Adaptation to Deep-Sea Chemosynthetic Environments As Revealed by Mussel Genomes

Total Page:16

File Type:pdf, Size:1020Kb

Adaptation to Deep-Sea Chemosynthetic Environments As Revealed by Mussel Genomes ARTICLES PUBLISHED: 3 APRIL 2017 | VOLUME: 1 | ARTICLE NUMBER: 0121 Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes Jin Sun1, 2, Yu Zhang3, Ting Xu2, Yang Zhang4, Huawei Mu2, Yanjie Zhang2, Yi Lan1, Christopher J. Fields5, Jerome Ho Lam Hui6, Weipeng Zhang1, Runsheng Li2, Wenyan Nong6, Fiona Ka Man Cheung6, Jian-Wen Qiu2* and Pei-Yuan Qian1, 7* Hydrothermal vents and methane seeps are extreme deep-sea ecosystems that support dense populations of specialized macro benthos such as mussels. But the lack of genome information hinders the understanding of the adaptation of these ani- mals to such inhospitable environments. Here we report the genomes of a deep-sea vent/seep mussel (Bathymodiolus plati- frons) and a shallow-water mussel (Modiolus philippinarum). Phylogenetic analysis shows that these mussel species diverged approximately 110.4 million years ago. Many gene families, especially those for stabilizing protein structures and removing toxic substances from cells, are highly expanded in B. platifrons, indicating adaptation to extreme environmental conditions. The innate immune system of B. platifrons is considerably more complex than that of other lophotrochozoan species, including M. philippinarum, with substantial expansion and high expression levels of gene families that are related to immune recognition, endocytosis and caspase-mediated apoptosis in the gill, revealing presumed genetic adaptation of the deep-sea mussel to the presence of its chemoautotrophic endosymbionts. A follow-up metaproteomic analysis of the gill of B. platifrons shows metha- notrophy, assimilatory sulfate reduction and ammonia metabolic pathways in the symbionts, providing energy and nutrients, which allow the host to thrive. Our study of the genomic composition allowing symbiosis in extremophile molluscs gives wider insights into the mechanisms of symbiosis in other organisms such as deep-sea tubeworms and giant clams. he environment of deep-sea hydrothermal vents and methane (1.64 Gb) was smaller than that of M. philippinarum (2.38 Gb), seeps is characterized by darkness, lack of photosynthesis- mainly because it has fewer repeats, particularly the Helitron- Tderived nutrients, high hydrostatic pressure, variable tem- transposable elements and unclassified repeats that together contrib- peratures and high concentrations of heavy metals and other toxic uted a 707 Mb difference between the two genomes (Supplementary 1,2 substances . Despite this hostile environment, these ecosystems Note 9). The N50 value (the shortest sequence length at 50% of the support dense populations of macrobenthos which, with the help genome size) of the B. platifrons scaffolds and contigs was 343.4 Kb of chemoautotrophic endosymbionts, are fuelled by simple reduced and 13.2 Kb, respectively; and the N50 value of the M. philippinarum molecules such as methane and hydrogen sulfide1–3. Studying vent scaffolds and contigs was 100.2 Kb and 19.7 Kb, respectively. The and seep organisms may answer fundamental questions about their deep-sea and shallow-water mussel genome contained 96.3% and origin and adaptation to the extreme environments1,4. Deep-sea 93.7% complete and partial universal single-copy metazoan ortholo- mussels (Mytilidae, Bathymodiolinae) often dominate at hydro- gous genes, respectively, indicating the completeness of the assembly thermal vents and cold seeps around the world. Owing to their and gene models (Supplementary Note 6). As with other bilateri- ecological importance and remarkable biological characteristics, ans, the two mussel genomes contained all the expected Hox and including their ability to survive an extended period under atmo- ParaHox genes, as well as similar numbers of microRNAs, again sug- spheric pressure5, they are a recognized model for studies of sym- gesting that the assemblies encapsulate a nearly complete representa- biosis6, immunity7, adaptation to abiotic stress8, ecotoxicology9 tion of genic information (Supplementary Note 13 and 14). Although and biogeography10. the gills of B. platifrons contain endosymbiotic methane-oxidizing bacteria (MOB)11, the host scaffolds did not contain bacterial nucle- Results and discussion otide sequences, showing a lack of horizontal gene transfer from the We sequenced the genomes of both B. platifrons Hashimoto and symbiont. B. platifrons has a lower rate of heterozygosity compared Okutani, 1994 (a deep-sea mussel, Fig. 1a) and M. philippinarum to the other three bivalves with a sequenced genome (Supplementary (Hanley, 1843) (a shallow-water mussel, Fig. 1b) in the family Fig. 3a), potentially owing to recurrent population bottlenecks as a Mytilidae using a whole-genome shotgun approach and compared result of population extinction and re-colonization12. their features (Supplementary Note 1). Both assembled genomes were The B. platifrons genome had 33,584 gene models, 86.2% of which highly repetitive (Supplementary Fig. 2). The genome of B. platifrons had transcriptome support, based on transcriptome data from three 1Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China. 2Department of Biology, Hong Kong Baptist University, Hong Kong, China. 3Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Science, Shenzhen University, Shenzhen, China. 4Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. 5High Performance Computing in Biology, Roy J. Carver Biotechnology Centre, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA. 6Simon F. S. Li Marine Science Laboratory, School of Life Sciences, Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong, China. 7HKUST-CAS Joint Laboratory, Sanya Institute of Deep Sea Science and Engineering, Sanya 572000, China. *e-mail: [email protected]; [email protected] NATURE ECOLOGY & EVOLUTION 1, 0121 (2017) | DOI: 10.1038/s41559-017-0121 | www.nature.com/natecolevol 1 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. ARTICLES NatURE ECOLOGY & EVOLUTION a b c Helobdella robusta d Pinctada fucata Capitella teleta Crassostrea gigas Lingula anatina Modiolus philippinarum Octopus bimaculoides Cephalopoda 94 Bathymodiolus platifrons 100 Lottia gigantea 100 100 Bathymodiolus azoricus Mytilidae 100 100 Biomphalaria glabrata Gastropoda 100 Aplysia californica 100 Perna viridis 100 100 Modiolus philippinarum Limnoperna fortunei Bathymodiolus platifrons 98 Mytilus coruscus Bivalvia 100 100 0.05 Crassostrea gigas Mytilus edulis 100 Pinctada fucata 0.01 100 Mytilus galloprovincialis Figure 1 | Shell morphology and phylogenetic positions of B. platifrons and M. philippinarum. a,b, Shell of the deep-sea mussel B. platifrons (a, 10.7 cm) and shallow-water mussel M. philippinarum (b, 6.5 cm). c, Phylogenetic tree of 11 lophotrochozoan species based on genome data; the value of bootstrap support is shown at each node. The scale bar indicates 0.05 expected substitutions per site. d, Phylogenetic tree of Mytilidae based on transcriptome data from representative genera/species. The scale bar indicates 0.01 changes per site. tissues in a previous study13, and our new transcriptome data from Among the most numerously expanded gene families in three additional tissues; whereas the M. philippinarum genome B. platifrons are the HSP70 family (179 proteins) and the ABC had 36,549 gene models, 86.0% of which had transcriptome sup- transporters (393 proteins). HSP70 is important for protein folding, port, based on our new transcriptome data from five tissues and thus high expression of these genes in the gill (Supplementary (Supplementary Note 5). A total of 5,527 B. platifrons gene models were Fig. 15) could indicate their active response to stresses such as validated by shotgun proteomics using gill samples (false discovery changing temperature, pH and hypoxia. However, because it took rate (FDR) < 0.01), and the gene-expression level correlated approximately three hours from the sample collection to preserva- well (P < 1 × 10−5) with their corresponding protein abundance tion, the high expression of some of the stress-related genes could (Supplementary Note 20). Comparisons among five molluscan also be caused by the stress experienced during the sampling and genomes revealed 6,883 shared protein domains and 474 protein transportation. Nevertheless, the expression level of HSP70 has domains unique to B. platifrons (Fig. 2a and Supplementary Table 14). been reported to positively correlate with the level of DNA-strand A phylogenetic tree constructed using 375 single-copy ortho- breakage in a deep-sea mussel16. Therefore, expansion of this gene logues from 11 lophotrochozoan species (Fig. 1c) and another tree family may provide additional genetic resources allowing deep-sea constructed using transcriptome sequences of representative mem- mussels to cope with abiotic stressors. ABC transporters are known bers of Mytilidae (Fig. 1d) showed that, within the genera used, to move toxic chemicals outside mussel gill epithelial cells17, form- Modiolus is the closest shallow-water relative of Bathymodiolus. ing the first line of defence against toxic chemicals in the vent/seep Using the lophotrochozoan tree as a reference, the time of diver- fluid. Many of the ABC transporters were highly expressed in the gence between B. platifrons and M. philippinarum was estimated
Recommended publications
  • Shallow Water Farming of Marine Organisms, in Particular Bivalves, in Quirimbas National Park, Mozambique
    SHALLOW WATER FARMING OF MARINE ORGANISMS, IN PARTICULAR BIVALVES, IN QUIRIMBAS NATIONAL PARK, MOZAMBIQUE A LITERATURE STUDY PREPARED FOR WWF DENMARK BY KATHE R. JENSEN, D.Sc., Ph.D. Copenhagen, November 2006 INTRODUCTION Shellfish collected from local intertidal and shallow subtidal areas in the coastal zone form an important dietary component in many developing countries, especially in the tropics. Increased population pressure, whether from increased birth rates or migration, usually leads to increased pressure on such open access resources. Many development projects, therefore, include support for the implementation of stock enhancement and/or aquaculture activities. Before initiating new projects, information on previous successes and/or failures should be consulted to improve the chances of success. This report summarizes some of the available literature, especially from eastern Africa and from other developing countries in the tropics. Mozambique has a long coastline, 2770 km along the tropical western Indian Ocean. Tidal range varies from less than 1 m to almost 4 m, and tides are semidiurnal. Mozambique lies within the monsoon belt and is affected by the cool, windy SE monsoon from April to October and the hot, rainy NE monsoon from November to March (Gullström et al., 2002). Average temperatures are around 26-27 °C, but diel variation may exceed 10 °C, i.e. from above 30 °C in the daytime to only 20 °C during the night. Except for river mouth areas, there is little variation in salinity, which is around 35 ‰ most of the time (Ministério das Pescas, 2003). Quirimbas National Park is located in the northern part of Mozambique where the coastal waters are dominated by coral reefs (Fernandes and Hauengue, 2000).
    [Show full text]
  • Molluscan Genomics: Implications for Biology and Aquaculture
    Molluscan Genomics: Implications for Biology and Aquaculture Author Takeshi Takeuchi journal or Current Molecular Biology Reports publication title volume 3 number 4 page range 297-305 year 2017-10-23 Rights (C) Springer International Publishing AG 2017 This is a post-peer-review, pre-copyedit version of an article published in Current Molecular Biology Reports. The final authenticated version is available online at: https://dx.doi.org/10.1007/s40610-017-0077-3” . Author's flag author URL http://id.nii.ac.jp/1394/00000277/ doi: info:doi/10.1007/s40610-017-0077-3 Title Molluscan genomics: implications for biology and aquaculture Author Takeshi Takeuchi* Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan *Correspondence: [email protected] Keywords molluscan genome; genotyping; aquaculture 1 Abstract Purpose of review As a result of advances in DNA sequencing technology, molluscan genome research, which initially lagged behind that of many other animal groups, has recently seen a rapid succession of decoded genomes. Since molluscs are highly divergent, the subjects of genome projects have been highly variable, including evolution, neuroscience, and ecology. In this review, recent findings of molluscan genome projects are summarized, and their applications to aquaculture are discussed. Recent findings Recently 14 molluscan genomes have been published. All bivalve genomes show high heterozygosity rates, making genome assembly difficult. Unique gene expansions were evident in each species, corresponding to their specialized features, including shell formation, adaptation to the environment, and complex neural systems. To construct genetic maps and to explore quantitative trait loci (QTL) and genes of economic importance, genome-wide genotyping using massively parallel, targeted sequencing of cultured molluscs was employed.
    [Show full text]
  • New Records of Three Deep-Sea Bathymodiolus Mussels (Bivalvia: Mytilida: Mytilidae) from Hydrothermal Vent and Cold Seeps in Taiwan
    352 Journal of Marine Science and Technology, Vol. 27, No. 4, pp. 352-358 (2019) DOI: 10.6119/JMST.201908_27(4).0006 NEW RECORDS OF THREE DEEP-SEA BATHYMODIOLUS MUSSELS (BIVALVIA: MYTILIDA: MYTILIDAE) FROM HYDROTHERMAL VENT AND COLD SEEPS IN TAIWAN Meng-Ying Kuo1, Dun- Ru Kang1, Chih-Hsien Chang2, Chia-Hsien Chao1, Chau-Chang Wang3, Hsin-Hung Chen3, Chih-Chieh Su4, Hsuan-Wien Chen5, Mei-Chin Lai6, Saulwood Lin4, and Li-Lian Liu1 Key words: new record, Bathymodiolus, deep-sea, hydrothermal vent, taiwanesis (von Cosel, 2008) is the only reported species of cold seep, Taiwan. this genus from Taiwan. It was collected from hydrothermal vents near Kueishan Islet off the northeast coast of Taiwan at depths of 200-355 m. ABSTRACT Along with traditional morphological classification, mo- The deep sea mussel genus, Bathymodiolus Kenk & Wilson, lecular techniques are commonly used to study the taxonomy 1985, contains 31 species, worldwide. Of which, one endemic and phylogenetic relationships of deep sea mussels. Recently, species (Bathymodiolus taiwanesis) was reported from Taiwan the complete mitochondrial genomes have been sequenced (MolluscaBase, 2018). Herein, based on the mitochondrial COI from mussels of Bathymodiolus japonicus, B. platifrons and results, we present 3 new records of the Bathymodiolus species B. septemdierum (Ozawa et al., 2017). Even more, the whole from Taiwan, namely Bathymodiolus platifrons, Bathymodiolus genome of B. platifrons was reported with sequence length of securiformis, and Sissano Bathymodiolus sp.1 which were collected 1.64 Gb nucleotides (Sun et al., 2017). from vent or seep environments at depth ranges of 1080-1380 Since 2013, under the Phase II National energy program of m.
    [Show full text]
  • Habitat Characteristics of the Horse Mussel Modiolus Modulaides (Röding 1798) in Iloilo, Philippines
    Philippine Journal of Science 149 (3-a): 969-979, October 2020 ISSN 0031 - 7683 Date Received: 17 Apr 2020 Habitat Characteristics of the Horse Mussel Modiolus modulaides (Röding 1798) in Iloilo, Philippines Kaent Immanuel N. Uba1* and Harold M. Monteclaro2 1Department of Fisheries Science and Technology School of Marine Fisheries and Technology Mindanao State University at Naawan Naawan, Misamis Oriental 9023 Philippines 2Institute of Marine Fisheries and Oceanology College of Fisheries and Ocean Sciences University of the Philippines Visayas Miagao, Iloilo 5023 Philippines Despite the ecological importance of horse mussels, they have not received enough attention because they are considered of less economic value than other fisheries resources and not as charismatic as other marine resources. As a result, research efforts are often limited and information on biology and ecology is scant, affecting resource management. Recognizing this, the present study investigated the habitat characteristics of a local bioengineering species in Iloilo, Philippines – the horse mussel Modiolus modulaides. Analyses of water properties, sediments, phytoplankton composition in the water column, and food items pre-ingested by M. modulaides during the wet and dry seasons in Dumangas, Iloilo, Philippines were conducted. The water temperature (27.33–27.76 °C), dissolved oxygen (4.22–5.21 mg/L), salinity (30.97– 32.63‰), pH (7.55–8.01), total dissolved solids (31736.70–33079.48 mg/L), and conductivity (50121.56–53971.26 µS/cm) favor the growth and maintenance of M. modulaides. Sediments exhibited increasing deposition of fine material and high organic matter content as a result of the deposition of feces and pseudofeces.
    [Show full text]
  • M208p147.Pdf
    MARINE ECOLOGY PROGRESS SERIES Vol. 208: 147–155, 2000 Published December 8 Mar Ecol Prog Ser Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distributions Yoshihiro Fujiwara1,*, Ken Takai2, Katsuyuki Uematsu3, Shinji Tsuchida1, James C. Hunt1, Jun Hashimoto1 1Marine Ecosystems Research Department, Japan Marine Science and Technology Center (JAMSTEC), 2-15 Natsushima, Yokosuka 237-0061, Japan 2Frontier Research Program for Deep-Sea Environment, Japan Marine Science and Technology Center (JAMSTEC), 2-15 Natsushima, Yokosuka 237-0061, Japan 3Marine Work Japan Co., 2-15 Natsushima, Yokosuka 237-0061, Japan ABSTRACT: The bacterial endosymbionts of 3 hydrothermal vent mussels from Japanese waters were characterized by transmission electron microscopic (TEM) observation and phylogenetic analy- ses of 16S ribosomal RNA gene sequences. Endosymbionts of Bathymodiolus septemdierum were related to sulfur-oxidizing bacteria (thioautotrophs), while endosymbionts of B. platifrons and B. japonicus were related to methane-oxidizing bacteria (methanotrophs). This is the first report of deep-sea mussels containing only methanotrophs (lacking thioautotrophs) from hydrothermal vents. Comparison of methane and hydrogen sulfide concentrations in end-member fluids from deep-sea hydrothermal vents indicated that methane concentrations were much higher in habitats containing Bathymodiolus spp. which harbored only methanotrophs than in other habitats of hydrothermal vent mussels. The known distribution of other
    [Show full text]
  • Dispersal and Differentiation of Deep-Sea Mussels of the Genus Bathymodiolus (Mytilidae, Bathymodiolinae)
    Hindawi Publishing Corporation Journal of Marine Biology Volume 2009, Article ID 625672, 15 pages doi:10.1155/2009/625672 Research Article Dispersal and Differentiation of Deep-Sea Mussels of the Genus Bathymodiolus (Mytilidae, Bathymodiolinae) Akiko Kyuno,1 Mifue Shintaku,1 Yuko Fujita,1 Hiroto Matsumoto,1 Motoo Utsumi,2 Hiromi Watanabe,3 Yoshihiro Fujiwara,3 and Jun-Ichi Miyazaki4 1 Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan 2 Institute of Agricultural and Forest Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan 3 Research Program for Marine Biology and Ecology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Kanagawa 237-0061, Japan 4 Faculty of Education and Human Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan Correspondence should be addressed to Jun-Ichi Miyazaki, [email protected] Received 22 February 2009; Revised 27 May 2009; Accepted 30 July 2009 Recommended by Horst Felbeck We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes of Bathymodiolus mussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses. Bathymodiolus platifrons is distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow between B. septemdierum and B.
    [Show full text]
  • Scientific Tools for Coastal Biodiversity Assessments REPORT
    Advanced course on Scientific Tools for Coastal Biodiversity Assessments a practical field-based approach for studying change in biological populations and communities using tropical intertidal habitats Course held at Inhaca Island Marine Biology Station (UEM) 2-14 December 2014 REPORT 2014 MASMA Course – Scientific Tools for Coastal Biodiversity Assessment CONTENTS 1. Institutions and Trainers ....................................................................................................... 3 2. Scope ..................................................................................................................................... 4 3. Objectives .............................................................................................................................. 5 4. Preparation and preliminary activities .................................................................................... 6 5. Travelling organisation .......................................................................................................... 6 6. Accommodation and training facilities ................................................................................... 7 6.1. Choice of Inhaca Island Marine Biology Station (EBMI) ............................................... 7 6.2. Accommodation and subsistence .................................................................................... 7 6.3. Training facilities ........................................................................................................... 8 7. Course
    [Show full text]
  • Genomics and Transcriptomics of the Green Mussel Explain the Durability
    www.nature.com/scientificreports OPEN Genomics and transcriptomics of the green mussel explain the durability of its byssus Koji Inoue1*, Yuki Yoshioka1,2, Hiroyuki Tanaka3, Azusa Kinjo1, Mieko Sassa1,2, Ikuo Ueda4,5, Chuya Shinzato1, Atsushi Toyoda6 & Takehiko Itoh3 Mussels, which occupy important positions in marine ecosystems, attach tightly to underwater substrates using a proteinaceous holdfast known as the byssus, which is tough, durable, and resistant to enzymatic degradation. Although various byssal proteins have been identifed, the mechanisms by which it achieves such durability are unknown. Here we report comprehensive identifcation of genes involved in byssus formation through whole-genome and foot-specifc transcriptomic analyses of the green mussel, Perna viridis. Interestingly, proteins encoded by highly expressed genes include proteinase inhibitors and defense proteins, including lysozyme and lectins, in addition to structural proteins and protein modifcation enzymes that probably catalyze polymerization and insolubilization. This assemblage of structural and protective molecules constitutes a multi-pronged strategy to render the byssus highly resistant to environmental insults. Mussels of the bivalve family Mytilidae occur in a variety of environments from freshwater to deep-sea. Te family incudes ecologically important taxa such as coastal species of the genera Mytilus and Perna, the freshwa- ter mussel, Limnoperna fortuneri, and deep-sea species of the genus Bathymodiolus, which constitute keystone species in their respective ecosystems 1. One of the most important characteristics of mussels is their capacity to attach to underwater substrates using a structure known as the byssus, a proteinous holdfast consisting of threads and adhesive plaques (Fig. 1)2. Using the byssus, mussels ofen form dense clusters called “mussel beds.” Te piled-up structure of mussel beds enables mussels to support large biomass per unit area, and also creates habitat for other species in these communities 3,4.
    [Show full text]
  • Evolutionary History of DNA Methylation Related Genes in Bivalvia: New Insights from Mytilus Galloprovincialis
    fevo-09-698561 July 3, 2021 Time: 17:34 # 1 ORIGINAL RESEARCH published: 09 July 2021 doi: 10.3389/fevo.2021.698561 Evolutionary History of DNA Methylation Related Genes in Bivalvia: New Insights From Mytilus galloprovincialis Marco Gerdol1, Claudia La Vecchia2, Maria Strazzullo2, Pasquale De Luca3, Stefania Gorbi4, Francesco Regoli4, Alberto Pallavicini1,2 and Enrico D’Aniello2* 1 Department of Life Sciences, University of Trieste, Trieste, Italy, 2 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy, 3 Research Infrastructures for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Naples, Italy, 4 Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy DNA methylation is an essential epigenetic mechanism influencing gene expression in all organisms. In metazoans, the pattern of DNA methylation changes during embryogenesis and adult life. Consequently, differentiated cells develop a stable Edited by: and unique DNA methylation pattern that finely regulates mRNA transcription Giulia Furfaro, during development and determines tissue-specific gene expression. Currently, DNA University of Salento, Italy methylation remains poorly investigated in mollusks and completely unexplored in Reviewed by: Celine Cosseau, Mytilus galloprovincialis. To shed light on this process in this ecologically and Université de Perpignan Via Domitia, economically important bivalve, we screened its genome, detecting sequences France Ricard Albalat, homologous to DNA methyltransferases (DNMTs), methyl-CpG-binding domain (MBD) University of Barcelona, Spain proteins and Ten-eleven translocation methylcytosine dioxygenase (TET) previously *Correspondence: described in other organisms. We characterized the gene architecture and protein Enrico D’Aniello domains of the mussel sequences and studied their phylogenetic relationships with [email protected] the ortholog sequences from other bivalve species.
    [Show full text]
  • Mytilidae: Bathymodiolinae)
    Open Journal of Marine Science, 2013, 3, 31-39 http://dx.doi.org/10.4236/ojms.2013.31003 Published Online January 2013 (http://www.scirp.org/journal/ojms) Dispersal Ability and Environmental Adaptability of Deep-Sea Mussels Bathymodiolus (Mytilidae: Bathymodiolinae) Jun-Ichi Miyazaki1*, Saori Beppu1, Satoshi Kajio1, Aya Dobashi1, Masaru Kawato2, Yoshihiro Fujiwara2, Hisako Hirayama2 1Faculty of Education and Human Sciences, University of Yamanashi, Kofu, Japan 2Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan Email: *[email protected] Received October 12, 2012; revised November 17, 2012; accepted November 29, 2012 ABSTRACT Dispersal ability and environmental adaptability are profoundly associated with colonization and habitat segregation of deep-sea animals in chemosynthesis-based communities, because deep-sea seeps and vents are patchily distributed and ephemeral. Since these environments are seemingly highly different, it is likely that vent and seep populations must be genetically differentiated by adapting to their respective environments. In order to elucidate dispersal ability and envi- ronmental adaptability of deep-sea mussels, we determined mitochondrial ND4 sequences of Bathymodiolus platifrons and B. japonicus obtained from seeps in the Sagami Bay and vents in the Okinawa Trough. Among more than 20 spe- cies of deep-sea mussels, only three species in the Japanese waters including the above species can inhabit both vents and seeps. We examined phylogenetic relationships, genetic divergences (Fst), gene flow (Nm), and genetic population structures to compare the seep and vent populations. Our results showed no genetic differentiation and extensive gene flow between the seep and vent populations, indicating high dispersal ability of the two species, which favors coloniza- tion in patchy and ephemeral habitats.
    [Show full text]
  • Comparative Genomics Reveals Evolutionary Drivers of Sessile Life And
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435778; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Comparative genomics reveals evolutionary drivers of sessile life and 2 left-right shell asymmetry in bivalves 3 4 Yang Zhang 1, 2 # , Fan Mao 1, 2 # , Shu Xiao 1, 2 # , Haiyan Yu 3 # , Zhiming Xiang 1, 2 # , Fei Xu 4, Jun 5 Li 1, 2, Lili Wang 3, Yuanyan Xiong 5, Mengqiu Chen 5, Yongbo Bao 6, Yuewen Deng 7, Quan Huo 8, 6 Lvping Zhang 1, 2, Wenguang Liu 1, 2, Xuming Li 3, Haitao Ma 1, 2, Yuehuan Zhang 1, 2, Xiyu Mu 3, 7 Min Liu 3, Hongkun Zheng 3 * , Nai-Kei Wong 1* , Ziniu Yu 1, 2 * 8 9 1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial 10 Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and 11 Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of 12 Sciences, Guangzhou 510301, China; 13 2 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 14 511458, China; 15 3 Biomarker Technologies Corporation, Beijing 101301, China; 16 4 Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of 17 Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 18 5 State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, 19 Guangzhou 510275, China; 20 6 Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and 21 Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; 22 7 College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; 23 8 Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical 24 Engineering, Yanshan University, Qinhuangdao 066044, China.
    [Show full text]
  • Gill Symbionts of the Cold-Seep Mussel Bathymodiolus Platifrons
    Fish and Shellfish Immunology 86 (2019) 246–252 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Gill symbionts of the cold-seep mussel Bathymodiolus platifrons: Composition, environmental dependency and immune control T ∗ ∗∗ Jiajia Yua,c, Minxiao Wanga,b, Baozhong Liua,b, Xin Yuea, , Chaolun Lia,b, a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China b Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China c University of Chinese Academy of Sciences, Beijing, 100049, China ARTICLE INFO ABSTRACT Keywords: Deep-sea Bathymodiolus mussels depend on the organic carbon supplied by symbionts inside their gills. In this Bathymodiolus platifrons study, optimized methods of quantitative real-time PCR and fluorescence in situ hybridization targeted to both Methanotrophs mRNA and 16S rRNA were used to investigate the gill symbionts of the cold-seep mussel Bathymodiolus platifrons, FISH including species composition, environmental dependency and immune control by the host. Our results showed qRT-PCR that methanotrophs were the major symbiotic bacteria in the gills of B. platifrons, while thiotrophs were scarce. Lysosomal system In the mussels freshly collected from the deep sea, methanotrophs were housed in bacteriocytes in a unique circular pattern, and a lysosome-related gene (VAMP) encoding a vesicle-associated membrane protein was expressed at a high level and presented exactly where the methanotrophs occurred. After the mussels were reared for three months in aquaria without methane supply, the abundance of methanotrophs decreased sig- nificantly and their circle-shaped distribution pattern disappeared; in addition, the expression of VAMP de- creased significantly.
    [Show full text]