Biol. Pharm. Bull. 39(5): 856-862 (2016)

Total Page:16

File Type:pdf, Size:1020Kb

Biol. Pharm. Bull. 39(5): 856-862 (2016) 856 Biol. Pharm. Bull. 39, 856–862 (2016) Vol. 39, No. 5 Regular Article Effects of Adjuvant Analgesics on Cerebral Ischemia-Induced Mechanical Allodynia Wataru Matsuura, Shinichi Harada, and Shogo Tokuyama* Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University; 1–1–3 Minatojima, Chuo-ku, Kobe 650–8586, Japan. Received December 21, 2015; accepted January 27, 2016 Central post-stroke pain (CPSP), a potential sequela of stroke, is classified as neuropathic pain. Al- though we recently established a CPSP-like model in mice, the effects of adjuvant analgesics as therapeutic drugs for neuropathic pain in this model are unknown. Hence, the aim of the present study was to assess the usefulness of our model by evaluating the effects of adjuvant analgesics used for treating neuropathic pain in this mouse model of CPSP. Male ddY mice were subjected to 30 min of bilateral carotid artery occlusion (BCAO). The development of hind paw mechanical allodynia was measured after BCAO using the von Frey test. The mechanical allodynia was significantly increased on day 3 after BCAO compared with that during the pre-BCAO assessment. BCAO-induced mechanical allodynia was significantly decreased by intraperito- neal injections of imipramine (a tricyclic antidepressant), mexiletine (an antiarrhythmic), gabapentin (an an- tiepileptic), or a subcutaneous injection of morphine (an opioid receptor agonist) compared with that follow- ing vehicle treatment in BCAO-mice. By contrast, milnacipran (a serotonin and norepinephrine reuptake in- hibitor), paroxetine (selective serotonin reuptake inhibitor), carbamazepine (antiepileptic), and indomethacin (nonsteroidal anti-inflammatory drug) did not affect the BCAO-induced mechanical allodynia. Our results show that BCAO in mice may be useful as an animal model of CPSP. In addition, BCAO-induced mechanical allodynia may be suppressed by some adjuvant analgesics used to treat neuropathic pain. Key words central post-stroke pain; global ischemia; allodynia; neuropathic pain Pain may occur with actual substantial or even potential may be useful as a mouse model of CPSP. In the clinic, CPSP histologic lesions, producing uncomfortable sensory and emo- is usually treated with adjuvant analgesics, such as antidepres- tional experiences, according to the definition by the Inter- sants, antiepileptogenics and narcotic analgesics, based on the national Association for the Study of Pain. One type of pain, treatment of neuropathic pain or surgery.4,9–12) However, the neuropathic pain, is caused by dysfunctional peripheral or effect of adjuvant analgesics on the BCAO-induced pain is central nerves and results in the appearance of allodynia and unclear. hypersensitivity to pain.1,2) Cerebral stroke patients may expe- In the present study, to determine the usefulness of our rience several types of pain, including musculoskeletal pain, BCAO-induced mouse model of CPSP, we evaluated the thera- headache, and neuropathic central post-stroke pain (CPSP). peutic potential of clinically relevant neuropathic pain drugs Among the different types of neuropathic pain, CPSP is an as adjuvant analgesics in this model. especially intractable condition to treat. CPSP is associated with various symptoms, such as burning and lancinating pain, MATERIALS AND METHODS and the incidence of CPSP after cerebral stroke is reportedly 1–14%.3,4) In clinical studies, the risk factors associated with Animals All experimental procedures were approved by CPSP are the degree of brain infarction, sexual dimorphism, the ethics committee for animals at Kobe Gakuin University alcohol intake, depression anamnesis, statin use, dyslipidemia, (approval number: 14–21). The experiments were performed diabetes, and peripheral vascular disorder.5) The pathogenic on male ddY mice (5 weeks old, 25–30 g) obtained from SLC mechanisms for CPSP and neuropathic pain appear similar at (Shizuoka, Japan). The animals were housed at 23–24°C with the point of excitation of primary afferent fibers and for epi- a 12-h light–dark cycle (lights on at 8:00 a.m.). Food and water static or central excitation or suppression pathway disorders. were available ad libitum. The present study was conducted in Recently, we established a CPSP-like animal model by ex- accordance with the Guiding Principles for the Care and Use perimentally inducing focal (middle cerebral artery occlusion of Laboratory Animals approved by the Japanese Pharmaco- model) or global cerebral ischemia (bilateral carotid artery oc- logical Society. clusion model; BCAO).6,7) In our BCAO model of global isch- Animal Model of Global Cerebral Ischemia Transient emia, pain thresholds were significantly decreased in response global cerebral ischemia was induced by occlusion of the BCA to mechanical and thermal stimulation to the hind limbs com- in mice as described previously.7,13) Briefly, mice were anes- pared with those of sham-operated animals. These decreased thetized with pentobarbital (60 mg/kg). The rectal temperature pain thresholds were associated with ischemic neuronal dam- was maintained at 37±0.5°C with a heating blanket (FH-100; age. In a previous study, we showed that the regulation of Unique Medical, Osaka, Japan) equipped with a small animal BCAO-induced CPSP may involve alterations in the signaling heat controller (ATC-101B; Unique Medical). The bilateral of astrocyte free fatty acid receptor 1, also known as GPR40, common carotid arteries were occluded for 30 min using Su- a receptor of long-chain fatty acids.8) Thus, this BCAO model gita standard aneurysm clips (Mizuho Ikakogyo Co., Ltd., * To whom correspondence should be addressed. e-mail: [email protected] © 2016 The Pharmaceutical Society of Japan Vol. 39, No. 5 (2016) Biol. Pharm. Bull. 857 Tokyo, Japan). Sham-operated mice were subjected to the Effect of Antiepileptogenic Drugs on the Mechanical Al- same procedure as above without occlusion of the BCA. The lodynia on Day 3 after Global Cerebral Ischemia On day final number of mice used for each drug treatment is stated in 3 after BCAO, the increase in the number of escape behaviors the figure legends. was completely blocked by the administration of the calcium Drugs Imipramine hydrochloride (Sigma-Aldrich, St. channel α2–δ ligand gabapentin (30 mg/kg) in a dose-depen- Louis, MO, U.S.A.), milnacipran hydrochloride (Toronto dent manner [Fig. 2A, drug×time interaction: F(15, 90)=8.82, Research Chemicals, Toronto, Canada), gabapentin (Sigma- p<0.01, drug effect: F(3, 90)=111.19, p<0.01, time effect: F(5, Aldrich), morphine hydrochloride (Takeda Pharmaceutical 90)=42.05, p<0.01] but not by the sodium channel inhibitor Company Limited, Osaka, Japan) and mexiletine hydrochlo- carbamazepine (20 mg/kg) [Fig. 2B, drug×time interaction: ride (Sigma-Aldrich) were dissolved in saline. Carbamazepine F(10, 24)=5.54, p<0.01, drug effect: F(2, 24)=387.40, p<0.01, (Sigma-Aldrich) was dissolved in saline with 1% Tween 20 time effect: F(5, 24)=26.15, p<0.01]. and 2% dimethyl sulfoxide. Paroxetine hydrochloride (Toronto Effect of an Antiarrhythmic Drug on the Mechanical Research Chemicals) was dissolved in saline containing 0.75% Allodynia on Day 3 after Global Cerebral Ischemia The methanol. Indomethacin (Sigma-Aldrich) was dissolved in 1% BCAO-induced mechanical allodynia was dose-dependently carboxymethyl cellulose sodium. and significantly suppressed (30 mg/kg) by treatment with the Drug Administration The BCAO-mice were treated sodium channel blocker mexiletine (10 or 30 mg/kg) [Fig. 3, with a single injection (intraperitoneal; i.p.) of imipramine drug×time interaction: F(15, 72)=13.81, p<0.01, drug effect: (5, 20 mg/kg), milnacipran (30 mg/kg), paroxetine (40 mg/kg), F(3, 72)=57.16, p<0.01, time effect: F(5, 72)=40.14, p<0.01]. gabapentin (10, 30 mg/kg), carbamazepine (20 mg/kg), mexi- Effect of a Narcotic Analgesic on the Mechanical Al- letine (10 or 30 mg/kg), indomethacin (10 mg/kg), or vehicle lodynia on Day 3 after Global Cerebral Ischemia The (0.1 mL/10 g body weight); morphine (1 or 10 mg/kg) was ad- strong opioid analgesic morphine (1 or 10 mg/kg) dose- ministered subcutaneously (s.c.). The doses of all drugs were dependently and significantly decreased the BCAO-induced selected based on the results of previous reports.14,15) mechanical allodynia [Fig. 4, drug×time interaction: F(15, Assessment of Mechanical Allodynia Mechanical allo- 72)=11.57, p<0.01, drug effect: F(3, 72)=46.61, p<0.01, time dynia was evaluated using von Frey filaments (Neuroscience effect: F(5, 72)=25.41, p<0.01]. Inc., Tokyo, Japan) as previously described.8) Mice were Effect of a Nonsteroidal Anti-inflammatory Drug placed on a 5×5 mm wire mesh grid floor, covered with an (NSAID) on the Mechanical Allodynia on Day 3 after opaque cup to avoid visual stimulation, and allowed to adapt Global Cerebral Ischemia The NSAID indomethacin for 2–3 h prior to testing. The von Frey filament was then ap- (10 mg/kg) had no effect on the BCAO-induced mechani- plied to the middle of the plantar surface of the hind paw with cal allodynia [Fig. 5, drug×time interaction: F(10, 48)=4.51, a weight of 0.4 g. On the indicated days, withdrawal responses p<0.01, drug effect: F(2, 48)=83.43, p<0.01, time effect: F(5, following hind paw stimulation were measured 10 times, and 48)=21.47, p<0.01]. mechanical allodynia was defined as an increase in the num- ber of withdrawal responses to the stimulation. On day 3 after DISCUSSION BCAO, the von Frey test was performed on the BCAO mice at 10, 20, 30, and 60 min after each drug treatment. CPSP can be defined as one of the central neuropathic Statistical Analysis All data were analyzed using two- pain conditions occurring after cerebral stroke in which the way ANOVA followed by Tukey’s test, and are presented as affected areas are those body parts corresponding to cerebro- the mean±standard error of the mean (S.E.M.).
Recommended publications
  • Using the Drug Repositioning Approach to Develop A
    Using the drug repositioning approach to develop a novel therapy, tipepidine hibenzate sustained- release tablet (TS-141), for children and adolescents with Attention-Decit/Hyperactivity Disorder Takuya Saito Hokkaido University Graduate School of Medicine Yushiro Yamashita Kurume University School of Medicine Akemi Tomoda University of Fukui Takashi Okada National Center of Neurology and Psychiatry Hideo Umeuchi Taisho Pharmaceutical co., ltd. Saki Iwamori ( [email protected] ) Taisho https://orcid.org/0000-0002-0096-4673 Satoru Shinoda Taisho Pharmaceutical co., ltd. Akiko Mizuno-Yasuhira Taisho Pharmaceutical co., ltd. Hidetoshi Urano Taisho Pharmaceutical co., ltd. Izumi Nishino Taisho Pharmaceutical co., ltd. Kazuhiko Saito Aiiku Counselling Oce, Aiiku Research Institute Research article Keywords: drug repositioning; TS-141; ADHD; CYP2D6 polymorphism; phenotype; clinical trial; tipepidine Posted Date: September 28th, 2020 Page 1/21 DOI: https://doi.org/10.21203/rs.3.rs-22945/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on November 10th, 2020. See the published version at https://doi.org/10.1186/s12888-020-02932-2. Page 2/21 Abstract Background Asverin® (tipepidine hibenzate) has been used as an antitussive for >50 years in Japan. Studies revealed that tipepidine modulates monoamine levels, by inhibiting G-protein-activated inwardly rectifying potassium (GIRK) channels, expecting the potential therapeutic effects of tipepidine for attention-decit/hyperactivity disorder (ADHD) in recent years. In this study, TS-141, a sustained-release tablet of tipepidine, was developed for the treatment of ADHD through a drug repositioning approach.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • General Pharmacology
    GENERAL PHARMACOLOGY Winners of “Nobel” prize for their contribution to pharmacology Year Name Contribution 1923 Frederick Banting Discovery of insulin John McLeod 1939 Gerhard Domagk Discovery of antibacterial effects of prontosil 1945 Sir Alexander Fleming Discovery of penicillin & its purification Ernst Boris Chain Sir Howard Walter Florey 1952 Selman Abraham Waksman Discovery of streptomycin 1982 Sir John R.Vane Discovery of prostaglandins 1999 Alfred G.Gilman Discovery of G proteins & their role in signal transduction in cells Martin Rodbell 1999 Arvid Carlson Discovery that dopamine is neurotransmitter in the brain whose depletion leads to symptoms of Parkinson’s disease Drug nomenclature: i. Chemical name ii. Non-proprietary name iii. Proprietary (Brand) name Source of drugs: Natural – plant /animal derivatives Synthetic/semisynthetic Plant Part Drug obtained Pilocarpus microphyllus Leaflets Pilocarpine Atropa belladonna Atropine Datura stramonium Physostigma venenosum dried, ripe seed Physostigmine Ephedra vulgaris Ephedrine Digitalis lanata Digoxin Strychnos toxifera Curare group of drugs Chondrodendron tomentosum Cannabis indica (Marijuana) Various parts are used ∆9Tetrahydrocannabinol (THC) Bhang - the dried leaves Ganja - the dried female inflorescence Charas- is the dried resinous extract from the flowering tops & leaves Papaver somniferum, P album Poppy seed pod/ Capsule Natural opiates such as morphine, codeine, thebaine Cinchona bark Quinine Vinca rosea periwinkle plant Vinca alkaloids Podophyllum peltatum the mayapple
    [Show full text]
  • Treatment of Attention Deficit Hyperactivity Disorder: New Agents and Assessment Tools Marcia L
    PEDIATRIC PHARMACOTHERAPY Volume 20 Number 8 August 2014 Treatment of Attention Deficit Hyperactivity Disorder: New Agents and Assessment Tools Marcia L. Buck, PharmD, FCCP, FPPAG he currently available treatments for seen in ADHD Rating Scale–IV (ADHD-RS-IV) T attention deficit hyperactivity disorder total scores, with a mean change at endpoint of - (ADHD), stimulants, alpha-2 adrenergic 17.6 + 12.4. Both hyperactivity/impulsivity and agonists, and atomoxetine, are highly effective in inattentive subscores improved, with a mean increasing attention and reducing impulsivity in reduction of -8.8 for each. Global Impressions- most patients. Research continues to expand the ADHD Severity (CGI-ADHD-S) scores also range of treatment options, with new drugs and demonstrated significant improvement from dosage formulations, as well as new methods to baseline. Adverse effects were typically mild, predict or assess treatment response. with the most commonly reported including nausea, decreased appetite, somnolence, and Potential Treatment Options upper respiratory tract infections. The mean Two novel ADHD medications are currently increase in systolic blood pressure was 1.9 mm being studied in children and adults with ADHD. Hg in children and 0.22 mm Hg in adolescents, Edivoxetine, a selective norepinephrine reuptake with a mean change in heart rate of 3.5 bpm in inhibitor similar to atomoxetine, is in phase 3 children and 3 bpm in adolescents. Three trials. Both atomoxetine and edivoxetine are Eli patients discontinued treatment because of Lilly products. Tipepidine, 3-[di-2- adverse effects. One patient experienced thienylmethylene]-1-methylpiperidine, is being treatment-emergent mania, another developed studied in Japan. It has been available there as an signs of depression, and the third had over-the-counter cough suppressant since 1959.
    [Show full text]
  • Jp Xvii the Japanese Pharmacopoeia
    JP XVII THE JAPANESE PHARMACOPOEIA SEVENTEENTH EDITION Official from April 1, 2016 English Version THE MINISTRY OF HEALTH, LABOUR AND WELFARE Notice: This English Version of the Japanese Pharmacopoeia is published for the convenience of users unfamiliar with the Japanese language. When and if any discrepancy arises between the Japanese original and its English translation, the former is authentic. The Ministry of Health, Labour and Welfare Ministerial Notification No. 64 Pursuant to Paragraph 1, Article 41 of the Law on Securing Quality, Efficacy and Safety of Products including Pharmaceuticals and Medical Devices (Law No. 145, 1960), the Japanese Pharmacopoeia (Ministerial Notification No. 65, 2011), which has been established as follows*, shall be applied on April 1, 2016. However, in the case of drugs which are listed in the Pharmacopoeia (hereinafter referred to as ``previ- ous Pharmacopoeia'') [limited to those listed in the Japanese Pharmacopoeia whose standards are changed in accordance with this notification (hereinafter referred to as ``new Pharmacopoeia'')] and have been approved as of April 1, 2016 as prescribed under Paragraph 1, Article 14 of the same law [including drugs the Minister of Health, Labour and Welfare specifies (the Ministry of Health and Welfare Ministerial Notification No. 104, 1994) as of March 31, 2016 as those exempted from marketing approval pursuant to Paragraph 1, Article 14 of the Same Law (hereinafter referred to as ``drugs exempted from approval'')], the Name and Standards established in the previous Pharmacopoeia (limited to part of the Name and Standards for the drugs concerned) may be accepted to conform to the Name and Standards established in the new Pharmacopoeia before and on September 30, 2017.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Pharmaceuticals and Medical Devices Safety Information No
    Pharmaceuticals and Medical Devices Safety Information No. 260 August 2009 Table of Contents 1. Tricyclic and tetracyclic antidepressants, associated with aggression ................................................................................................... 3 2. Important Safety Information .................................................................. 9 .1. Telmisartan ··························································································· 9 .2. Phenytoin, Phenytoin/Phenobarbital, Phenytoin/Phenobarbital/ Caffeine and Sodium Benzoate, Phenytoin Sodium ··························· 13 3. Revision of PRECAUTIONS (No. 208) Lamotrigine (and 9 others) ············································································ 17 4. List of products subject to Early Post-marketing Phase Vigilance ..................................................... 21 This Pharmaceuticals and Medical Devices Safety Information (PMDSI) is issued based on safety information collected by the Ministry of Health, Labour and Welfare. It is intended to facilitate safer use of pharmaceuticals and medical devices by healthcare providers. PMDSI is available on the Pharmaceuticals and Medical Devices Agency website (http://www.pmda.go.jp/english/index.html) and on the MHLW website (http://www.mhlw.go.jp/, Japanese only). Published by Translated by Pharmaceutical and Food Safety Bureau, Pharmaceuticals and Medical Devices Agency Ministry of Health, Labour and Welfare Pharmaceutical and Food Safety Bureau, Office of Safety I, Ministry of
    [Show full text]
  • Potassium Channel Kcsa
    Potassium Channel KcsA Potassium channels are the most widely distributed type of ion channel and are found in virtually all living organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of cell functions. Potassium channels function to conduct potassium ions down their electrochemical gradient, doing so both rapidly and selectively. Biologically, these channels act to set or reset the resting potential in many cells. In excitable cells, such asneurons, the delayed counterflow of potassium ions shapes the action potential. By contributing to the regulation of the action potential duration in cardiac muscle, malfunction of potassium channels may cause life-threatening arrhythmias. Potassium channels may also be involved in maintaining vascular tone. www.MedChemExpress.com 1 Potassium Channel Inhibitors, Agonists, Antagonists, Activators & Modulators (+)-KCC2 blocker 1 (3R,5R)-Rosuvastatin Cat. No.: HY-18172A Cat. No.: HY-17504C (+)-KCC2 blocker 1 is a selective K+-Cl- (3R,5R)-Rosuvastatin is the (3R,5R)-enantiomer of cotransporter KCC2 blocker with an IC50 of 0.4 Rosuvastatin. Rosuvastatin is a competitive μM. (+)-KCC2 blocker 1 is a benzyl prolinate and a HMG-CoA reductase inhibitor with an IC50 of 11 enantiomer of KCC2 blocker 1. nM. Rosuvastatin potently blocks human ether-a-go-go related gene (hERG) current with an IC50 of 195 nM. Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 1 mg, 5 mg (3S,5R)-Rosuvastatin (±)-Naringenin Cat. No.: HY-17504D Cat. No.: HY-W011641 (3S,5R)-Rosuvastatin is the (3S,5R)-enantiomer of (±)-Naringenin is a naturally-occurring flavonoid.
    [Show full text]
  • Medicines Amendment Regulations 2018
    2018/179 Medicines Amendment Regulations 2018 Patsy Reddy, Governor-General Order in Council At Wellington this 24th day of September 2018 Present: Her Excellency the Governor-General in Council These regulations are made under section 105(1)(j) of the Medicines Act 1981— (a) on the advice and with the consent of the Executive Council; and (b) on the advice of the Minister of Health tendered after consultation with the organisations or bodies appearing to the Minister to be representative of per- sons likely to be substantially affected. Contents Page 1 Title 1 2 Commencement 2 3 Principal regulations 2 4 Schedule 1 replaced 2 5 Regulations revoked 2 Schedule 2 Schedule 1 replaced Regulations 1 Title These regulations are the Medicines Amendment Regulations 2018. 1 r 2 Medicines Amendment Regulations 2018 2018/179 2 Commencement These regulations come into force on the 28th day after the date of their notifi- cation in the Gazette. 3 Principal regulations These regulations amend the Medicines Regulations 1984 (the principal regu- lations). 4 Schedule 1 replaced Replace Schedule 1 with the Schedule 1 set out in the Schedule of these regula- tions. 5 Regulations revoked The Medicines Amendment Regulations (No 2) 2015 (LI 2015/180) are revoked. Schedule Schedule 1 replaced r 4 Schedule 1 Prescription, restricted, and pharmacy-only medicines r 3 Every reference to a medicine in this schedule applies whether the medicine is syn- thetic in origin or is from biological or mineral sources. Unless specific reference is made otherwise, every reference applies also to medicines that are— • preparations and admixtures containing any proportion of any substance listed in this schedule: • salts and esters of any substance listed in this schedule: • preparations or extracts of biological materials listed in this schedule: • salts or oxides of elements listed in this schedule.
    [Show full text]
  • Multiple Pharmacological Actions of Centrally Acting Antitussives — Do They Target G Protein-Coupled Inwardly Rectifying K+ (GIRK) Channels?
    J Pharmacol Sci 120, 146 – 151 (2012) Journal of Pharmacological Sciences © The Japanese Pharmacological Society Current Perspective Multiple Pharmacological Actions of Centrally Acting Antitussives — Do They Target G Protein-Coupled Inwardly Rectifying K+ (GIRK) Channels? Kazuo Takahama1,* 1Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 0e-honmachi, Kumamoto 862-0973, Japan Received May 28, 2012; Accepted August 20, 2012 Abstract. Antitussive drugs have been used for decades and their modes of action are well elu- cidated. However, recent studies on the mechanism of their antitussive action seem to be opening a new way for discovery or development of novel drugs for intractable brain diseases including psychiatric disorders. Antitussives inhibit the currents caused by activation of G protein-coupled inwardly rectifying K+ (GIRK) channels in neurons. In our own studies carried out so far, we found that antitussives possessing an inhibitory action on GIRK channels, similar to the effects of an enriched environment, ameliorate symptoms of intractable brain diseases in various animal models. In this review, the multiple pharmacological actions of the antitussives are described, and their mechanisms are discussed addressing GIRK channels as a possible molecular target. Keywords: G protein-coupled inwardly rectifying K+ (GIRK) channel, centrally acting antitussive, antidepressant-like action, enriched environment, dopamine 1. Introduction tors (GPCRs) in the brain
    [Show full text]