Upper Cenomanian–Lower Turonian Ammonoids from the Saxonian Cretaceous (Lower Elbtal Group, Saxony, Germany)

Total Page:16

File Type:pdf, Size:1020Kb

Upper Cenomanian–Lower Turonian Ammonoids from the Saxonian Cretaceous (Lower Elbtal Group, Saxony, Germany) Upper CenomanianLower Turonian ammonoids from the Saxonian Cretaceous (lower Elbtal Group, Saxony, Germany) MARKUS WILMSEN & EMAD NAGM The Upper Cenomanian to Lower Turonian ammonoid fauna of the Saxonian Cretaceous (Elbtal Group, Saxony, Ger- many) has been revised based on the study of 270 specimens hosted in the Museum für Mineralogie und Geologie (MMG) of the Senckenberg Naturhistorische Sammlungen Dresden. In total, 12 species have been identified and, based on this revision, a number of ammonoids are now reported and/or illustrated for the first time from the Elbtal Group of Saxony: Euomphaloceras septemseriatum, Neocardioceras juddii barroisi, Watinoceras coloradoense, Spathites (Jeanrogericeras) reveliereanus, Sciponoceras gracile and Scaphites equalis. The study demonstrated the presence of all Upper Cenomanian and Lower Turonian standard ammonite biozones in the lithostratigraphic succession of the lower Elbtal Group: the lower Upper Cenomanian Calycoceras naviculare Zone (represented by the Oberhäslich For- mation), the mid- and upper Upper Cenomanian Metoicoceras geslinianum and Neocardioceras juddii zones (repre- sented by the Dölzschen Formation), and the Lower Turonian Watinoceras coloradoense and Mammites nodosoides zones (represented by the Brießnitz Formation). The ammonoid fauna from the Saxonian Cretaceous is dominated by strongly ornamented and widely distributed Acanthoceratidae. • Key words: Upper Cretaceous, Saxo-Bohemian Creta- ceous Basin, ammonites, taxonomic revision, biostratigraphy. WILMSEN,M.&NAGM, E. 2013. Upper Cenomanian–Lower Turonian ammonoids from the Saxonian Cretaceous (lower Elbtal Group, Saxony, Germany). Bulletin of Geosciences 88(3), 647–674 (18 figures). Czech Geological Sur- vey, Prague. ISSN 1214-1119. Manuscript received September 26, 2012; accepted in revised form January 25, 2013; published online July 3, 2013; issued July 3, 2013. Markus Wilmsen (corresponding author), Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany; [email protected] • Emad Nagm, Geology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt; [email protected] In Saxony, the area between Meißen, Dresden, Pirna and studied in considerable detail (e.g., Geinitz 1839–1843, the Czech border is characterized by sedimentary rocks of 1849, 1871–1875; Petrascheck 1902; Wanderer 1909; early Late Cretaceous (Cenomanian–Lower Coniacian) Tröger 1967, 1969, 2003). age, more-or-less following the river Elbe valley (Fig. 1A). The ammonites of the Saxonian Cretaceous have for The lithofacies of these Cretaceous strata is dominated by the last time been monographed by Petrascheck (1902) marine siliciclastics and marls or marly limestones over a century ago. Since those times, only some papers (so-called Pläner). Lithostratigraphically, they are combi- have been published dealing with individual taxa [e.g., ned in the so-called Elbtal Group (Tröger & Voigt in Nie- Tröger 1968 on Hyphantoceras reussianum (d’Orbigny); buhr et al. 2007), which forms an important link between Köhler 2001 on Turrilites (T.) cf. scheuchzerianus Bosc; the temperate Boreal shelf of northern and northwestern Wilmsen & Mosavinia 2011 on Schloenbachia varians Europe and the Tethyan warm-water areas to the south. (J. Sowerby)]. Thus, a comprehensive systematic revision The Elbtal Group was deposited in a relatively narrow was long overdue (for the Bohemian and Moravian part of strait between the Westsudetic and the Mid-European is- the Saxo-Bohemian Cretaceous Basin, Cenomanian– lands and shows strong relationships in terms of facies and Lower Turonian ammonites have been revised in more re- palaeontology to contemporaneous strata from the Bohe- cent times by Houša 1967; Konečný & Vašíček 1983, mian Cretaceous Basin towards the southeast. The Saxon- 1987; and Vašíček 1989). In this first part, we focus on the ian Cretaceous is a classical topic of geognostic research in Upper Cenomanian–Lower Turonian ammonite fauna. Germany and its palaeontology and stratigraphy have been The few ammonites from the Lower Cenomanian Meißen DOI 10.3140/bull.geosci.1390 647 Bulletin of Geosciences Vol. 88, 3, 2013 Formation have been excluded from the revision; they have (eustatic) rise of sea-level (plenus Transgression of au- already been treated in some recent papers (Dietze 1960, thors) resulted in the drowning of many islands and the Köhler 2001, Wilmsen & Mosavinia 2011). A second part onlap of the Dölzschen Formation (proximal fine-grained on the Middle–Upper Turonian ammonites of the Saxonian sandstones grading into silty spiculitic marlstones; Cretaceous will follow (Nagm & Wilmsen in prep.). “Unterer Pläner” or “plenus-Pläner”) onto formerly emer- gent basement areas, not only in Saxony but also in many parts of the Bohemian Cretaceous Basin (e.g., Žítt et al. Geological setting 1998, 2006, 2010) as well as on the opposite side of the Bo- hemian Massif in NE Bavaria (Wilmsen et al. 2010a, b; Palaeogeographically and in terms of (bio-)facies, the Elb- Richardt et al. 2013). tal Group is mediating between the Tethyan-influenced After the levelling of the pre-transgression topogra- Bohemian Cretaceous in the southeast and the Boreal phy during the Late Cenomanian, more uniform sedimen- North German shelf sea in the northwest (Fig. 1B, C). tation patterns became established during the Turonian. The Saxonian Cretaceous Basin has a special palaeogeo- In the Early Turonian, the still relatively narrow strait be- graphic position between the Westsudetic Island in the tween the Westsudetic Island and the Bohemian Massif northeast and the Osterzgebirge as an emergent part of the (Osterzgebirge) was characterized by cross-bedded, tid- central Mid-European Island in the southwest. Today, the ally influenced sands (Schmilka Formation; see Voigt basin fill is preserved in a tectonic halfgraben, the active 1999, Mitchell et al. 2010). These shallow-water deposits northeastern margin is represented by the Lausitz Fault grade, with a transitional facies of bioturbated, silty-argil- (Fig. 1A). The facies and thickness changes of the Creta- laceous, fine-grained sandstones and silts, into fine- ceous strata within the Saxonian Cretaceous Basin grained basinal deposits characterizing the “Pläner- show that at least from the Middle Turonian, deposition Fazies” of the Dresden area (calcareous siltstones and was influenced by syn-sedimentary activity of the Lau- silty marls of the Brießnitz Formation; Fig. 2). The sitz Fault (Voigt 1994, Kley & Voigt 2008). The Lausitz Brießnitz Formation ranges into the lowermost Middle Fault is joined by a number of other NW–SE-trending Turonian and is overlain by fine-grained, calcareous structural elements in Middle Europe (e.g., T. Voigt et basinal deposits (Pläner sediments of the Räcknitz For- al. 2006, Niebuhr et al. 2011) that have been characteri- mation) while in the Elbsandsteingebirge (“Saxonian zed by compression since Turonian times (Kley & Voigt Switzerland”), the sandstones, sandy marls and green- 2008). sands of the Postelwitz Formation have been deposited, The following brief geological overview follows the re- sourced from the rising Lausitz Massif. vised lithostratigraphy of the Elbtal Group (Tröger & Voigt in Niebuhr et al. 2007; see Fig. 2). A first marine transgres- sion from the north took place in the late Early Ceno- Conventions manian, reaching the area of Meißen (Meißen Formation). Conglomeratic bioclastic limestones indicate high-energy More than 270 specimens have been studied, mostly well nearshore deposition. Marine Middle Cenomanian is un- to moderately well preserved (composite) internal known, but the back-filling of fluvial valleys (Nieder- moulds. All specimens, except one (Scaphites equalis So- schöna Formation; see Voigt 1998) indicates a continuing werby, M. Fengler collection, Dresden) are kept in the base-level rise. The major transgression occurred during Museum für Mineralogie und Geologie (MMG) of the the Late Cenomanian, submerging a pronounced relief of Senckenberg Naturhistorische Sammlungen Dresden depressions and cliffs related to the different erosional re- (SNSD), Germany (repository SaK). Most of the ammo- sistance of the basement. In that time, a chain of isolated noids are historical specimens that have been collected cliffs and islands was located at the southwestern margin of in the nineteenth and twentieth century, and some of the basin (Voigt 1994, Voigt et al. 1994, S. Voigt et al. them have already been illustrated in earlier publications 2006, Wilmsen et al. 2011). Clastic sediments were pre- (Geinitz 1839–1843, 1849, 1871–1875; Petrascheck 1902; dominantly sourced from the southwest (Osterzgebirge as Wanderer 1909). If a specimen is re-figured herein, this is a part of the Bohemian Massif) and the northeast (West- stated in the captions. sudetic Island). The Late Cenomanian transgression took Suture terminology follows Wedekind (1916) as put for- place in two major pulses: in the early Late Cenomanian ward by Kullman & Wiedmann (1970) and revised in parts (Calycoceras naviculare Zone), the shallow-marine con- by Korn et al. (2003): E = external lobe, A = adventive lobe glomerates, fossiliferous sands and argillaceous silts of the (= lateral lobe, L, of former nomenclature), U = umbilical Oberhäslich Formation (“Unterquader”) have been depos- lobe, I = internal lobe. A Vernier Caliper has been used to ited, usually missing on swells. The second
Recommended publications
  • Handbook of Texas Cretaceous Fossils
    University of Texas Bulletin No. 2838: October 8, 1928 HANDBOOK OF TEXAS CRETACEOUS FOSSILS B y W. S. ADKINS Bureau of Economic Geology J. A. Udden, Director E. H. Sellards, Associate Director PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH, AND ENTERED AS SECOND-CLASS MATTER AT THE POSTOFFICE AT AUSTIN, TEXAS. UNDER THE ACT OF AUGUST 24. 1912 The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free govern­ m en t. Sam Houston Cultivated mind is the guardian genius of democracy. It is the only dictator that freemen acknowl­ edge and the only security that free­ men desire. Mirabeau В. Lamar CONTENTS P age Introduction __________________________________________________ 5 Summary of Formation Nomenclature_______________________ 6 Zone Markers and Correlation_______________________________ 8 Types of Texas Cretaceous Fossils___________________________ 36 Bibliography ________________________________________________ 39 L ist and Description of Species_________________________________ 46 P lants ______________________________________________________ 46 Thallophytes ______________________________________________ 46 Fungi __________________________________________________ 46 Algae __________________________________________________ 47 Pteridophytes ____________________________________________ 47 Filices __________________________________________________ 47 Spermatophytes __________________________________________ 47 Gymnospermae _________________________________________
    [Show full text]
  • Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas
    Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas GEOLOGICAL SURVEY PROFESSIONAL PAPER 1253 Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas By WILLIAM A. COBBAN and E. A. MEREWETHER Molluscan Fossil Record from the Northeastern Part of the Upper Cretaceous Seaway, Western Interior By WILLIAM A. COBBAN Lower Upper Cretaceous Strata in Minnesota and Adjacent Areas-Time-Stratigraphic Correlations. and Structural Attitudes By E. A. M EREWETHER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 2 53 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916 Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas. (Geological Survey Professional Paper 1253) Bibliography: 52 p. Supt. of Docs. no.: I 19.16 A. Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior by William A. Cobban. B. Lower Upper Cretaceous strata in Minnesota and adjacent areas-time-stratigraphic correlations and structural attitudes by E. A. Merewether. I. Mollusks, Fossil-Middle West. 2. Geology, Stratigraphic-Cretaceous. 3. Geology-Middle West. 4. Paleontology-Cretaceous. 5. Paleontology-Middle West. I. Merewether, E. A. (Edward Allen), 1930. II. Title. III. Series. QE687.C6 551.7'7'09776 81--607803 AACR2 For sale by the Distribution Branch, U.S.
    [Show full text]
  • The Wunstorf Drilling Project
    Progress Reports The Wunstorf Drilling Project: Coring a Global Stratigraphic Reference Section of the Oceanic Anoxic Event 2 by Jochen Erbacher, Jörg Mutterlose, Markus Wilmsen, Thomas Wonik, and the Wunstorf Drilling Scientific Party doi:10.0/iodp.sd..0.007 section. Disciplines involved include micropaleontology Introduction and Goals (calcareous nannofossils, planktonic foraminifera), macro- paleontology (ammonites, inoceramids), stable isotopes and The mid-Cretaceous greenhouse world (Albian–Turonian) cyclostratigraphy mainly based on borehole logging, multi was characterized by high atmospheric carbon dioxide sensor core logging���������������������������������������,�������������������������������������� and x-ray fluorescence (XRF) scanning levels, much higher global temperatures than at present�����,���� and data. The combination of geochemical, paleontological�����,���� and a lack of permanent ice caps at the poles (Bice et al., 2006; logging data will allow high resolution chemo- and biostra- Huber et al., 2002; Wilson et al., 2002). A characteristic tigraphy for the CTB�������������������������������������I������������������������������������ which may in ����������������������the future������������������ serve as an feature of this greenhouse world was the deposition of black international standard. shales during the Cenomanian / Turonian boundary interval (CTBI; Schlanger and Jenkyns, 1976; Arthur et al., 1990). The Wunstorf Core These carbon�����������������������������������������������-����������������������������������������������rich
    [Show full text]
  • Le Mans, France
    High-resolution biostratigraphy and chemostratigraphy of the Cenomanian stratotype area (Le Mans, France) Delphine Desmares, Marc Testé, Bérengère Broche, Maxime Tremblin, Silvia Gardin, Loïc Villier, Edwige Masure, Danièle Grosheny, Nicolas Morel, Patrice Raboeuf To cite this version: Delphine Desmares, Marc Testé, Bérengère Broche, Maxime Tremblin, Silvia Gardin, et al.. High- resolution biostratigraphy and chemostratigraphy of the Cenomanian stratotype area (Le Mans, France). Cretaceous Research, Elsevier, 2020, 10.1016/j.cretres.2019.104198. hal-02328773 HAL Id: hal-02328773 https://hal.archives-ouvertes.fr/hal-02328773 Submitted on 23 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal Pre-proof High-resolution biostratigraphy and chemostratigraphy of the Cenomanian stratotype area (Le Mans, France) Delphine Desmares, Marc Testé, Bérengère Broche, Maxime Tremblin, Silvia Gardin, Loïc Villier, Edwige Masure, Danièle Grosheny, Nicolas Morel, Patrice Raboeuf PII: S0195-6671(19)30086-2 DOI: https://doi.org/10.1016/j.cretres.2019.104198 Reference: YCRES 104198 To appear in: Cretaceous Research Received Date: 1 March 2019 Revised Date: 12 July 2019 Accepted Date: 31 July 2019 Please cite this article as: Desmares, D., Testé, M., Broche, B., Tremblin, M., Gardin, S., Villier, L., Masure, E., Grosheny, D., Morel, N., Raboeuf, P., High-resolution biostratigraphy and chemostratigraphy of the Cenomanian stratotype area (Le Mans, France), Cretaceous Research, https:// doi.org/10.1016/j.cretres.2019.104198.
    [Show full text]
  • Towards a Phylogenetic Classification of the Cretaceous Ammonites V
    N.Jb. Geo\. Palaont. Abh. Stuttgart, Januar 1997 Towards a phylogenetic classification of the Cretaceous ammonites V. Euomphaloceratidae By M. R. Cooper, Durban With 5 figures in the text COOPER, M. R. (1997): Towards a phylogenetic classification of the Cretaceous ammo­ nites. V. Euomphaloceratidae. - N. Jb. Geo\. Palaont., Abh., 203: 1-21; Stuttgart. Abstract: Phylogenetic analysis of Euomphaloceratinae COOPER, 1978, a group within highly diversified and heterogeneous Acanthocerataceae, indicates a fundamental dichotomy which suggests promotion of this taxon to family rank with recognition of two subfamilies. Nominate Euomphaloceratinae comprise E. (Euomphaloceras), E. (Kanabiceras), Burroceras, Paraburroceras, P. (Pseudaspidoceras), P. (Ampakabites), and Morrowites, and Romaniceratinae subfam. nov. is made up of Schindewo/fites, Kameruno­ ceras, Codazziceras, Proromaniceras (Proromaniceras), P. (Obiraceras), Neomphaloceras, Yubariceras and Romaniceras (?with Shuparoceras as a subgenus). Zusammenfassung: Die phylogenetische Analyse der Euomphaloceratinae COOPER, 1978, einer Gruppe der hoch diversifizierten und heterogenen Acanthocerataceae, weist auf eine fundamentale Dichotomie innerhalb der Unterfamilie hin. Der Gruppe wird daher Familienrang verliehen und zwei Unterfamilien abgegrenzt. Die Nominat-Unter­ familie Euomphaloceratinae umfaBt E. (Euomphaloceras), E. (Kanabiceras), Burroceras, Paraburroceras, P. (Pseudaspidoceras), P. (Ampakabites) und Morrowites. Zur zweiten Unterfamilie Romaniceratinae subfam. nov. gehiiren Schindewo/fites,
    [Show full text]
  • Phylogeny, Diversity, and Ecology of the Ammonoid Superfamily Acanthoceratoidea Through the Cenomanian and Turonian
    PHYLOGENY, DIVERSITY, AND ECOLOGY OF THE AMMONOID SUPERFAMILY ACANTHOCERATOIDEA THROUGH THE CENOMANIAN AND TURONIAN DAVID A.A. MERTZ A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Margaret Yacobucci, Advisor Andrew Gregory Keith Mann © 2017 David Mertz All Rights Reserved iii ABSTRACT Margaret Yacobucci Both increased extinction and decreased origination, caused by rising oceanic anoxia and decreased provincialism, respectively, have been proposed as the cause of the Cenomanian Turonian (C/T) extinction event for ammonoids. Conflicting evidence exists for whether diversity actually dropped across the C/T. This study used the ammonoid superfamily Acanthoceratoidea as a proxy for ammonoids as a whole, particularly focusing on genera found in the Western Interior Seaway (WIS) of North America, including Texas. Ultimately, this study set out to determine 1) whether standing diversity decreased across the C/T boundary in the WIS, 2) whether decreased speciation or increased extinction in ammonoids led to a drop in diversity in the C/T extinction event, 3) how ecology of acanthoceratoid genera changed in relation to the C/T extinction event, and 4) whether these ecological changes indicate rising anoxia as the cause of the extinction. In answering these questions, three phylogenetic analyses were run that recovered the families Acanthoceratidae, Collignoniceratidae, and Vascoceratidae. Pseudotissotiidae was not recovered at all, while Coilopoceratidae was recovered but reclassified as a subfamily of Vascoceratidae. Seven genera were reclassified into new families and one genus into a new subfamily. After calibrating the trees with stratigraphy, I was able to determine that standing diversity dropped modestly across the C/T boundary and the Early/Middle Turonian boundary.
    [Show full text]
  • Mid-Cretaceous Ammonite Sequence for Western New Mexico Iv
    iii Contents ABSTRACT 5 Genus Morrowites Cobban and Hook, n. gen. 9 Morrowites wingi (Morrow) 9 INTRODUCTION 5 M. depressus (Powell) 11 COMPOSITION OF MOLLUSCAN FAUNA 5 M. subdepressus Cobban and Hook, n. sp. 11 OCCURRENCE AND PRESERVATION OF FOSSILS 6 M. cf. M. dixeyi (Reyment) 12 STRATIGRAPHIC POSITION OF FOSSILS 6 Subfamily Euomphaloceratinae Cooper 13 COLLECTION LOCALITIES 7 Genus Kamerunoceras Reyment 13 Kamerunoceras turoniense (d'Orbigny) 13 FAMILY VASCOCERATIDAE H. Douvillé 14 SYSTEMATIC PALEONTOLOGY 7 Subfamily Vascoceratinae H. Douvillé 14 FAMILY BACULITIDAE GILL 7 Genus Neoptychites Kossmat 14 Genus Baculites Lamarck 7 Neoptychites cephalotus (Courtiller) 14 Baculites yokoyamai Tokunaga and Shimizu 7 Genus Fagesia Pervinquière 15 FAMILY MUNIERICERATIDAE WRIGHT 7 Fagesia superstes (Kossmat) 16 Genus Tragodesmoceras Spath 7 FAMILY C OLLIGNONICERATIDAE WRIGHT AND WRIGHT 16 Tragodesmoceras socorroense Cobban and Hook 7 Subfamily Barroisiceratinae Basse 16 FAMILY PLACENTICERATIDAE HYATT 8 Genus Cibolaites Cobban and Hook, n. gen. 16 Genus Placenticeras Spath 8 Cibolaites molenaari Cobban and Hook, n. sp. 16 Placenticeras cumminsi Cragin 8 REFERENCES 18 FAMILY ACANTHOCERATIDAE DE GROSSOUVRE 8 Subfamily Mammitinae Hyatt 8 Genus Mammites PLATES 1-14 21 Laube and Bruder 8 INDEX 50 Mammites nodosoides (Schluter) 8 TABLE 1—Mid-Cretaceous ammonite sequence for western New Mexico iv FIGURES 1—Location of study area 5 9—Histogram of size and body chambers of Neoptychites 2—External sutures of Mammites nodosoides (Schluter) 9 3— cephalotus (Courtiller) 14 Whorl sections of Morrowites wingi (Morrow) 10 4—External 10—Scatter diagram of breadth to diameter ratio of Neop- suture of Morrowites wingi (Morrow) 10 5—Whorl section and tychites 14 suture of Morrowites depressus 11—External sutures of Neoptychites cephalotus (Cour-tiller) 15 (Powell) 11 12—External suture of Fagesia superstes (Kossmat) 16 13— 6—External sutures of Morrowites subdepressus Cobban and Histogram of size of body chambers of Cibolaites molenaari Hook, n.
    [Show full text]
  • Getting Around Dresden Safely Children Traveling by Train and Bus PREFACE 3
    3/2017 Getting around Dresden safely Children traveling by train and bus PREFACE 3 3/2017 Dear readers, All aboard for 4 What moves you? Going to school on their own, exploring the neighbourhood 6 Top Topic with friends after school, or simply meeting up to play – Café Schwebebahn primary school age children are often out and about on 10 DVB services their own for the first time. For longer journeys, we recom- 12 News mend going by tram, bus, ferry or hillside railway. In this Delicious cakes, issue you’ll find out what children should be looking out for 16 Allow us to introduce... when travelling on their own and what you can do to ensure 18 Down the Line Good coffee, your child stays safe. 22 Leo’s World We also tell you how you can now take out manage your Sweet treats 24 Crossword puzzle subscription online, who answers your Facebook and Twitter … and a view you’ll questions, what’s on this autumn and how our yellow fleet can 25 Book draw get you there. 26 Tips – Autumn in definitely want to linger over! Dresden I hope you enjoy reading this issue – and have a great journey! Available online in German and English at www.dvb.de/bewegt. Jan Silbermann Head, Operations Centre Look out for this shamrock! (survey available in German only) 4 3/2017 WHAT MOVES YOU? 5 We want to hire a vintage Büssing for a You ask. family occasion. Can we do that? What moves you? We answer. Yes, you can hire our vintage buses for private events or company parties.
    [Show full text]
  • Des Faunes D'ammonites Du Cenomanien Du Sud-Est De
    Bull. Soc. géol. France, 1999, t. 170, n° 5, pp. 599-610 BIOCHRONOLOGIE QUANTITATIVE (ASSOCIATIONS UNITAIRES) DES FAUNES DAMMONITES DU CENOMANIEN DU SUD-EST DE LA FRANCE Claude MONNET* & Hugo BUCHER* Centre des Sciences de la Terre, CNRS - ERS 2042, Université Claude Bernard Lyon I, 27-43, boulevard du 11 Novembre, F-69622 VILLEURBANNE. Email: [email protected] Manuscrit déposé le 14 janvier 1999; accepté après révision le 7 avril 1999 Mots clés. - Ammonite, Cénomanien, Turonien, Associations Unitaires, Sud-est de la France (Bassin vocontien), Bassin Anglo- parisien, Diachronisme, Renouvellements fauniques Résumé. - La zonation dammonites du Cénomanien du sud-est de la France est révisée dans ce travail. Elle intéresse 138 espèces dammonites réparties sur 40 coupes. Ces données publiées par Thomel [1992] sont analysées au moyen de la méthode des associations unitaires [Guex, 1977, 1991]. Une suite logique danalyses, dont le but est doptimiser les données en soulignant les incohérences majeures de la documentation originelle, aboutit à la formation dune succession chronologique de 27 associations unitaires réunies en 7 zones dassociation latéralement reproductibles. Son application souligne les très rapides variations latérales de faciès même dans la partie distale du bassin et met en évidence un faible diachronisme des espèces (mais incluant certains index de zones). Cette analyse suggère également une diminution progressive des pulsations montrées par les taux de renouvellements fauniques durant le Cénomanien inférieur et moyen, jusquà ce quun état déquilibre soit atteint au Cénomanien supérieur et Turonien inférieur, sans changement apparent à la limite Cénomanien-Turonien. Cette tendance est accompagnée par un doublement rapide de la diversité spécifique durant la fin du Cénomanien inférieur et une décroissance progressive et prolongée à partir de la fin du Cénomanien moyen.
    [Show full text]
  • Characteristic Marine Molluscan Fossils from the Dakota Sandstone and Intertongued Mancos Shale, West-Central New Mexico
    Characteristic Marine Molluscan Fossils From the Dakota Sandstone and Intertongued Mancos Shale, West-Central New Mexico GEOLOGICAL SURVEY PROFESSIONAL PAPER 1009 Characteristic Marine Molluscan Fossils From the Dakota Sandstone and Intertongued Mancos Shale, West-Central New Mexico By WILLIAM A. COBBAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 1009 Brief descriptions, illustrations, and stratigraphic sequence of the more common fossils at the base of the Cretaceous System UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916- Characteristic marine molluscan fossils from the Dakota sandstone and intertongued Mancos shale, West- central New Mexico. (Geological Survey professional paper ; 1009) Bibliography: p. Includes index. 1. Lamellibranchiata, Fossil. 2. Gastropoda, Fossil. 3. Ammonoidea. 4. Paleontology Cretaceous. 5. Paleontol­ ogy New Mexico. I. Title: Characteristic marine molluscan fossils from the Dakota sandstone ***!!. Series: United States. Geological Survey. Professional paper ; 1009. QE811.G6 564'.09789'8 76-26956 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03003-9 CONTENTS Page Abstract ________________________________________--__- 1 Introduction ________________________________________ Acknowledgments _____________________________ Stratigraphic summary _________________________
    [Show full text]
  • Taxonomy and Stratigraphic Distribution of the Ammonite Schloenbachia Neumayr, 1875 from the Bohemian Cretaceous Basin
    FOSSIL IMPRINT • vol. 75 • 2019 • no. 1 • pp. 64–69 (formerly ACTA MUSEI NATIONALIS PRAGAE, Series B – Historia Naturalis) TAXONOMY AND STRATIGRAPHIC DISTRIBUTION OF THE AMMONITE SCHLOENBACHIA NEUMAYR, 1875 FROM THE BOHEMIAN CRETACEOUS BASIN MARTIN KOŠŤÁK1,*, JAN SKLENÁŘ2, MARTIN MAZUCH1, STANISLAV ČECH3 1 Institute of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, the Czech Republic; e-mail: [email protected], martin.mazuch@ natur.cuni.cz. 2 Department of Palaeontology, National Museum, Václavské náměstí 68, 110 00 Praha 1, the Czech Republic; e-mail: [email protected]. 3 Czech Geological Survey, Klárov 3/131, 118 21 Praha 1, the Czech Republic; e-mail: [email protected]. * corresponding author Košťák, M., Sklenář, J., Mazuch, M., Čech, S. (2019): Taxonomy and stratigraphic distribution of the ammonite Schloenbachia NEUMAYR, 1875 from the Bohemian Cretaceous Basin – Fossil Imprint, 75(1): 64–69, Praha. ISSN 2533-4050 (print), ISSN 2533-4069 (on-line). Abstract: Only two specimens of the ammonite genus Schloenbachia have hitherto been recorded from the Bohemian Cretaceous Basin (BCB). While the first specimen was originally described by Dr. J. Soukup in the 1970s, the other one was discovered in an older collection of the Faculty of Science, Charles University in Prague in 2018. Recently, both specimens were systematically investigated and interpreted as Schloenbachia lymensis, a new ammonite species for the BCB. The stratigraphic distribution of S. lymensis as well as the palaeobiogeography of this taxon are discussed in this paper. Key words: Upper Cenomanian, Bohemian Cretaceous Basin, ammonites, Schloenbachia lymensis Received: March 1, 2019 | Accepted: May 29, 2019 | Issued: August xx, 2019 Introduction group is still under discussion (Wright and Kennedy 2015, Machalski 2018, and others).
    [Show full text]
  • Stratigraphy and Biostratigraphy of an Upper Cretaceous Outlier Near Roy, Harding County, New Mexico
    New Mexico Geological Society Guidebook, 52nd Field Conference, Geology ofthe Llano Estacado, 2001 251 STRATIGRAPHY AND BIOSTRATIGRAPHY OF AN UPPER CRETACEOUS OUTLIER NEAR ROY, HARDING COUNTY, NEW MEXICO SPENCER G. LUCASI AND ANDREW B. HECKERT2 INew Mexico Museum of Natural History, 1801 Mountain Rd NW, Albuquerque, 87104; 2Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-1116 Abstract.-Upper Cretaceous strata exposed as outliers near Roy in Harding County, New Mexico, are assigned to the Graneros Shale and the overlying Greenhorn Formation. The Greenhorn Formation locally consists of three members (in ascending order): Lincoln, Hartland, and Bridge Creek. The Lincoln Member is 8.3 m thick and dominated by yellowish gray and very pale orange calcareous shale and characteristic persistent beds of calcarenite. The Hartland Member is 11.0 m thick and consists mostly of medium and brownish gray bentonitic shale. The Bridge Creek Member here is erosionally truncated by the Neogene Ogallala Formation 4.1 m above its base and consists of interbeds ofledge­ forming limestone and calcareous shale. Fossils from the Lincoln Member include numerous specimens of the bivalve Ostrea beloiti Logan and of the selachian Ptychodus anonymus Williston. The Hartland Member lacks biostratigraphic ally significant fossils. The Bridge Creek Member produces the ammonites Euomphaloceras sp. and Sciponoceras gracile (Shumard) near its base and Watinoceras coloradoense (Henderson) and Vascoceras birchbyi Cobban and Scott near its top. These fossils can be assigned to the upper Cenomanian Sciponoceras gracile ammonite zone and the lower Turonian Vascoceras birchbyi ammonite zone. Younger ammonite zones normally present in the Bridge Creek Member are not present at Roy, having been stripped offby Neogene erosion.
    [Show full text]