing to these, little was known about appropriate cell surface markers to isolate ameloblast-like cells in tissues. To overcome these problems, epithelial cells were selectively cultivated from the gingival tissues and used as a stem cell source for ameloblastic diferentiation. When gingival epithelial cells were treated with a specifed concentration of BMP2, BMP4, and TGFβ-1, the expression of ameloblast-specifc markers was increased, and both the MAPK and Smad signaling pathways were activated. Gingival epithelial cells diferentiated into ameloblast-like cells through epithelial-mesenchymal transition. By RNA-Seq analysis, we reported 20 ameloblast-specifc genes associated with cell surface, cell adhesion, and extracellular matrix function. These cell surface markers might be useful for the detection and isolation of ameloblast-like cells from dental tissues. Dentin, dental pulp, periodontal ligament, and dental enamel are developed by reciprocal interactions between dental epithelium and ectomesenchyme. Neural crest cell-derived ectomesenchyme diferentiates into odonto- blasts, periodontal ligament progenitors, cementoblasts, as well as various fibroblasts. On the other hand, enamel-forming ameloblasts diferentiate from epithelial cells originating from oral ectoderm.
    [Show full text]
  • Amelogenin Gene Influence on Enamel Defects of Cleft Lip and Palate Patients
    ORIGINAL RESEARCH Genetic and Molecular Biology Amelogenin gene influence on enamel defects of cleft lip and palate patients Abstract: The aim of this study was to investigate the occurrence of mutations in the amelogenin gene (AMELX) in patients with cleft lip Fernanda Veronese OLIVEIRA(a) Thiago José DIONÍSIO(b) and palate (CLP) and enamel defects (ED). A total of 165 patients were Lucimara Teixeira NEVES(b) divided into four groups: with CLP and ED (n=46), with CLP and with- Maria Aparecida Andrade out ED (n = 34), without CLP and with ED (n = 34), and without CLP Moreira MACHADO(a) Carlos Ferreira SANTOS(b) or ED (n = 51). Genomic DNA was extracted from saliva followed by Thais Marchini OLIVEIRA(a) conducting a Polymerase Chain Reaction and direct DNA sequencing of exons 2 through 7 of AMELX. Mutations were found in 30% (n = 14), (a) Department of Pediatric Dentistry, 35% (n = 12), 11% (n = 4) and 13% (n = 7) of the subjects from groups 1, 2, Orthodontics and Community Health, Bauru 3 and 4, respectively. Thirty seven mutations were detected and distrib- School of Dentistry, University of São Paulo, Bauru, SP, Brazil. uted throughout exons 2 (1 mutation – 2.7%), 6 (30 mutations – 81.08%) and 7 (6 mutations – 16.22%) of AMELX. No mutations were found in (b) Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, exons 3, 4 or 5. Of the 30 mutations found in exon 6, 43.34% (n = 13), Bauru, SP, Brazil. 23.33% (n = 7), 13.33% (n = 4) and 20% (n = 6) were found in groups 1, 2, 3 and 4, respectively.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,876,942 Cheng Et Al
    USOO5876942A United States Patent (19) 11 Patent Number: 5,876,942 Cheng et al. (45) Date of Patent: Mar. 2, 1999 54 PROCESS FOR SEXING COW EMBRYOS Gibson et al., Biochemistry 30:1075–1079 (1991). 75 Inventors: Winston Teng-Kuei Cheng, Taipei; Shimokawa et al., J. of Biological Chemistry 262(9) : Chuan-Mu Chen, Tai Chung; Che-Lin 4042–4047 (1987). Hu, Taipei; Chih-Hua Wang, Taipei; Schafer et al., BioEssays 18(12):955-962 (1996). Kong-Bung Choo, Taipei, all of Taiwan Sullivan et al., BioTechniques 15(4):636-641 (1993). 73 Assignee: National Science Council of Republic Ennis et al., Animal Genetics 25:425-427 (1994). of China, Taipei, Taiwan Primary Examiner W. Gary Jones 21 Appl. No.: 899,811 ASSistant Examiner Ethan Whisenant Attorney, Agent, or Firm-Bacon & Thomas 22 Filed: Jul. 24, 1997 57 ABSTRACT 51) Int. Cl. ............................. C12Q 1/68; CO7H 21/02; CO7H 21/04 A rapid, highly reproducible and Sensitive technique has 52 U.S. Cl. ............................... 435/6; 536/231; 536/24.3 been Successfully developed for Sexing the cow embryos, by 58 Field of Search ................................ 435/6; 536/23.1, method of polymerase chain reaction (PCR) against the 536/24.3;985/77, 78 amelogenin (bAML) genes located on both X- and Y-chromosomes of the Holstein dairy cattle. Results from 56) References Cited DNA sequence analysis showed that there was only 45% homology between the intron 5 of AMLX and AMLY genes. U.S. PATENT DOCUMENTS Based on these Sequences a pair of Sex-Specific primers, 5,578,449 11/1996 Frasch et al.
    [Show full text]
  • Implications of Male Amelogenin Dropouts in Forensics
    Research Article J Forensic Sci & Criminal Inves Volume 15 Issue 2 - February 2021 Copyright © All rights are reserved by Anand Kumar DOI: 10.19080/JFSCI.2021.15.555908 Implications of Male Amelogenin Dropouts in Forensics Anand Kumar* DNA Division, State Forensic Science Laboratory, India Submission: February 06, 2021; Published: February 22, 2021 *Corresponding author: Anand Kumar, DNA Division, State Forensic Science Laboratory, Rajasthan, 302016, (INDIA) Abstract In forensic science STR loci are useful tools for reconstructing male lineages, paternity testing, forensic investigations, and population The samples used in this study were received at State Forensic Science Laboratory for routine examination. A combination of autosomal (Power Plexgenomics.®- Fusion They 5C cover system a widekit) and range Y-STR of genome-specific(Power Plex®- Y23 geographical system kit) distributions multiplexing duesystems to shortfall was used of forrecombination the genotyping during of the spermatogenesis. samples as per the manufacturer’s protocol. In electropherogram of male samples, male-derived amelogenin marker was not observed in the results of Power Plex®- Fusion 5C system kit. These samples were further analyzed by Power Plex®- Y23 system kit and a complete set of 23 Y STR markers was obtained. The failure rate of detection of amelogenin marker in Indian population is 0.23%. This clearly indicates the deletion in the short arm of Y chromosome related to amelogenin marker. Keywords: Amelogenin marker; Forensic genetics; Haplogroups; Deletion Introduction DNA analysis based on autosomal as well as sex chromosome STR is routinely used in forensic casework, population studies, identification [6], Thangaraj et al [7], reported 1.85% failure in Southern hybridization [5].
    [Show full text]
  • Oral Histology
    Oral Histology Lec-6 Dr. Nada AL.Ghaban Amelogenesis (Enamel formation) Amelogenesis begins at cusp tips and the incisal edges of the E.organ of the tooth germ and then it separated down the cusp slopes until all the cells of inner enamel epithelium(IEE) differentiate into ameloblasts. Amelogenesis begins shortly after dentinogenesis at the advanced or late bell stage. The delicate basement membrane between IEE and odontoblasts will disintegrate after dentinogenesis and before amelogenesis. During the early stages of tooth development, the IEE cells proliferate and contribute to the growth of the developing tooth. Ameloblasts fully differentiate at the growth centers located at cusp tips of the forming crown and this differentiation pattern spreads towards the cervical loop (the future cervical line in a fully formed tooth). However, once the IEE has fully differentiated into ameloblasts there is no more proliferation as these highly differentiated cells do not divide again. Amelogenesis is a complex process, it involves 2 stages which are: 1- E. matrix deposition. 2- Maturation or mineralization of the E. matrix. E. matrix deposition: It means the secretion of the E. matrix by ameloblasts. The freshly secreted E. matrix contain 30% minerals as hydroxy apatite crystals and 70% waters and E. proteins which include 90% amelogenine protein and 10% non-amelogenins protein( enameline and ameloblastin). These E. proteins which are secreted by ameloblasts are responsible for creating and 1 maintaining an extracellular environment favorable to mineral deposition. When the first layer of E. is laid down, the ameloblasts will begins to retreat from DEJ towards E. surface and begins to secrete the next layer of E.
    [Show full text]
  • Amelogenin X Linked Chromosome
    International Journal of Research in Medical Sciences Gupta B. Int J Res Med Sci. 2017 Oct;5(10):4214-4222 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20174549 Review Article Amelogenin x linked chromosome Bhawani Gupta* Department of Oral Pathology, Saveetha University, Chennai, Tamil Nadu, India Received: 29 June 2017 Revised: 20 August 2017 Accepted: 21 August 2017 *Correspondence: Dr. Bhawani Gupta, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT The AMELX gene provides instructions for making a protein called amelogenin, which is essential for normal tooth development. Amelogenin is involved in the formation of enamel, which is the hard, white material that forms the protective outer layer of each tooth. Using molecular genetic techniques, we have shown that there is no evidence that the AMGX gene is deleted in this case of the Nance-Horan syndrome. In affected members of a Michigan kindred of Eastern European ancestry segregating X-linked amelogenesis imperfecta with a characteristic snow-capped enamel phenotype. Keywords: Amelogenin, Chromosome, Hormone INTRODUCTION degradation by Proteolytic enzymes like matrix mettaloproteinases into smaller low molecular weight The AMELX gene provides instructions for making a fragments, like tyrosine rich amelogenin protein and protein called amelogenin, which is essential for normal leucine rich amelogenin polypeptide which are suggested tooth development.
    [Show full text]
  • Ameloblastic Fibro-Odontoma of the Maxilla: a Case Report Belal Alani, Muraja Aldoori, Amar Adham, Farag Ismail
    694 Case report Ameloblastic fibro-odontoma of the maxilla: a case report Belal Alani, Muraja Aldoori, Amar Adham, Farag Ismail HMC Hamad Medical Corporation, Doha, Qatar The ameloblastic fibro-odontoma is a rare benign odontogenic lesion defined as a Correspondence to Dr. Belal Alani, HMC tumor with the general features of ameloblastic fibroma but that also contains Hamad Medical Corporation, Doha, Qatar, enamel and dentin. In this article the authors describe a case of a young male PO Box 3050; patient with ameloblastic fibro-odontoma of the maxilla and the management of e-mail: [email protected] such condition. Received 8 April 2017 Accepted 3 June 2017 Keywords: The Egyptian Journal of Otolaryngology ameloblastic fibro-odontoma, ameloblastic, fibromaodontogenic tumor 2017, 33:694–697 Egypt J Otolaryngol 33:694–697 © 2017 The Egyptian Journal of Otolaryngology 1012-5574 Figure 1 Introduction The ameloblastic fibro-odontoma (AFO) is a rare benign odontogenic lesion defined as a tumor with the general features of ameloblastic fibroma but that also contains enamel and dentin [1]. According the recent WHO classification of odontogenic tumors published in 2005, AFO belongs to the group of lesions with odontogenic epithelium with odontogenic ectomesenchyme, with or without hard tissue formation [1]. AFO is normally found in young patients, with no significant sex predilection. The incidence of AFO is between 1 and 3% in odontogenic tumors [2,3]. Facial deformity and intraoral lesion with impingement on the left nostril. Clinically, it presents as a painless swelling of the affected area, usually the posterior portion of the Figure 2 maxilla or mandible.
    [Show full text]