(12) United States Patent (10) Patent No.: US 9,695.451 B2 Chen Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,695.451 B2 Chen Et Al US0096.95451B2 (12) United States Patent (10) Patent No.: US 9,695.451 B2 Chen et al. (45) Date of Patent: *Jul. 4, 2017 (54) POLYNUCLEOTIDES ENCODING (52) U.S. Cl. ENGINEERED IMINE REDUCTASES CPC ............ CI2P 13/02 (2013.01); C12N 9/0028 (2013.01); CI2P 13/001 (2013.01): CI2P (71) Applicant: CODEXIS, INC., Redwood City, CA 13/04 (2013.01); C12P 13/06 (2013.01); CI2P (US) 17/10 (2013.01); C12P 17/12 (2013.01); CI2P (72) Inventors: 'E'O O he, By- - - SN R J. 17/165CI2P (2013.01); 17/188 (2013.01);CI2P 17/185 C12Y (2013.01); 105/01 NESCO.ARS y (2013.01); C12Y 105/01023 (2013.01); C12Y Sukumaran, Singapore (SG), Derek 105/01024 (2013.01); C12Y 105/01028 Smith, Singapore (SG); Jeffrey C. (2013.01); Y02P 20/52 (2015.11) Moore, Westfield, NJ (US); Gregory (58) Field of Classification Search Hughes, Scotch Plains, NJ (US); Jacob CPC ..... Y02P 20/52; C12N 9/0028; C12N 9/0016: Janey, New York, NY (US); Gjalt W. C12P 13/001; C12P 17/10; C12P 13/02: Huisman, Redwood City, CA (US); C12P 13/04; C12P 13/06; C12P 17/12: Scott J. Novick, Palo Alto, CA (US); C12P 17/165; C12P 17/185; C12P Nicholas J. Agard, San Francisco, CA 17/188; C12P 21/02: C12Y 105/01028; (US); Oscar Alvizo, Fremont, CA (US); C12Y 105/01, C12Y 105/01023; C12Y it's AS Ms. Park, Sé 105/01024; C07K 14/61 Stefanie; Wan Ng Lin Minor, Yeo, RedwoodS1ngapore City, CA See application file for complete search history. (US) (56) References Cited (73) Assignee: Codexis, Inc., Redwood City, CA (US) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 7,202,070 B2 4/2007 Rozzell, Jr. U.S.C. 154(b) by 0 days. 7,423, 195 B2 9, 2008 Sticklen et al. 7,452,704 B2 11/2008 Esaki et al. This patent is Subject to a terminal dis- 2005, 0124040 A1 6/2005 Esaki et al. claimer. 2006/0205045 A1 9, 2006 Esaki et al. 2007/OOO9995 A1 1/2007 Bogosian et al. (21) Appl. No.: 15/286,900 OTHER PUBLICATIONS (22) Filed: Oct. 6, 2016 Abrahamson, M.J., et al., “Development of an Amine (65) Prior Publication Data Dehydrogenase for Synthesis of Chiral Amines.” Angew. Chem. Intl. Ed., 51:3969-3972 2012. US 2017/0022527 A1 Jan. 26, 2017 Asano, Y, et al., “A New NAD+-Dependent Opine Dehydrogenase from Arthrobacter sp. Strain IC.” J. Bacterol. 171 (8):4466-4471 Related U.S. ApplicationO O Data Baker,1989. P.J., et al., “A role for quaternary structure in the substrate (60) Continuation of application No. 15/048.887, filed on specificity of leucine dehydrogenase.” Structure, 3(7):693-705 Feb. 19, 2016, now Pat. No. 9,487,760, which is a 1995. continuation of application No. 14/887,943, filed on Bevan, M. et al., "Structure and transcription of the nopaline Oct. 20, 2015, now Pat. No. 9,296,993, which is a synthase gene region of T-DNA.” Nucleic Acids Research, division of application No. 13/890,944, filed on May 11(2):369-385 (1983. 9, 2013, now Pat. No. 9,193,957. (Continued) (60) Provisional application No. 61/646,100, filed on May Primary Examiner — Delia Ramirez 11, 2012. (74) Attorney, Agent, or Firm — Codexis, Inc. (51) Int. Cl. C7H 2L/00 (2006.01) (57) ABSTRACT CI2N 15/53 (2006.01) CI2N 15/63 (2006.01) The present disclosure provides engineered polypeptides CI2P 13/02 (2006.01) having imine reductase activity, polynucleotides encoding CI2N 9/06 (2006.01) the engineered imine reductases, host cells capable of CI2P I3/00 (2006.01) expressing the engineered imine reductases, and methods of CI2P 17/18 (2006.01) using these engineered polypeptides with a range of ketone CI2P I 7/10 (2006.01) and amine Substrate compounds to prepare secondary and CI2P I 7/12 (2006.01) tertiary amine product compounds. CI2P I 7/16 (2006.01) CI2P I3/06 (2006.01) CI2P I3/04 (2006.01) 7 Claims, No Drawings US 9,695.451 B2 Page 2 (56) References Cited Mihara, H., et al., "N-Methyl-L-amino acid dehydrogenase from Pseudomonas putida: A novel member of an unusual NAD(P)- dependent oxidoreductase Superfamily.” FEBS Journal, 272:1117 OTHER PUBLICATIONS 1123 2005. Britton, K.L., et al., “Crystallization of Arthrobacter sp. strain 1C Muller, A., et al., “Putative reaction mechanism of heterologously N-(1-D-carboxyethyl)-L-norvaline dehydrogenase and its complex expressed octopine dehydrogenase from the great scallop, Pecten with NAD+-.” Acta Cryst., D54:124-126 1998). maximus (L).” FEBS Journal, 274:6329-6339 (2007). Britton, K.L., et al., “Crystal structure and active site location of Peterson, P.E., et al., “The structure of bovine glutamate N-(1-D-carboxylethyl)-L-norvaline dehydrogenase,” Nature Struc dehydrogenase provides insights into the mechanism of allostery.” ture Biology, 5(7):593-601 1998. Structure, 7:769-782 1999. Brunhuber, N.M.W., et al., “Rhodococcus L-Phenylalanine Plese, B., et al., "Cloning and expression of a tauropine Dehydrogenase: Kinetics, Mechanism, and Structural Basis for dehydrogenase from the marine sponge Suberites domuncula, Mar Catalytic Specifity,” Biochemistry, 39.9174-9187 (2000. Biol, 153:1219-1232 2008. Dairi, T., et al., “Cloning, Nucleotide Sequencing, and Expression Plese, B., et al., “Strombine dehydrogenase in the demosponge of an Opine Dehydrogenase Gene from Arthrobacter sp. Strain 1C..” Suberites domuncula: Characterization and kinetic properties of the Applied and Environmental Microbiology, 61 (8):3169-3171 (1995). enzyme crucial for anaerobic metabolism,” Comparative Biochem Donkersloot, J.A., et al., “Cloning. Expression, Sequence Analysis, istry and Physiology, Part B, 154: 102-107 2009. and Site-directed Mutagenesis of the Tn5306-encoded Smits, S.H.J., et al., “A Structural Basis for Substrate Selectivity and N-(Carboxyethyl)ornithine Synthase from Lactococcus lactis K1.” Stereoselectivity in Octopine Dehydrogenase from Pecten maxi Bio. Chem., 270(20): 12226-12234 (1995). mus,” J. Mol. Biol. 381:200-211 2008. Endo, N. et al., “Purification, characterization, and cDNA cloning of Smits, S.H.J., et al., “Insights into the Mechanism of Ligand opine dehydrogenases from the polychaete rockworm Marphysa Binding to Octopine Dehydrogenase from Pecten maximus by Sanguinea, Comparative Biochemistry and Physiology, Part B. NMR and Crystallography.” PLoS One, 5(8): 1-10 |2010. 147:293-307 2007. UniProt F4A2G3 dated Jun. 28, 2011. Endo, N. et al., “cDNA cloning and primary structure comparison UniProt Q44297 dated Nov. 1, 1996. of tauropine dehydrogenase and beta-alanopine dehydrogenase Xuan, J.-W., et al., “Overlapping Reading Frames at the LYS5 from the limpet Cellana grata.” Fish Sci., 75: 1471-1479 2009. Locus in the Yeast Yarrowia lipolytica.” Molecular and Cellular Goto, M., et al., “Crystal Structures of Delta1-Piperideine-2- Biology, 10(9):4795-4806 1990. carboxylate/Delta1-Pyrroline-2-carboxylate Reductase Belonging Yip, K.S.P. et al., “The structure of Pyrococcus furiosus glutamate to a New Family of NAD(P)H-dependent Oxidoreductases,” J. Biol. dehydrogenase reveals a key role for ion-pair networks in main Chem., 280(49):40875-4.0884 2005. taining enzyme stability at extreme temperatures.” Structure, Kan-No, N., et al., “The amino acid sequence of tauropine 3(11): 1147-1158 (1995). dehydrogenase from the polychaete Arabella iricolor.’ Comparative International Search Report for International Application No. PCT/ Biochemistry and Physiology, Part B, 140:475-485 (2005). US2013/040377 dated Jul 18, 2013. Kan-No, N., et al., “Tauropine dehydrogenase from the marine Branden, C., et al., “Introduction to Protein Structure'. Published by Sponge Halichondria japonica is a homolog of omithine Garland Publishing, Inc., New York, New York, p. 247 (1991). cyclodeaminase/mu-crystallin.” Comparative Biochemistry and Seffernick, J.L., et al., “Melamine Deaminase and Atrazine Physiology, Part B, 141:331-339 (2005). Chlorohydrolase: 98 Percent Identical but Functionally Different.” Kato, Y., et al., “Stereoselective synthesis of opine-type secondary J. Bacteriol., 183:2405-2410 2001. amine carboxylic acids by a new enzyme opine dehydrogenase Use Witkowski, A., et al., “Conversion of a beta-ketoacyl synthase to a of recombinant enzymes,” J. Mol. Catalysis B: Enzymatic, 1:151 malonyl decarboxylase by replacement of the active-site cysteine 160 1996. with glutamine,” Biochemistry, 38(36): 11643-50 1999). Kimura, T., et al., “Complementary DNA Cloning and Molecular Sadowski, M.I., et al., “The sequence-structure relationship and Evolution of Opine Dehydrogenases in Some Marine Inverte protein function prediction.” Current Opinion in Structural Biology, brates.” Mar. Biotechnol. 6:493-502 (2005. 19:357-362 2009. US 9,695,451 B2 1. 2 POLYNUCLEOTDES ENCODING mus (great Scallop) (OpDH); ornithine synthase from Lac ENGINEERED IMINE REDUCTASES tococcus lactis K1 (CEOS); B-alanine opine dehydrogenase from Cellana grata (BADH); and tauropine dehydrogenase 1. CROSS REFERENCE TO RELATED from Suberites domuncula (Taul DH). The crystal structure of APPLICATIONS the opine dehydrogenase CENDH has been determined (see Britton et al., “Crystal structure and active site location of The present application is a Continuation of U.S. patent N-(1-D-carboxyethyl)-L-norvaline dehydrogenase.” Nat. application Ser. No. 15/048.887, filed Feb. 19, 2016, now Struct. Biol. 5(7): 593-601 (1998)). Another enzyme, U.S. Pat. No. 9,487,760, which is a Continuation of U.S. N-methyl L-amino acid dehydrogenase from Pseudomonas patent application Ser. No. 14/887,943, filed Oct. 20, 2015, 10 putida (NMDH) is known to have activity similar to opine now U.S. Pat. No. 9,296,993, which is a Divisional of U.S. dehydrogenases, reacting with O-keto acids and alkyl patent application Ser. No. 13/890,944, filed May 9, 2013, amines, but appears to have little or no sequence homology now U.S.
Recommended publications
  • The Cross-Tissue Metabolic Response of Abalone (Haliotis Midae) to Functional Hypoxia Leonie Venter1, Du Toit Loots1, Lodewyk J
    © 2018. Published by The Company of Biologists Ltd | Biology Open (2018) 7, bio031070. doi:10.1242/bio.031070 RESEARCH ARTICLE The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia Leonie Venter1, Du Toit Loots1, Lodewyk J. Mienie1, Peet J. Jansen van Rensburg1, Shayne Mason1, Andre Vosloo2 and Jeremie Z. Lindeque1,* ABSTRACT energetic reserves, resulting in increased oxygen demand beyond the Functional hypoxia is a stress condition caused by the abalone itself as rate of uptake (Morash and Alter, 2016), which limits adenosine a result of increased muscle activity, which generally necessitates the triphosphate (ATP) production via muscle oxidative metabolism employment of anaerobic metabolism if the activity is sustained for (Storey, 2005). During such burst contractile muscle activity, prolonged periods. With that being said, abalone are highly reliant on organisms are generally fuelled by anaerobic metabolism where anaerobic metabolism to provide partial compensation for energy ATP production is made possible from substrate-level production during oxygen-deprived episodes. However, current phosphorylation via the breakdown of phosphagens, but also due to knowledge on the holistic metabolic response for energy metabolism glycolytic degradation of, predominantly, carbohydrates (Baldwin during functional hypoxia, and the contribution of different metabolic and England, 1982; Ellington, 1983). While lipids and proteins are pathways and various abalone tissues towards the overall more ideally used for structural
    [Show full text]
  • Regulation of Haemocyanin Function in Haliotis Iris 255 Also Matched with Adductor Muscle Haemolymph Samples
    The Journal of Experimental Biology 205, 253–263 (2002) 253 Printed in Great Britain © The Company of Biologists Limited 2002 JEB3731 The archaeogastropod mollusc Haliotis iris: tissue and blood metabolites and allosteric regulation of haemocyanin function Jane W. Behrens1,3, John P. Elias2,3, H. Harry Taylor3 and Roy E. Weber1,* 1Department of Zoophysiology, Institute Biological Sciences, University of Aarhus, DK 8000 Aarhus, Denmark, 2School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia and 3Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand *Author for correspondence (e-mail: [email protected]) Accepted 30 October 2001 Summary 2+ 2+ We investigated divalent cation and anaerobic end- Mg and Ca restored the native O2-binding properties product concentrations and the interactive effects of these and the reverse Bohr shift. L- and D-lactate exerted substances and pH on haemocyanin oxygen-binding (Hc- minor modulatory effects on O2-affinity. At in vivo 2+ 2+ O2) in the New Zealand abalone Haliotis iris. During 24 h concentrations of Mg and Ca , the cooperativity is 2+ of environmental hypoxia (emersion), D-lactate and dependent largely on Mg , which modulates the O2 tauropine accumulated in the foot and shell adductor association equilibrium constants of both the high-affinity muscles and in the haemolymph of the aorta, the pedal (KR) and the low-affinity (KT) states (increasing and sinus and adductor muscle lacunae, whereas L-lactate was decreasing, respectively). This allosteric mechanism not detected. Intramuscular and haemolymph D-lactate contrasts with that encountered in other haemocyanins concentrations were similar, but tauropine accumulated and haemoglobins.
    [Show full text]
  • Energy Metabolism in the Tropical Abalone, Haliotis Asinina Linné: Comparisons with Temperate Abalone Species ⁎ J
    Journal of Experimental Marine Biology and Ecology 342 (2007) 213–225 www.elsevier.com/locate/jembe Energy metabolism in the tropical abalone, Haliotis asinina Linné: Comparisons with temperate abalone species ⁎ J. Baldwin a, , J.P. Elias a, R.M.G. Wells b, D.A. Donovan c a School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia b School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand c Department of Biology, MS 9160, Western Washington University, Bellingham, WA 98225, USA Received 15 March 2006; received in revised form 14 July 2006; accepted 12 September 2006 Abstract The abalone, Haliotis asinina, is a large, highly active tropical abalone that feeds at night on shallow coral reefs where oxygen levels of the water may be low and the animals can be exposed to air. It is capable of more prolonged and rapid exercise than has been reported for temperate abalone. These unusual behaviours raised the question of whether H. asinina possesses enhanced capacities for aerobic or anaerobic metabolism. The blood oxygen transport system of H. asinina resembles that of temperate abalone in terms of a large hemolymph volume, similar hemocyanin concentrations, and in most hemocyanin oxygen binding properties; however, absence of a Root effect appears confined to hemocyanin from H. asinina and may assist oxygen uptake when hemolymph pH falls during exercise or environmental hypoxia. During exposure to air, H. asinina reduces oxygen uptake by at least 20-fold relative to animals at rest in aerated seawater, and there is no significant ATP production from anaerobic glycolysis or phosphagen hydrolysis in the foot or adductor muscles.
    [Show full text]
  • Purification and Characterization of Tauropine Dehydrogenase from the Marine Sponge Halichondria Japonica Kadota (Demospongia)*1
    Fisheries Science 63(3), 414-420 (1997) Purification and Characterization of Tauropine Dehydrogenase from the Marine Sponge Halichondria japonica Kadota (Demospongia)*1 Nobuhiro Kan-no,*2,•õ Minoru Sato,*3 Eizoh Nagahisa,*2 and Yoshikazu Sato*2 *2School of Fisheries Sciences , Kitasato University, Sanriku, Iwate 022-01, Japan *3Faculty of Agriculture , Tohoku University, Sendai, Miyagi 981, Japan (Received July 8, 1996) Tauropine dehydrogenase (tauropine: NAD oxidoreductase) was purified to homogeneity from the sponge Halichondria japonica Kadota (colony). Relative molecular masses of this enzyme in its native form and in its denatured form were 36,500 and 37,000, respectively, indicating a monomeric structure. The maximum rate in the tauropine-biosynthetic reaction was observed at pH 6.8, and that in the tauro pine-catabolic reaction at pH 9.0. Pyruvate and taurine were the preferred substrates. The enzyme showed significant activity for oxalacetate as a substitute for pyruvate but much lower activities for other keto acids and amino acids. The tauropine-biosynthetic reaction was strongly inhibited by the substrate pyruvate. The optimal concentration of pyruvate was 0.25-0.35 mm and the inhibitory concen tration giving half-maximal rate was 3.2 mm. The tauropine-catabolic reaction was inhibited by the sub strate tauropine: the optimal concentration was 2.5-5.0 mm. Apparent K,,, values determined using con stant cosubstrate concentrations were 37.0 mm for taurine, 0.068 mm for pyruvate, and 0.036 mm for NADH in the tauropine-biosynthetic reaction; and 0.39 mm for tauropine and 0.16 mm for NAD+ in the tauropine-catabolic reaction.
    [Show full text]
  • Ornithine Cyclodeaminase/μ-Crystallin Homolog from The
    FEBS Open Bio 4 (2014) 617–626 journal homepage: www.elsevier.com/locate/febsopenbio Ornithine cyclodeaminase/l-crystallin homolog from the hyperthermophilic archaeon Thermococcus litoralis functions as a novel D1-pyrroline-2-carboxylate reductase involved in putative trans-3- hydroxy-L-proline metabolism ⇑ Seiya Watanabe a, , Yuzuru Tozawa b, Yasuo Watanabe a a Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan b Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan article info abstract Article history: L-Ornithine cyclodeaminase (OCD) is involved in L-proline biosynthesis and catalyzes the unique 1 Received 24 April 2014 deaminating cyclization of L-ornithine to L-proline via a D -pyrroline-2-carboxyrate (Pyr2C) inter- Revised 25 June 2014 mediate. Although this pathway functions in only a few bacteria, many archaea possess OCD-like Accepted 7 July 2014 genes (proteins), among which only AF1665 protein (gene) from Archaeoglobus fulgidus has been + characterized as an NAD -dependent L-alanine dehydrogenase (AfAlaDH). However, the physiologi- cal role of OCD-like proteins from archaea has been unclear. Recently, we revealed that Pyr2C reduc- tase, involved in trans-3-hydroxy-L-proline (T3LHyp) metabolism of bacteria, belongs to the OCD Keywords: protein superfamily and catalyzes only the reduction of Pyr2C to L-proline (no OCD activity) [FEBS Ornithine cyclodeaminase D1-pyrroline-2-carboxylate reductase Open Bio (2014) 4, 240–250]. In this study, based on bioinformatics analysis, we assumed that the Molecular evolution OCD-like gene from Thermococcus litoralis DSM 5473 is related to T3LHyp and/or proline metabolism trans-3-Hydroxy-L-proline metabolism (TlLhpI).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,296,993 B2 Chen Et Al
    US009296993B2 (12) United States Patent (10) Patent No.: US 9,296,993 B2 Chen et al. (45) Date of Patent: Mar. 29, 2016 (54) ENGINEERED MINE REDUCTASES AND (56) References Cited METHODS FOR THE REDUCTIVE AMINATION OF KETONE AND AMINE U.S. PATENT DOCUMENTS COMPOUNDS 7,202,070 B2 4/2007 Rozzell, Jr. 7,423, 195 B2 9, 2008 Sticklen et al. (71) Applicant: Codexis, Inc., Redwood City, CA (US) 7,452,704 B2 11/2008 Esaki et al. 2005, 0124040 A1 6/2005 Esaki et al. (72) Inventors: Haibin Chen, Beijing (CN); Steven J. 2006/0205045 A1 9, 2006 Esaki et al. Collier, Concord, MA (US); Jovana 2007/OOO9995 A1 1/2007 Bogosian et al. Nazor, Santa Clara, CA (US); Joly Sukumaran, Singapore (SG); Derek OTHER PUBLICATIONS Smith, Singapore (SG); Jeffrey C. Moore, Westfield, NJ (US); Gregory Abrahamson, M.J., et al., “Development of an Amine Dehydrogenase Hughes, Scotch Plains, NJ (US); Jacob for Synthesis of Chiral Amines.” Angew. Chem. Intl. Ed., 51:3969 Janey, New York, NY (US); Gjalt W. 3972 2012. Huisman, Redwood City, CA (US); Asano, Y, et al., “A New NAD+-Dependent Opine Dehydrogenase Scott J. Novick, Palo Alto, CA (US); from Arthrobacter sp. Strain IC. J. Bacterol. 171 (8):4466-4471 Nicholas J. Agard, San Francisco, CA 1989. Baker, P.J., et al., “A role for quaternary structure in the substrate (US); Oscar Alvizo, Fremont, CA (US); specificity of leucine dehydrogenase.” Structure, 3(7):693-705 Gregory A. Cope, Menlo Park, CA 1995. (US); Wan Lin Yeo, Singapore (SG); Bevan, M., et al., “Structure and transcription of the nopaline Stefanie Ng Minor, Redwood City, CA synthase gene region of T-DNA.
    [Show full text]
  • Supplementary Material (ESI) for Natural Product Reports
    Electronic Supplementary Material (ESI) for Natural Product Reports. This journal is © The Royal Society of Chemistry 2014 Supplement to the paper of Alexey A. Lagunin, Rajesh K. Goel, Dinesh Y. Gawande, Priynka Pahwa, Tatyana A. Gloriozova, Alexander V. Dmitriev, Sergey M. Ivanov, Anastassia V. Rudik, Varvara I. Konova, Pavel V. Pogodin, Dmitry S. Druzhilovsky and Vladimir V. Poroikov “Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review” Contents PASS (Prediction of Activity Spectra for Substances) Approach S-1 Table S1. The lists of 122 known therapeutic effects for 50 analyzed medicinal plants with accuracy of PASS prediction calculated by a leave-one-out cross-validation procedure during the training and number of active compounds in PASS training set S-6 Table S2. The lists of 3,345 mechanisms of action that were predicted by PASS and were used in this study with accuracy of PASS prediction calculated by a leave-one-out cross-validation procedure during the training and number of active compounds in PASS training set S-9 Table S3. Comparison of direct PASS prediction results of known effects for phytoconstituents of 50 TIM plants with prediction of known effects through “mechanism-effect” and “target-pathway- effect” relationships from PharmaExpert S-79 S-1 PASS (Prediction of Activity Spectra for Substances) Approach PASS provides simultaneous predictions of many types of biological activity (activity spectrum) based on the structure of drug-like compounds. The approach used in PASS is based on the suggestion that biological activity of any drug-like compound is a function of its structure.
    [Show full text]
  • Anaerobic Pathways in the Porifera: Strombine Dehydrogenase, an Opine Dehydrogenase, from the Sponge Suberites Domuncula
    Anaerobic pathways in the Porifera: Strombine dehydrogenase, an opine dehydrogenase, from the sponge Suberites domuncula Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften Am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz Bruna Pleše geb. in Zagreb (Croatia) Mainz, 2007 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: Mojoj Baki i Čiki 1 INTRODUCTION .........................................................................................................1 1.1 Sponges (Porifera)................................................................................................1 1.1.1 The origins ...........................................................................................................1 1.1.2 Morphology...........................................................................................................4 1.1.3 Reproduction.........................................................................................................5 1.1.4 Classification.........................................................................................................6 1.1.5 Symbiosis..............................................................................................................7 1.2 Anaerobic pathways............................................................................................10 1.2.1 Evolution of anaerobic pathways........................................................................12 1.2.2 Opines .................................................................................................................14
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130244920A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2013/0244920 A1 Lee et al. (43) Pub. Date: Sep. 19, 2013 (54) WATER SOLUBLE COMPOSITIONS (52) US. Cl. INCORPORATING ENZYMES, AND METHOD USPC ......................................... .. 510/392; 264/299 OF MAKING SAME (57) ABSTRACT (76) Inventors: David M. Lee, CroWn Point, IN (US); Jennifer L‘ Sims’ Lowell’ IN (Us) Disclosed herein are Water soluble compositions, such as ?lms, including a mixture of a ?rst Water-soluble resin, an (21) Appl' NO': 13/422’709 enzyme, and an enzyme stabilizer Which comprises a func (22) Filed: Man 16, 2012 tional substrate for the enzyme, methods of making such compositions, and methods of using such compositions, e.g. Publication Classi?cation to make packets containing functional ingredients. The enzymes can include proteases and mixtures of proteases (51) Int. Cl. With other enzymes, and the compositions provide good C11D 3/386 (2006.01) retention of enzyme function following ?lm processing and B29C 39/02 (2006.01) storage. US 2013/0244920 A1 Sep. 19,2013 WATER SOLUBLE COMPOSITIONS preheated to a temperature less than 77° C., optionally in a INCORPORATING ENZYMES, AND METHOD range ofabout 66° C. to about 77° C., or about 74° C.; drying OF MAKING SAME the Water from the cast mixture over a period of less than 24 hours, optionally less than 12 hours, optionally less than 8 FIELD OF THE DISCLOSURE hours, optionally less than 2 hours, optionally less than 1 [0001] The present disclosure relates generally to Water hour, optionally less than 45 minutes, optionally less than 30 soluble ?lms.
    [Show full text]