Innovative Solutions for Water Wars in Israel, Jordan, and The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Community Structure and Biogeography of Shore Fishes in the Gulf of Aqaba, Red Sea
Helgol Mar Res (2002) 55:252–284 DOI 10.1007/s10152-001-0090-y ORIGINAL ARTICLE Maroof A. Khalaf · Marc Kochzius Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea Received: 2 April 2001 / Received in revised form: 2 November 2001 / Accepted: 2 November 2001 / Published online: 24 January 2002 © Springer-Verlag and AWI 2002 Abstract Shore fish community structure off the Jorda- Introduction nian Red Sea coast was determined on fringing coral reefs and in a seagrass-dominated bay at 6 m and 12 m Coral reefs are one of the most complex marine ecosys- depths. A total of 198 fish species belonging to 121 gen- tems in which fish communities reach their highest de- era and 43 families was recorded. Labridae and Poma- gree of diversity (Harmelin-Vivien 1989). Morphological centridae dominated the ichthyofauna in terms of species properties and the geographical region of the coral reef richness and Pomacentridae were most abundant. Nei- determine the structure of the fish assemblages (Sale ther diversity nor species richness was correlated to 1980; Thresher 1991; Williams 1991). The ichthyofauna depth. The abundance of fishes was higher at the deep of coral reefs can be linked to varying degrees with adja- reef slope, due to schooling planktivorous fishes. At cent habitats (Parrish 1989) such as seagrass meadows 12 m depth abundance of fishes at the seagrass-dominat- (Ogden 1980; Quinn and Ogden 1984; Roblee and ed site was higher than on the coral reefs. Multivariate Ziemann 1984; Kochzius 1999), algal beds (Rossier and analysis demonstrated a strong influence on the fish as- Kulbicki 2000) and mangroves (Birkeland 1985; Thollot semblages by depth and benthic habitat. -
Boundary & Territory Briefing
International Boundaries Research Unit BOUNDARY & TERRITORY BRIEFING Volume 1 Number 8 The Evolution of the Egypt-Israel Boundary: From Colonial Foundations to Peaceful Borders Nurit Kliot Boundary and Territory Briefing Volume 1 Number 8 ISBN 1-897643-17-9 1995 The Evolution of the Egypt-Israel Boundary: From Colonial Foundations to Peaceful Borders by Nurit Kliot Edited by Clive Schofield International Boundaries Research Unit Department of Geography University of Durham South Road Durham DH1 3LE UK Tel: UK + 44 (0) 191 334 1961 Fax: UK +44 (0) 191 334 1962 E-mail: [email protected] www: http://www-ibru.dur.ac.uk The Author N. Kliot is a Professor and Chairperson of the Department of Geography, University of Haifa, and Head of the Centre for Natural Resources Studies at the University of Haifa. Her specialistion is political geography, and she is a member of the International Geographical Union (IGU) Commission on Political Geography. She writes extensively on the Middle East and among her recent publications are: Water Resources and Conflict in the Middle East (Routledge, 1994) and The Political Geography of Conflict and Peace (Belhaven, 1991) which she edited with S. Waterman. The opinions contained herein are those of the author and are not to be construed as those of IBRU Contents Page 1. Introduction 1 2. The Development of the Egypt-Palestine Border, 1906-1918 1 2.1 Background to delimitation 1 2.2 The Turco-Egyptian boundary agreement of 1906 4 2.3 The delimitation of the Egypt-Palestine boundary 7 2.4 The demarcation of the Egypt-Palestine boundary 7 2.5 Concluding remarks on the development of the Egypt- Palestine border of 1906 8 3. -
Field Identification Guide to the Sharks and Rays of the Red Sea and Gulf of Aden
FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES ISSN 1020-6868 FIELD IDENTIFICATION GUIDE TO THE SHARKS AND RAYS OF THE RED SEA AND GULF OF ADEN PERSGA FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES FIELD IDENTIFICATION GUIDE TO THE SHARKS AND RAYS OF THE RED SEA AND GULF OF ADEN by Ramón Bonfil Marine Program Wildlife Conservation Society Bronx, New York, USA and Mohamed Abdallah Strategic Action Program Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of Aden Jeddah, Saudi Arabia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2004 iii PREPARATION OF THIS DOCUMENT This document was prepared under the coordination of the Species Identification and Data Programme of the Marine Resources Service, Fishery Resources and Environment Division, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). This field guide is largely based on material prepared for training courses on elasmobranch identification delivered in the region by the first author, and promoted by the Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of Aden (PERSGA), as an activity of PERSGA’s Strategic Action Programme (SAP) towards capacity building and technical assistance in the Red Sea and Gulf of Aden region. Printing was supported by Japanese Government funds. The increasing recognition of the significance of sharks and batoid fishes as ecosystem health indicators, as well as their particular importance in exploited ecosystems in the Red Sea and the Gulf of Aden, have been key considerations to promote the preparation of this Field Guide. Furthermore, in recent years the reported catches of elasmobranchs in the Red Sea and the Gulf of Aden showed a marked increase. -
Active Faults' Geometry in the Gulf of Aqaba, Southern Dead Sea Fault, Illuminated by Multi Beam Bathymetric Data
Active faults' geometry in the Gulf of Aqaba, southern Dead Sea fault, illuminated by multi beam bathymetric data Item Type Preprint Authors Ribot, Matthieu; Klinger, Yann; Jonsson, Sigurjon; Avsar, Ulas; Pons-Branchu, Edwige; Matrau, Rémi; Mallon, Francis L Citation Ribot, M., Klinger, Y., Jónsson, S., Avsar, U., Pons-Branchu, E., Matrau, R., & Mallon, F. L. (2020). Active faults’ geometry in the Gulf of Aqaba, southern Dead Sea fault, illuminated by multi beam bathymetric data. doi:10.1002/essoar.10504675.1 Eprint version Pre-print DOI 10.1002/essoar.10504675.1 Publisher Wiley Rights Archived with thanks to Wiley Download date 25/09/2021 04:39:22 Link to Item http://hdl.handle.net/10754/665920.1 ESSOAr | https://doi.org/10.1002/essoar.10504675.1 | CC_BY_NC_ND_4.0 | First posted online: Sat, 7 Nov 2020 07:45:32 | This content has not been peer reviewed. manuscript submitted to Tectonics 1 Active faults' geometry in the Gulf of Aqaba, southern Dead Sea fault, 2 illuminated by multi beam bathymetric data 3 4 AUTHORS: Matthieu Ribot1,4, Yann Klinger1, Sigurjón Jónsson2, Ulas Avsar3, Edwige 5 Pons-Branchu4, Rémi Matrau2, and Francis L. Mallon2 6 7 (1) Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France. 8 (2) King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. 9 (3) Middle East Technical University, Ankara, Turkey. 10 (4) Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France. 11 12 Corresponding author: Matthieu Ribot ([email protected]) 13 14 Key points 15 • High-resolution bathymetry of the Gulf of Aqaba 16 • Detailed map of a complex fault system including strike-slip and normal faulting 17 • Surface rupture of the Mw 7.3, 1995, Nuweiba earthquake and possible location of 18 future earthquakes 19 20 Abstract 21 Detailed knowledge of fault geometry is important for accurate seismic hazard assessments. -
Report on the Determination of KAC Water Losses and Recommended Solutions for Improvements; Situational Assessment
WATER MANAGEMENT INITIATIVE (WMI) Report on the Determination of KAC Water Losses and Recommended Solutions for Improvements; Situational Assessment June 2018 This publicationDetermination was produced of KAC Water for Losses review and byRecommended the United Solutions States for Agency Improvements for International – Upper KAC Development. 1 It was prepared by Tetra Tech. CONCEPT PARTY DATE First draft completed: WMI March 25, 2018 Presentation to JVA: JVA March 28, 2018 Concurrence received: JVA May 13,2018 May 28, 2018 Final version submitted: WMI (per the modified J4 deliverable table in contract modification no. 4) Final version approved: COR June 26, 2018 This document was produced for review by the United States Agency for International Development. It was prepared by Tetra Tech under the USAID Water Management Initiative (WMI) Contract No. AID-278-C-16-00001. This report was prepared by: Tetra Tech 159 Bank Street, Suite 300 Burlington, Vermont 05401 USA Telephone: (802) 658-3890 Fax: (802) 495-0282 E-Mail: [email protected] Tetra Tech Contacts: José Valdez, Chief of Party, [email protected] David Favazza, Project Manager, [email protected] All photos are by Tetra Tech unless otherwise noted. WATER MANAGEMENT INITIATIVE (WMI) Report on the Determination of KAC Water Losses and Recommended Solutions for Improvements; Situational Assessment Intervention No. 3.3.7: Support Improving the Conveyance System Efficiency in Jordan Valley May 2018 DISCLAIMER The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. TABLE OF CONTENTS LIST OF FIGURES ....................................................................................................................... -
A Pre-Feasibility Study on Water Conveyance Routes to the Dead
A PRE-FEASIBILITY STUDY ON WATER CONVEYANCE ROUTES TO THE DEAD SEA Published by Arava Institute for Environmental Studies, Kibbutz Ketura, D.N Hevel Eilot 88840, ISRAEL. Copyright by Willner Bros. Ltd. 2013. All rights reserved. Funded by: Willner Bros Ltd. Publisher: Arava Institute for Environmental Studies Research Team: Samuel E. Willner, Dr. Clive Lipchin, Shira Kronich, Tal Amiel, Nathan Hartshorne and Shae Selix www.arava.org TABLE OF CONTENTS 1 INTRODUCTION 1 2 HISTORICAL REVIEW 5 2.1 THE EVOLUTION OF THE MED-DEAD SEA CONVEYANCE PROJECT ................................................................... 7 2.2 THE HISTORY OF THE CONVEYANCE SINCE ISRAELI INDEPENDENCE .................................................................. 9 2.3 UNITED NATIONS INTERVENTION ......................................................................................................... 12 2.4 MULTILATERAL COOPERATION ............................................................................................................ 12 3 MED-DEAD PROJECT BENEFITS 14 3.1 WATER MANAGEMENT IN ISRAEL, JORDAN AND THE PALESTINIAN AUTHORITY ............................................... 14 3.2 POWER GENERATION IN ISRAEL ........................................................................................................... 18 3.3 ENERGY SECTOR IN THE PALESTINIAN AUTHORITY .................................................................................... 20 3.4 POWER GENERATION IN JORDAN ........................................................................................................ -
CALIFORNIA AQUEDUCT SUBSIDENCE STUDY San Luis Field Division San Joaquin Field Division
State of California California Natural Resources Agency DEPARTMENT OF WATER RESOURCES Division of Engineering CALIFORNIA AQUEDUCT SUBSIDENCE STUDY San Luis Field Division San Joaquin Field Division June 2017 State of California California Natural Resources Agency DEPARTMENT OF WATER RESOURCES Division of Engineering CALIFORNIA AQUEDUCT SUBSIDENCE STUDY Jeanne M. Kuttel ......................................................................................... Division Chief Joseph W. Royer .......................... Chief, Geotechnical and Engineering Services Branch Tru Van Nguyen ............................... Supervising Engineer, General Engineering Section G. Robert Barry .................. Supervising Engineering Geologist, Project Geology Section by James Lopes ................................................................................ Senior Engineer, W.R. John M. Curless .................................................................. Senior Engineering Geologist Anna Gutierrez .......................................................................................... Engineer, W.R. Ganesh Pandey .................................................................... Supervising Engineer, W.R. assisted by Bradley von Dessonneck ................................................................ Engineering Geologist Steven Friesen ...................................................................... Engineer, Water Resources Dan Mardock .............................................................................. Chief, Geodetic -
Get App BROCHURE
#EXPERIENCELIFE INTRODUCTION GROUP ADVENTURES INDEPENDENT TRIPS BAMBA BRAND KENYA, UGANDA 4 SOUTH AMERICA ASIA & RWANDA 54 SOUTH AMERICA HISTORY & PERU VIETNAM, PERU 22 TANZANIA 67 PHILOSOPHY 5 CAMBODIA & 40 56 THAILAND BOLIVIA 27 ZIMBABWE, BOLIVIA 69 BAMBA FOR INDONESIA & BOTSWANA & 6 CHILE & 57 CHILE GOOD ARGENTINA 30 PHILIPPINES 43 NAMIBIA 71 WHY TRAVEL BRAZIL SRI LANKA & SOUTH AFRICA 58 ARGENTINA, 73 WITH BAMBA 7 31 MALDIVES 44 ISRAEL & COLOMBIA & BRAZIL 75 ECUADOR 33 INDIA, NEPAL & JORDAN 59 BAMBA APP 8 TIBET 45 COLOMBIA 77 TRIP STYLES JAPAN & SOUTH EUROPE 10 CENTRAL AMERICA GALPAGAGOS & KOREA 47 ICELAND MEXICO 34 60 ECUADOR 79 CHINA, BELIZE IRELAND, 35 KYRGYZSTAN, 48 SCOTLAND & CENTRAL AMERICA & THE KAZAKHSTAN 61 GUATEMALA & SCANDINAVIA CARIBBEAN COSTA RICA 36 OCEANIA SPAIN, MEXICO, CUBA, PORTUGAL, GUATEMALA & 82 NORTH AMERICA AUSTRALIA, NEW GERMANY & 62 BELIZE ZEALAND & FIJI 49 RUSSIA USA & CANADA 37 GUATEMALA, HONDURAS & AFRICA & MIDDLE EAST CROATIA, 85 GREECE & 63 COSTA RICA MOROCCO & TURKEY EGYPT 53 PANAMA 87 TABLE OF CONTENTS IT’S TIME TO GO AND EXPLORE THE WORLD! INDEPENDENT TRIPS TRAVEL PASSES CUBA & NEPAL 108 EUROPE SOUTH AMERICA CENTRAL THAILAND, CARIBBEAN 89 AMERICA 141 MALAYSIA & ISLANDS UZBEKISTAN, ICELAND & BRAZIL, SINGAPORE 153 MONGOLIA & NORWAY 120 ARGENTINA & COSTA RICA & CHINA 109 132 NORTH AMERICA UNITED CHILE PANAMA 142 VIETNAM, CAMBODIA & USA & CANADA JAPAN KINGDOM & 153 92 110 IRELAND 121 SOUTH AMERICA THAILAND PASSES 133 NORTH AMERICA ASIA OCEANIA SPAIN & USA & CANADA PORTUGAL 122 CHILE & 146 THAILAND NEW ZEALAND, -
Data Source: FAO, UN and Water Resources
GROUNDWATER WATER DAY SPECIAL How bad is it already Aquifers under most stress are in poor and populated regions, where alternatives are limited Shrinking source Ganga-Brahmaputra Basin in 145 km3 21 8 India, Nepal and Bangladesh, More than half of the world's major aquifers, The amount of of world's 37 largest aquifer of these 21 aquifer systems North Caucasus Basin in Russia groundwater the systemsÐshaded in redÐlost are overstressed, which and Canning Basin in Australia which store groundwater, are depleting faster world extracts water faster than they could be means they get hardly any have the fastest rate of depletion than they can be replenished every year recharged between 2003 and 2013 natural recharge in the world Aquifer System where groundwater levels are depleting Pechora Basin Tunguss Basin (in millimetres per year) 3.038 1.664 Aquifer System where groundwater levels are increasing Northern Great Ogallala Aquifer Cambro-Ordovician Russian Platform Basin (in millimetres per year) 4.011 Yakut Basin Plains Aquifer (High Plains) Aquifer System 2.888 Map based on data collected by 4.954 0.309 2.449 NASA's Grace satellite between 2003 and 2013 Paris Basin 4.118 Angara-Lena Basin 3.993 West Siberian Basin Californian Central Atlantic and Gulf Coastal 1.978 Valley Aquifer System Plains Aquifer 8.887 5.932 Tarim Basin Song-Liao Basin North Caucasus Basin 0.232 2.4 Northwestern Sahara Aquifer System 16.097 Why aquifers are important 2.805 Nubian Aquifer System 2.906 North China Aquifer System Only three per cent of the world's water -
The Fairly Hydrated Knight
THE FAIRLY GAMES BOOKLET HYDRATED Play & Learn KNIGHT When building a fort, the engineers would try to enclose a natural Water in forts spring inside its walls. Often this was not possible, so they had to make other waterworks, such as large cisterns (gwiebi), smaller close-bottom wells (bjar) or a groundwater well (spiera). In some cases they brought water from afar with an aqueduct (akwedott) or an underground tunnel (mina). Draining the sewage and storm water outside the fort was equally important in order to avoid contamination and diseases. When under siege, what was the most important thing for any fort to have? High strong walls? Surrounding ditches? Weapons and gunpowder? A lot of guards? Guess again … No fort, no matter how strongly built and well armed, could survive any siege if it lacked access to fresh water! 2 3 Inside a close-bottom cistern (gibjun, bir) Fill in the missing words: bell, clean, cool, dust, evaporation, gravity, inclined, lid, locked, rainfalls, summer, terraces. 1. The rain is collected from the nearby _ _ _ _ _ _ _ _. All collection surfaces must be kept _ _ _ _ _. 2. The feeding gutter is slightly _ _ _ _ _ _ _ _, so water moves only with the power of _ _ _ _ _ _ _. 3. The _ _ _ _ shape gives stability and strength to the cistern. 4. The _ _ _ is closed when the cistern is not in use and sometimes _ _ _ _ _ _ to prevent water theft. -
Simulation of Flows and Water Quality in the California Aqueduct Using DSM2
Simulation of Flows and Water Quality in the California Aqueduct Using DSM2 Siqing Liu, Bob Suits DWR, Bay Delta Office, Modeling Support Branch 2011 CWEMF Annual Meeting, February 28 –March 2 1 Topics • Project objectives • Aqueduct System modeled • Assumptions / issues with modeling • Model results –Flows / Storage, EC, Bromide 2 Objectives Simulate Aqueduct hydraulics and water quality • 1990 – 2010 period • DSM2 Aqueduct version calibrated by CH2Mhill Achieve 1st step in enabling forecasting Physical System Canals simulated • South Bay Aqueduct (42 miles) • California Aqueduct (444 miles) • East Branch to Silverwood Lake • West Branch to Pyramid Lake (40 miles) • Delta‐Mendota Canal (117 miles) 4 Physical System, cont Pumping Plants Banks Pumping Plant Buena Vista (Check 30) Jones Pumping Plant Teerink (Check 35) South Bay Chrisman (Check 36) O’Neill Pumping-Generating Edmonston (Check 40) Gianelli Pumping-Generating Alamo (Check 42) Dos Amigos (Check 13) Oso (West Branch) Las Perillas (Costal branch) Pearblossom (Check 58) 5 Physical System, cont Check structures and gates • Pools separated by check structures throughout the aqueduct system (SWP: 66, DMC: 21 ) • Gates at check structures regulate flow rates and water surface elevation 6 Physical System, cont Turnout and diversion structures • Water delivered to agricultural and municipal contractors through diversion structures • Over 270 diversion structures on SWP • Over 200 turnouts on DMC 7 Physical System, cont Reservoirs / Lakes Represented as complete mixing of water body • -
Freshwater Resources
3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ...........................................................................................................................................................