In Situ Allicin Generation Using Targeted Alliinase Delivery

Total Page:16

File Type:pdf, Size:1020Kb

In Situ Allicin Generation Using Targeted Alliinase Delivery Molecular Cancer Therapeutics 1295 Inhibition of tumor growth by a novel approach: In situ allicin generation using targeted alliinase delivery Talia Miron, Marina Mironchik, David Mirelman, odorless precursor alliin (S-allyl-L-cysteine sulfoxide). Meir Wilchek, and Aharon Rabinkov Alliin is converted to allicin, pyruvate, and ammonia by the pyridoxal 5V-phosphate (PLP)-dependent enzyme allii- Department of Biological Chemistry, The Weizmann Institute of Science, nase (alliin lyase; EC 4.4.1.4) (3), which is enclosed in Rehovot, Israel compartments within the garlic clove cells (Scheme 1). Crushing the clove exposes alliin to the enzyme, to initiate the following reaction: Abstract Allicin (diallyl thiosulfinate), a highly active component in extracts of freshly crushed garlic, is the interaction product of non-protein amino acid alliin (S-allyl-L-cysteine sulfoxide) with the enzyme alliinase (alliin lyase; EC Allicin reacts rapidly with free thiol groups and 4.4.1.4). Allicin was shown to be toxic in various penetrates biological membranes with ease (4, 5). It mammalian cells in a dose-dependent manner in vitro. therefore disappears from the circulation within a few We made use of this cytotoxicity to develop a novel minutes after injection (2, 4–6). This explains why the approach to cancer treatment, based on site-directed versatile and valuable activities of allicin, including its generation of allicin. Alliinase from garlic was chemically potent antibiotic and cytotoxic effects, were demonstrated conjugated to a mAb directed against a specific tumor thus far only in vitro (2, 7–9). We present here a new marker, ErbB2. After the mAb-alliinase conjugate was approach to anticancer therapy based on a localized, site- bound to target tumor cells, the substrate, alliin, was directed production of allicin. This approach can also be added. In the presence of alliin, tumor-localized alliinase used to develop a wide range of antibiotic treatments. produced allicin, which effectively killed N87 and CB2, Alliinase is first targeted to the tumor. Conjugating the both ErbB2-expressing cells in vitro, whereas 32D cells (a enzyme to a carrier, in this case, a mAb specific to a tumor- murine hematopoietic progenitor cell line, devoid of the associated surface antigen, enables the targeting process. ErbB2 receptors) were not affected. Moreover, using N87, Alliin is then administrated into the circulation, which a human tumor cell line xenograft in athymic nude mice, results in the formation of allicin only at the site of alliinase we demonstrated for the first time, a high antitumor localization. The strategy for drug delivery based on activity of allicin that was produced in situ by the antibody-directed enzyme prodrug therapy (ADEPT) was conjugate, on alliin administration in vivo, while at the previously described (10–14). As in the ADEPT system, so same time other tissues were unharmed due to the inert alliinase-directed therapy uses mAbs specific to tumor cell nature of alliin and the high clearance rate of allicin. The antigens, to anchor the enzyme onto the cell surface. The effect of the treatment on tumor growth arrest became second step, however, consists of the administration of significant 2 weeks after its onset, and it continued to rise, alliin, a naturally occurring, inert non-protein amino acid reaching highly significant inhibition a week later. Ten that is converted to the cytotoxic allicin only on interaction days after the end of the treatment (day 18), tumor with the enzyme, anchored on the tumor cell surface. The growth inhibition was still the same. (Mol Cancer Ther. system presented here mimics the natural situation in 2003;2(12):1295–1301) crushed garlic cloves, where allicin formation occurs only after alliin becomes accessible to the enzyme. The advantages of this approach over the conventional ADEPT are the following: allicin and its precursor alliin Introduction which is nontoxic (unlike other drugs) are natural food Allicin (diallyl thiosulfinate) is the best known biologically constituents. Allicin acts swiftly as a powerful anticancer active component in the extract of freshly crushed garlic (1, agent and it has an extremely short lifetime. Addition- 2). Intact garlic cloves do not contain allicin, but only its ally, its secondary products such as allylmercaptogluta- thione and allylmercaptocysteine were shown to bear beneficial antioxidant characteristics (4). Thus, a compre- Received 8/5/03; revised 9/18/03; accepted 10/1/03. hensive expression of the potent biological activity of The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby allicin is achieved. marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Materials and Methods Grant support: Levine Center and Yeda Co. at the Weizmann Institute of Science. Materials Requests for Reprints: Aharon Rabinkov, Department of Biological 3-(2-Pyridyldithio) propionic acid N-hydroxysuccinimide Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel. Phone: 972-8-9344340; Fax: 972-8-9468256. ester (SPDP), DTT, and PLP were purchased from Sigma E-mail: [email protected] (St. Louis, MO). Alliin was synthesized according to Downloaded from mct.aacrjournals.org on September 27, 2021. © 2003 American Association for Cancer Research. 1296 In Situ Allicin Production Inhibits Tumor Growth in Mice Ref. (15). Allicin was prepared by applying synthetic alliin (pH 6.5), containing 10% glycerol]. The protein was collected onto an immobilized alliinase column (16). Allicin concen- and concentrated by Centriprep-30 (Amicon, Beverly, MA) tration was determined as described in Ref. (17). 2-Nitro- at 4jC. The degree of SPDP-alliinase modification was 1–1.4 5-thiobenzoate (NTB) was synthesized according to Ref. (18). residues SPDP/E. The modified protein was stored in 50% [Methyl-3H]thymidine was purchased from Amersham glycerol at À20jC. SPDP modification of mAb: The only Pharmacia Biotech (Amersham, United Kingdom). difference from the procedure described above for alliinase Biochemical Analysis was a 20-M excess of SPDP over the mAb. The degree of Protein concentration was measured at 280 nm, using SPDP-mAb modification was 3–4 SPDP residues/mAb, and À1 À1 0.1% the modified mAb was stored in PBS at 4jC. E280 = 77.000 M cm (E280 = 1.54) for alliinase and À1 À1 0.1% 210.000 M cm for purified mAb (E280 = 1.4). The Preparation of the mAb-Alliinase Conjugate number of SPDP residues on the modified proteins was SPDP-mAb was reduced with DTT (5 mM, 10–20 min). determined according to Ref. (19). Purification of alliinase DTT was removed by gel filtration. Protein-containing was done according to Refs. (20, 21). Quantitative assess- fractions (mAb-SH) were collected and immediately com- ment of alliin and allicin was performed by high- bined with SPDP-alliinase, at a molar ratio of SPDP- performance liquid chromatography (17). Determination alliinase/mAb-SH (1.1/1). The conjugation mixture was of alliin content in the serum was done after i.p. injection of incubated 1 h at 24jC with 20% sucrose, adjusted to 50% alliin (0.2 ml of 30 mg/ml) to mice. Serum aliquots (25 Al) glycerol, and stored at À20jC. Before any further treatment, were treated with 90% methanol and proteins precipitated the conjugated alliinase was freed from sucrose and overnight at À20jC. After centrifugation, the supernatants glycerol by gel filtration. Further purification of conjugated were lyophilized. The dry material was dissolved in water proteins from non-conjugated was done by size-exclusion and was assayed for alliin according to Ref. (22). chromatography on Superdex G200 (1.6 Â 60; Pharmacia) Enzymatic Activity with 50 mM phosphate buffer (pH 6.5), containing 10% Alliinase activity was determined by the NTB method in a glycerol and 2 mM PLP. cell free system according to Ref. (17). An ELISA system Radiolabeling of Proteins using 96-well plates was developed to assay the activity of Iodination of alliinase, free mAb, and conjugates was the enzyme conjugates. Wells were coated with either done with 125I, using the Chloramine-T method (0.5 mCi protein A (5 Ag/ml), or with paraformaldehyde-fixed N87 Na125I/100 Ag protein) according to Ref. (26). The specific or CB2 cells, at a sub-confluent culture density. Fixation was radioactivity of 125I-alliinase, 125I-mAb, and 125I-mAb- done with paraformaldehyde (3%) in PBS for 30 min, alliinase was 0.51, 2.26, and 0.85 ACi/Agprotein, followed by washing (3Â) with PBS. Binding of mAb- respectively. alliinase conjugates to the antigen was done at 24jC for Cell Lines and Tissue Culture 1–2 h in the presence of 2 mM PLP. After removal of N87, a human gastric adenocarcinoma cell line, express- unbound protein by washing (3Â) with PBS containing ing the ErbB2 receptors (27), HeLa HtTA-1 (28), BHK, baby 0.05% Tween 20, the activity of adsorbed conjugated hamster kidney cells, and NIH 3T3 cells were grown in À4 alliinase was determined by using NTB (3 Â 10 M) and DMEM supplemented with antibiotics and 10% heat- À3 alliin (0.6 Â 10 M)in50mM phosphate buffer (pH 7.2) inactivated FCS; CB2, a Chinese hamster ovary (CHO) cell containing 2 mM EDTA (0.1 ml/well). The decrease in line transfected with mammalian expression vector ErbB2 A412 nm was recorded after 30 min. Wells, to which no (29), was grown in DMEM/F12 (1:1) medium supple- enzyme was added, served as controls (17). One unit of mented with antibiotics and 10% heat-inactivated bovine activity was defined as the amount of enzyme required to calf serum; 32D, a murine hematopoietic progenitor cell produce 1 Amol of pyruvate per minute. line (30), devoid of the ErbB2 receptors, was grown in Antibodies suspension in RMPI 1640 supplemented with glutamine, N28 (IgG1) mAb, anti-ErbB2 (23, 24), was purified from antibiotics, IL-3, and 10% FCS (31).
Recommended publications
  • First Insights Into the Mode of Action of a "Lachrymatory Factor Synthase"
    Phytochemistry 72 (2011) 1939–1946 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem First insights into the mode of action of a ‘‘lachrymatory factor synthase’’ – Implications for the mechanism of lachrymator formation in Petiveria alliacea, Allium cepa and Nectaroscordum species ⇑ Quan He a, Roman Kubec b, Abhijit P. Jadhav a, Rabi A. Musah a, a Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA b Department of Applied Chemistry, University of South Bohemia, Branišovská 31, 370 05 Cˇeské Budeˇjovice, Czech Republic article info abstract Article history: A study of an enzyme that reacts with the sulfenic acid produced by the alliinase in Petiveria alliacea L. Received 16 December 2010 (Phytolaccaceae) to yield the P. alliacea lachrymator (phenylmethanethial S-oxide) showed the protein Received in revised form 11 July 2011 to be a dehydrogenase. It functions by abstracting hydride from sulfenic acids of appropriate structure Available online 15 August 2011 to form their corresponding sulfines. Successful hydride abstraction is dependent upon the presence of a benzyl group on the sulfur to stabilize the intermediate formed on abstraction of hydride. This dehy- Keywords: drogenase activity contrasts with that of the lachrymatory factor synthase (LFS) found in onion, which Petiveria alliacea catalyzes the rearrangement of 1-propenesulfenic acid to (Z)-propanethial S-oxide, the onion lachryma- Phytolaccaceae tor. Based on the type of reaction it catalyzes, the onion LFS should be classified as an isomerase and Lachrymatory factor synthase Sulfenic acid would be called a ‘‘sulfenic acid isomerase’’, whereas the P. alliacea LFS would be termed a ‘‘sulfenic acid Sulfenic acid dehydrogenase dehydrogenase’’.
    [Show full text]
  • The Biochemical and Physiological Genesis of Alliin in Garlic
    Medicinal and Aromatic Plant Science and Biotechnology ©2007 Global Science Books The Biochemical and Physiological Genesis of Alliin in Garlic M.G. Jones1 • H.A. Collin1 • A. Tregova1 • L. Trueman2 • L. Brown2 • R. Cosstick3 • J. Hughes1 • J. Milne1 • M.C. Wilkinson1 • A.B. Tomsett1 • B. Thomas2* 1 School of Biological Sciences, The Bioscience Building, Crown Street, The University of Liverpool, Liverpool, L69 7ZB, United Kingdom 2 Warwick HRI, University of Warwick, Wellesbourne, Warwick, CV35 9EF, United Kingdom 3 Department of Chemistry, Crown Street, The University of Liverpool, Liverpool, L69 7ZD, United Kingdom Corresponding author : * [email protected] ABSTRACT The health-giving properties of garlic are thought to be primarily derived from the presence and subsequent breakdown of the alk(en)ylcysteine sulphoxide (CSO), alliin and its subsequent breakdown to allicin. Two biosynthetic pathways have been proposed for CSOs, one proceeds from alkylation of glutathione through -glutamyl peptides to yield S-alkyl cysteine sulphoxides while the alternative is direct thioalkylation of serine followed by oxidation to the sulphoxide. Addition of allyl thiol to differentiating garlic tissue cultures resulted in the appearance of detectable levels of both S-allyl cysteine and alliin and also demonstrated that S-allyl-cysteine was oxidised stereospecifically to (+)-alliin by garlic tissue cultures, indicating the presence of a specific oxidase in the cells. Although these reports provide good evidence that S-allyl cysteine can be converted to alliin by garlic tissue cultures, it does not indicate whether "–glutamyl-S- allyl cysteine or S-allyl cysteine is the substrate for oxidation in vivo. Garlic contains several cysteine synthases and at least one has the capacity to synthesise alliin.
    [Show full text]
  • Alliinase from Ensifer Adhaerens and Its Use for Generation of Fungicidal
    Yutani et al. AMB Express 2011, 1:2 http://www.amb-express.com/content/1/1/2 ORIGINALARTICLE Open Access Alliinase from Ensifer adhaerens and Its Use for Generation of Fungicidal Activity Masahiro Yutani1, Hiroko Taniguchi1, Hasibagan Borjihan1, Akira Ogita1,2, Ken-ichi Fujita1, Toshio Tanaka1* Abstract AbacteriumEnsifer adhaerens FERM P-19486 with the ability of alliinase production was isolated from a soil sample. The enzyme was purified for characterization of its general properties and evaluation of its application in on-site production of allicin-dependent fungicidal activity. The bacterial alliinase was purified 300-fold from a cell-free extract, giving rise to a homogenous protein band on polyacrylamide gel electrophoresis. The bacterial alliinase (96 kDa) consisted of two identical subunits (48 kDa), and was most active at 60°C and at pH 8.0. The enzyme stoichiometrically converted (-)-alliin ((-)-S-allyl-L-cysteine sulfoxide) to form allicin, pyruvic acid, and ammonia more selectively than (+)-alliin, a naturally occurring substrate for plant alliinase ever known. The C-S lyase activity was also detected with this bacterial enzyme when S-alkyl-L-cysteine was used as a substrate, though such a lyase activity is absolutely absent in alliinase of plant origin. The enzyme generated a fungicidal activity against Saccharomyces cerevisiae in a time- and a dose-dependent fashion using alliin as a stable precursor. Alliinase of Ensifer adhaerens FERM P-19486 is the enzyme with a novel type of substrate specificity, and thus considered to be beneficial when used in combination with garlic enzyme with respect to absolute conversion of (±)-alliin to allicin.
    [Show full text]
  • Dr. Oliver Hofstetter Associate Professor
    Oliver Hofstetter Curriculum Vitae and Bibliography Dr. Oliver Hofstetter Associate Professor Department of Chemistry and Biochemistry January 29, 2015 Northern Illinois University DeKalb, IL 60115 Phone: (815) 753 6898 e-mail: [email protected] Education January 1999 Dr. rer. nat., Major: Organic Chemistry University of Tübingen, Germany Dissertation title: “Stereoselective Antibodies to Amino Acids” April 1995 Diploma in Biochemistry University of Tübingen, Germany Thesis title: “Stereoselective Interactions of Chiral Compounds with Bovine Serum Albumin and Antibodies” Honors and Awards 2001 Research Innovation Award, Research Corporation 1999 The Sir Charles Clore Postdoctoral Fellowship 1999 Hoffmann-La Roche Young Investigators Award “Affinity 99” 1995 Boehringer-Ingelheim Fonds Short-term Fellowship Oliver Hofstetter Curriculum Vitae and Bibliography Professional Experience August 2006 to present Associate Professor of Biological Chemistry at the Department of Chemistry and Biochemistry at Northern Illinois University, DeKalb, IL. Teaching of graduate and undergraduate courses in general chemistry and biochemistry. Research in the field of analytical biochemistry and immunochemistry. Supervision of graduate and undergraduate research students. October 2008 to December 2008 Visiting Professor, Technical University Berlin, Institute of Chemistry, Division of Technical Chemistry; Berlin, Germany. August 2000 to August 2006 Assistant Professor of Biological Chemistry at the Department of Chemistry and Biochemistry at Northern Illinois University, DeKalb, IL. January 1999 to July 2000 Postdoctoral fellow with Meir Wilchek at the Weizmann Institute of Science, Rehovot, Israel. Research in the field of immunoaffinity chromatography. Purification, fragmentation, and derivatization of antibodies; chemical activation and derivatization of support materials; development of immunoassays for the determination of enantiopurity. May 1995 to January 1999 Research and Teaching Assistant with Volker Schurig, University of Tübingen, Germany.
    [Show full text]
  • Immobilization of Alliinase and Its Application: Flow- Injection Enzymatic Analysis for Alliin
    African Journal of Biotechnology Vol. 8 (7), pp. 1337-1342, 6 April, 2009 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2009 Academic Journals Full Length Research Paper Immobilization of alliinase and its application: Flow- injection enzymatic analysis for alliin Jianqin Zhou School of Pharmaceutical Sciences, Medical College, Soochow University, Suzhou 215123, P.R., China. E-mail: [email protected]. Tel.: +86 512 65880025. Fax: +86 512 65880031. Accepted 26 February, 2009 Alliinase was immobilized on chitosan microspheres by means of glutaraldehyde, and a flow-injection enzymatic analytical system was developed for determination of alliin based on the immobilized alliinase and an ammonia gas electrode. The factors affecting the activity of the immobilized enzyme, such as glutaraldehyde concentration, cross-linking time and the amount of alliinase, were investigated. Results showed that the maximum of enzyme activity could be obtained at glutaraldehyde concentration of 4%, cross-linking time of 2 h and the amount of alliinase 20.2 u. The properties of the immobilized alliinase were also studied in detail. For the immobilized alliinase, the highest activity was allowed at pH of 7.0 and temperature at 35°C. Besides, the immobilized enzyme showed good thermal and pH stabilities. The flow-injection enzymatic analytical system based on the immobilized alliinase and an ammonia gas electrode provided linearity in the 1 × 10-5 to 1 × 10-3 mol/L alliin concentration range and exhibited good repeatability and operational stability. Key words: Alliinase, immobilization, enzyme properties, flow-injection analysis. INTRODUCTION Alliinase (alliin lyase EC 4.4.1.4) has been reported to and accurate method to measure the content of alliin.
    [Show full text]
  • An Introduction to Nutrition and Metabolism, 3Rd Edition
    INTRODUCTION TO NUTRITION AND METABOLISM INTRODUCTION TO NUTRITION AND METABOLISM third edition DAVID A BENDER Senior Lecturer in Biochemistry University College London First published 2002 by Taylor & Francis 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Taylor & Francis Inc 29 West 35th Street, New York, NY 10001 Taylor & Francis is an imprint of the Taylor & Francis Group This edition published in the Taylor & Francis e-Library, 2004. © 2002 David A Bender All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data Bender, David A. Introduction to nutrition and metabolism/David A. Bender.–3rd ed. p. cm. Includes bibliographical references and index. 1. Nutrition. 2. Metabolism. I. Title. QP141 .B38 2002 612.3′9–dc21 2001052290 ISBN 0-203-36154-7 Master e-book ISBN ISBN 0-203-37411-8 (Adobe eReader Format) ISBN 0–415–25798–0 (hbk) ISBN 0–415–25799–9 (pbk) Contents Preface viii Additional resources x chapter 1 Why eat? 1 1.1 The need for energy 2 1.2 Metabolic fuels 4 1.3 Hunger and appetite 6 chapter 2Enzymes and metabolic pathways 15 2.1 Chemical reactions: breaking and
    [Show full text]
  • Israel Prize
    Year Winner Discipline 1953 Gedaliah Alon Jewish studies 1953 Haim Hazaz literature 1953 Ya'akov Cohen literature 1953 Dina Feitelson-Schur education 1953 Mark Dvorzhetski social science 1953 Lipman Heilprin medical science 1953 Zeev Ben-Zvi sculpture 1953 Shimshon Amitsur exact sciences 1953 Jacob Levitzki exact sciences 1954 Moshe Zvi Segal Jewish studies 1954 Schmuel Hugo Bergmann humanities 1954 David Shimoni literature 1954 Shmuel Yosef Agnon literature 1954 Arthur Biram education 1954 Gad Tedeschi jurisprudence 1954 Franz Ollendorff exact sciences 1954 Michael Zohary life sciences 1954 Shimon Fritz Bodenheimer agriculture 1955 Ödön Pártos music 1955 Ephraim Urbach Jewish studies 1955 Isaac Heinemann Jewish studies 1955 Zalman Shneur literature 1955 Yitzhak Lamdan literature 1955 Michael Fekete exact sciences 1955 Israel Reichart life sciences 1955 Yaakov Ben-Tor life sciences 1955 Akiva Vroman life sciences 1955 Benjamin Shapira medical science 1955 Sara Hestrin-Lerner medical science 1955 Netanel Hochberg agriculture 1956 Zahara Schatz painting and sculpture 1956 Naftali Herz Tur-Sinai Jewish studies 1956 Yigael Yadin Jewish studies 1956 Yehezkel Abramsky Rabbinical literature 1956 Gershon Shufman literature 1956 Miriam Yalan-Shteklis children's literature 1956 Nechama Leibowitz education 1956 Yaakov Talmon social sciences 1956 Avraham HaLevi Frankel exact sciences 1956 Manfred Aschner life sciences 1956 Haim Ernst Wertheimer medicine 1957 Hanna Rovina theatre 1957 Haim Shirman Jewish studies 1957 Yohanan Levi humanities 1957 Yaakov
    [Show full text]
  • Synthesis of Cysteine Sulfoxides and Related Compounds Occurring in Wild Onions
    Synthesis of cysteine sulfoxides and related compounds occurring in wild onions Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Pharmazie der Philipps-Universität Marburg vorgelegt von Mohammad Sadegh Feizabad aus Teheran / Iran Marburg/Lahn, 2019 i Erstgutachter: Prof. Dr. Michael Keusgen Zweitgutachter: Prof. Dr. Frank Runkel Tag der Einreichung Promotion: 24.04.2019 Tag der mündlichen Promotion: 24.06.2019 ii Dedicated to my beloved parents and wife for their precious supports and gentle, who have inspired me and been the driving force throughout my life. iii Foreword The majority of the genus Allium species are known for their medicinal applications: for example, A. stipitatum shows antibiotic effects against Mycobacterium tuberculosis and some other Allium species exhibit antistaphylococcal effects. Furthermore, recent studies have provided evidence of various antifungal, antidiabetic, and anticancer effects of some Allium species. Allium is also well known in traditional medicine for its ability to cure various ailments such as wounds or acute and chronic bronchitis; additionally, alliums can be used as expectorants due to the presence of cysteine sulfoxide and its derivatives. Cysteine sulfoxides, which are some of the basic secondary compounds in Allium, have been addressed in various studies. Alliin, propiin, methin, marasmin, and thiosulfinate, all of which are alliinase substrates, are of particular interest because of their pharmaceutical effects. The enzymatic reaction that occurs during the formation of disulfides or thiosufinates results in various compounds that differ chemically, physically, and pharmaceutically.The cysteine sulfoxide recently investigated in A. giganteum, A. rarolininanum, A. rosenorum, and A. macleani species is the S-(pyrrolyl)cysteine S-oxide.
    [Show full text]
  • President's Report 2018
    VISION COUNTING UP TO 50 President's Report 2018 Chairman’s Message 4 President’s Message 5 Senior Administration 6 BGU by the Numbers 8 Building BGU 14 Innovation for the Startup Nation 16 New & Noteworthy 20 From BGU to the World 40 President's Report Alumni Community 42 2018 Campus Life 46 Community Outreach 52 Recognizing Our Friends 57 Honorary Degrees 88 Board of Governors 93 Associates Organizations 96 BGU Nation Celebrate BGU’s role in the Israeli miracle Nurturing the Negev 12 Forging the Hi-Tech Nation 18 A Passion for Research 24 Harnessing the Desert 30 Defending the Nation 36 The Beer-Sheva Spirit 44 Cultivating Israeli Society 50 Produced by the Department of Publications and Media Relations Osnat Eitan, Director In coordination with the Department of Donor and Associates Affairs Jill Ben-Dor, Director Editor Elana Chipman Editorial Staff Ehud Zion Waldoks, Jacqueline Watson-Alloun, Angie Zamir Production Noa Fisherman Photos Dani Machlis Concept and Design www.Image2u.co.il 4 President's Report 2018 Ben-Gurion University of the Negev - BGU Nation 5 From the From the Chairman President Israel’s first Prime Minister, David Ben–Gurion, said:“Only Apartments Program, it is worth noting that there are 73 This year we are celebrating Israel’s 70th anniversary and Program has been studied and reproduced around through a united effort by the State … by a people ready “Open Apartments” in Beer-Sheva’s neighborhoods, where acknowledging our contributions to the State of Israel, the the world and our students are an inspiration to their for a great voluntary effort, by a youth bold in spirit and students live and actively engage with the local community Negev, and the world, even as we count up to our own neighbors, encouraging them and helping them strive for a inspired by creative heroism, by scientists liberated from the through various cultural and educational activities.
    [Show full text]
  • The Health Benefits of Fruits and Vegetables
    The Health Benefits of Fruits and Vegetables • Mercedes Del Río Celestino and Rafael Villa Font The Health Benefits of Fruits and Vegetables Edited by Mercedes Del Río Celestino and Rafael Font Villa Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods The Health Benefits of Fruits and Vegetables The Health Benefits of Fruits and Vegetables Special Issue Editors Mercedes Del R´ıoCelestino Rafael Font Villa MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editors Mercedes Del R´ıo Celestino Rafael Font Villa Agri-food Laboratory of Córdoba Agri-food Laboratory of Córdoba CAGPDS, Junta de Andalucía CAGPDS, Junta de Andalucía Córdoba, Spain Córdoba, Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: https://www.mdpi.com/journal/foods/special issues/Fruits phytochemicals Epidemiological). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-829-8 (Hbk) ISBN 978-3-03928-830-4 (PDF) Cover image courtesy of Mercedes del R´ıo Celestino. c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications.
    [Show full text]
  • Medicinal Chemistry/Analytics, Natural Compounds, Biopharmaceutics As Well As Many Aspects of Pharmaceuti- Cal Technology and Drug Delivery
    Annual Meeting of the – DPhG Annual Meeting 2014 Annual Meeting of the German German Pharmaceutical Society – DPhG Pharmaceutical Society – DPhG Frankfurt/Main September 24 – 26, 2014 Trends and Perspectives in at Goethe University Pharmaceutical Sciences www.2014.dphg.de Conference Book Conference Book Conference Frankfurt/Main, September 24 – 26, 2014 at Goethe University ISBN 978-3-9816225-1-5 www.2014.dphg.de Annual Meeting of the German Pharmaceutical Society DPhG Trends and Perspectives in Pharmaceutical Sciences Conference Book Frankfurt/Main, September 24 26, 2014 at Goethe University www.2014.dphg.de Sponsors of the DPhG Annual Meeting 2014 MEDIEN FÜR DIE APOTHEKE Institutional Sponsors Förderer der DPhG-Jahrestagung 2014 CONFERENCE COMMITTEES Scientific Committee Prof. Dr. Thomas Efferth Prof. Dr. Christoph Friedrich Prof. Dr. Peter Gmeiner Prof. Dr. Ulrike Holzgrabe Prof. Dr. Ulrich Jaehde Prof. Dr. Jochen Klein Prof. Dr. Heyo Kroemer Prof. Dr. Peter Langguth Prof. Dr. Stefan Laufer Prof. Dr. Kristina Friedland Prof. Dr. Andreas Link Prof. Dr. Irmgard Merfort Prof. Dr. Klaus Mohr Dr. Olaf Queckenberg Prof. Dr. Peter Ruth Prof. Dr. Andrea Sinz Prof. Dr. Angelika Vollmar Prof. Dr. Hermann Wätzig Prof. Dr. Werner Weitschies Prof. Dr. Gerhard Winter Organisation Committee Seniorprof. Dr. Theodor Dingermann Prof. Dr. Jennifer Dressman PD. Dr. Gunter Eckert Prof. Dr. Robert Fürst Dr. Ann-Kathrin Häfner Dr. Bettina Hofmann Prof. Dr. Michael Karas PD. Dr. Thorsten Maier Prof. Dr. Rolf Marschalek Jun.-Prof. Dr. Eugen Proschak Dr. Bernd Sorg Dr. Michael Stein Dr. Mario Wurglics DPhG Annual Meeting 2014 3 ADDRESS OF WELCOME Dear colleagues, as President of the German Pharmaceutical Society (DPhG) and congress chair- man it is a pleasure for me to welcome you at Frankfurt to attend our Annual place for such a meeting which is part of the GU100 celebrations on the occa- sion of the 100th birthday of Goethe University.
    [Show full text]
  • Avidin-Biotin Technology
    Methods in Enzymology Volume 184 Avidin-Biotin Technology Meir Wilchek Edward A . Bayer CONTRIBUTORS TO VOLUME 184 x i PREFACE XVi i VOLUMES IN SERIES XiX Section I. Introduction 1. Reflections FREDERIC M. RICHARDS 3 2. Introduction to Avidin-Biotin Technology MEIR WILCHEK AND EDWARD A . BAYER 5 3 . Applications of Avidin-Biotin Technology : Liter- MEIR WILCHEK AND ature Survey EDWARD A . BAYER 14 Section II . Biotin-Binding Proteins 4. Biotin-Binding Proteins : Overview and Prospects EDWARD A . BAYER AN D MEIR WILCHEK 49 5. Avidin and Streptavidin N. MICHAEL GREEN 51 6 . Nonglycosylated Avidin YAFFA HILLER , EDWARD A . BAYER, AND MEIR WILCHEK 68 7 . Cloning and Expression of Avidin in Escherichia GYAN CHANDRA AND call JOHN G . GRAY 70 8 . Isolation and Properties of Streptavidin EDWARD A . BAYER, HAYA BEN-HUR, AND MEIR WILCHEK 8 0 9. Crystal Forms of Avidin ODED LIVNAH AND JOEL L . SUSSMAN 9 0 10. Nonavidin Biotin-Binding Proteins KRISHNAMURTI DAKSHINAMURT I AND JASBIR CHAUHAN 9 3 li . Biotinidase BARRY WOLF , JEANNE HYMES, AND GREGORY S . HEARD 103 12. Monoclonal Antibody to Biotin KRISHNAMURTI DAKSHINAMURTI AND EDWARD S. RECTOR 11 1 Section III. General Methodology A . Preparation of Biotin Derivatives 13. Biotin-Containing Reagents MEIR WILCHEK AN D EDWARD A . BAYER 123 14. Protein Biotinylation EDWARD A . BAYER AN D MEIR WILCHEK 13 8 15 . Enzymatic C-Terminal Biotinylation of Proteins ALEXANDER SCHWARZ , CHRISTIAN WANDREY , EDWARD A . BAYER, AN D MEIR WILCHEK 160 16. Antibodies Biotinylated via Sugar Moieties DANIEL J. O'SHANNESSY 162 17 . 2-Iminobiotin-Containing Reagent and Affinity BARBARA FUDEM-GOLDI N Columns AND GEORGE A .
    [Show full text]