Spent Coffee Grounds Do Not Control Cycad Aulacaspis Scale

Total Page:16

File Type:pdf, Size:1020Kb

Spent Coffee Grounds Do Not Control Cycad Aulacaspis Scale undersides of leaves (Howard and Spent Coffee Grounds Do Not Control Cycad Weissling, 1999; Smith and Cave, Aulacaspis Scale 2006; Wiese et al., 2005) and roots (Howard et al., 1999; Weissling et al., 1999), which are difficult to cover Tracy Monique Magellan1, Chad Husby, Stella Cuestas, with foliar sprays (Hodges et al., and M. Patrick Griffith 2003; Smith and Cave, 2006). At Montgomery Botanical Center (MBC, Coral Gables, FL), research on ADDITIONAL INDEX WORDS. asian cycad scale, Aulacaspis yasumatsui, coffee beans, the control and integrated pest man- mulch, neem oil, orange oil, Coffea arabica, Cycas debaoensis, Cycas micronesica agement of CAS has been performed (Wiese and Mannion, 2007). Mannion SUMMARY. Cycad aulacaspis scale [CAS (Aulacaspis yasumatsui)] is a highly de- structive pest insect worldwide. CAS feeds on cycad (Cycas sp.) plantings and is also (2003) performed a study examining posing a problem for the foliage industry. The use of spent coffee grounds to possible chemical deterrents, many of prevent or control CAS has received increased popularity in the last few years. This which were not viable because of phy- study assesses whether the application of spent coffee grounds is a realistic control totoxicity. Experiments on biological method against CAS, and whether spent coffee grounds can be successfully used as control of CAS were also conducted at a natural alternative to chemical pesticides. Two tests were performed during MBC (Cave, 2006; Wiese and Mannion, Summer 2010 and 2011. The first experiment assessed seven treatments: five coffee 2007; Wiese et al., 2005). treatments, neem oil, and orange oil to control CAS on the debao cycad (Cycas Potential insecticidal activity of debaoensis). In the second experiment, only coffee mulch was tested against the coffee was tested on leaf-cutting ant Cycas micronesica control on the debao cycad and fadang ( ). There was no statistical ( ) with nega- evidence of a difference between the control and the coffee mulch treatment with Atta sexdens rubropilosa regard to infestation (insects per square centimeter). Soil pH differences were tive results (Miyashira et al., 2011) confirmed between control and coffee treatments, with the application of coffee and on mosquito (Aedes aegypti) with mulch lowering pH by an average of 0.48. Spent coffee grounds did not have an positive results (Guirado and Bicudo, effect on cycad mortality, but neem oil and orange oil increased cycad mortality. 2007; Laranja et al., 2003). Prior studies indicated neem oil (Fiaz et al., 2012; Mamoon-ur- AS is a highly destructive pest The debao cycad is critically en- Rashid et al., 2012; Tang et al., 2002) in southern Florida and world- dangered, and the population trend is and orange oil (Ashok et al., 2007; wide. In 1996, CAS was in- decreasing (International Union for C Hollingsworth, 2005; Zunino et al., troduced to Miami, FL, from southern Conservation of Nature, 2010). Arti- 2012) have insecticidal properties. China or Thailand (Germain and ficial propagation in the commercial In 2009, a preliminary study was Hodges, 2007; Howard and Weissling, nursery industry will be highly bene- conducted at MBC involving a variety 1999; Howard et al., 1999; Weissling ficial to the species, by minimizing of cycads that were mulched with et al., 1999). CAS is highly detri- collecting pressure on the wild pop- spent coffee grounds. The goal of the mental to cycads. Since its introduc- ulations. Its bipinnate leaf structure study was to observe whether there tion, thousands of cycads have been makes it an attractive foliage plant, would be a benefit with regard to CAS killed in the Miami area (Mannion, though its susceptibility to CAS may control. The results appeared to be 2003; Whitelock, 2002). CAS is also deter nurseries from propagating this positive, but lacked quantitative rigor thegreatestthreattothenativepop- species. and sufficient control. This study was ulation of fadang in Guam (Marler Since 2006, there has been dis- conducted to more rigorously deter- and Muniappan, 2006). Its abundance cussion in the cycad enthusiast com- mine whether spent coffee grounds are is taking a toll on cycad plantings and munity regarding the benefits of coffee an effective control method for CAS. is posing a problem for the foliage grounds (Broome, 2007; Kelly, 2008); industry (Emshousen et al., 2004; yet, no scientific studies support Wiese et al., 2005; Woods, 2007). these claims (Popenoe, 2010). Two Materials and methods The ornamental horticulture indus- methods of application have been dis- Three types of coffee application try has suffered millions of dollars in cussed: 1) a foliar application of coffee were used: spent coffee mulch, spent losses because of CAS (Mannion, 2003; grounds mixed with water and 2) coffee tea, and a combination of spent Woods, 2007). coffee mulch at the base of the plants. coffee mulch and spent coffee tea. In prior research, foliar contact pes- Half doses were included among the Montgomery Botanical Center, 11901 Old Cutler ticide applications have not worked treatments to assess whether treat- Road, Coral Gables, FL 33156 well to control CAS because of the ment thresholds may exist. Leaflet We thank John DeMott from Redland Nursery in heavy-scale concentrations on the area, soil pH, and total number of Homestead, FL, for his generous donation of the Cycas debaoensis used in the two experiments. We also thank Michael Calonje, cycad curator of MBC, for allocating the Cycas micronesica for the second round Units of testing; Starbucks Coffee Company for their dona- To convert U.S. to SI, To convert SI to U.S., tion of pounds and pounds of grounds for the study; multiply by U.S. unit SI unit multiply by Vickie Murphy for her horticultural expertise; and Jack Bauer, Ansel Thomas, and Hostilio Torres for 29.5735 fl oz mL 0.0338 constructing the shadehouse. 3.7854 gal L 0.2642 1Corresponding author. E-mail: tracym@montgomery 2.54 inch(es) cm 0.3937 botanical.org. 1 mmhoÁcm–1 mSÁcm–1 1 • April 2013 23(2) 201 RESEARCH REPORTS CAS present were measured. After Soil was saturated and after 30 min, filter (#4 Cone Permanent Golden initial infestation counts were made, 12 fl oz of irrigation water (well #GF214; Medelco, Bridgeport, CT) treatments began. Neem and orange water) was poured on each pot. The and the solution was sprayed on the oil treatments were also applied. Treat- leachate was collected in a plastic sau- adaxial and abaxial leaflet surfaces of ments were reapplied weekly. cer. EC and pH were measured [fol- each plant in that treatment. The EXPT.1.In the first experiment, lowing methodology from Cavins remaining coffee tea was used as a 40 debao cycads of similar size were et al. (2000), Bilderback (2001), and drench to saturate the root area. For selected at a nursery and potted in 3-gal Whipker et al. (2001)]. At the start of the ½ tea solution, the same coffee tea pots. We used cycad potting mix, which the experiment, the pH of the well recipe was used and diluted in a 1:1 is composed of Fafard organic soil water was 7.2 and EC was 1 mmho/cm. ratio with water. Total dosage per conditioner (Conrad Fafard, Agawam, Photos and initial insect counts plant (spray + drench) was 0.5 gal. MA); sand, coarse silica sand (Florida were taken showing baseline level of Orange oil (product 9492; Garden- Silica Sand Co., Fort Lauderdale, FL); scale infestation for 40 individuals. In Ville, Austin, TX) and neem oil leaf and expanded clay (Hydroton; Florida all cases, no live insects were found on polish (model SP-NO8; Dyna-Gro Nu- Garden Supplies, Miami, FL) in a the experimental plants at the start of trition Solutions, Richmond, CA) were 1:1:1 ratio by volume. The plants were the experiment, but CAS is prevalent appliedataconcentrationof60mLper grown in full sun from 13 May to on the property’s large cycad collec- gallon. In these treatments, the adaxial 9 Nov. 2010 (Fig. 1). Spent coffee tion located near the experimental and abaxial surfaces of the leaflets were grounds were collected from local area. Plants were watered on the same fully sprayed and the remainder of the coffeehouses weekly. Five replicates schedule, two to three times a week. solution was applied as a soil drench. of six coffee treatments were applied: Coffee mulch treatment con- The oil treatments were also applied at 1) no treatment (control), 2) spent sisted of 500 mL compressed spent a total dose per plant (spray + drench) coffee mulch, 3) coffee tea, 4) half- espresso grounds. Half mulch treat- of 0.5 gal. strength coffee tea, 5) half-strength ment was 250 mL compressed spent Five leaflets were collected from coffee mulch, and 6) mulch and espresso grounds. Compressed espresso each plant and CAS insects were coffee tea. Treatments 7 and 8 were grounds were used to standardize the counted on 23 Sept. and 8 Nov. orange oil and neem oil, respectively. quantity of coffee and water in all 2010. Leaf areas and insect counts were Baseline pH and electrical con- treatments. Drip coffee grounds were measured using ImageJ64 (Rasband, ductivity (EC) pour-through measure- not used because they are more vari- 2012), and insects per square centi- ments were taken before beginning able in initial water content. meter were calculated. treatments using a pH/EC meter The coffee tea was made by mix- Infestation densities were com- (AGRI-METER model AG6/pH; ing 500 mL spent coffee grounds in pared via one-way analysis of variance Myron L Co., Carlsbad, CA). An irriga- 1 gal of water to steep overnight. The (ANOVA) using JMP (version 9.0; tion water leachate pour-through pro- following day the coffee tea was fil- SAS Institute, Cary, NC). Binomial cedure was used (Bilderback, 2001).
Recommended publications
  • Cycad Aulacaspis Scale
    Invasive Insects: Risks and Pathways Project CYCAD AULACASPIS SCALE UPDATED: APRIL 2020 Invasive insects are a huge biosecurity challenge. We profile some of the most harmful insect invaders overseas to show why we must keep them out of Australia. Species Cycad aulacaspis scale / Aulacaspis yasumatsui. Also known as Asian cycad scale. Main impacts Decimates wild cycad populations, kills cultivated cycads. Native range Thailand. Invasive range China, Taiwan, Singapore, Indonesia, Guam, United States, Caribbean Islands, Mexico, France, Ivory Coast1,2. Detected in New Zealand in 2004, but eradicated.2 Main pathways of global spread As a contaminant of traded nursery material (cycads and cycad foliage).3 WHAT TO LOOK OUT FOR The adult female cycad aulacaspis scale has a white cover (scale), 1.2–1.6 mm long, ENVIRONMENTAL variable in shape and sometimes translucent enough to see the orange insect with its IMPACTS OVERSEAS orange eggs beneath. The scale of the male is white and elongate, 0.5–0.6 mm long. Photo: Jeffrey W. Lotz, Florida Department of Agriculture and Consumer Services, The cycad aulacaspis scale has decimated Bugwood.org | CC BY 3.0 cycads on Guam since it appeared there in 2003. The affected species, Cycas micronesica, was once the most common cause cycad extinctions around the world, Taiwan, 100,000 cycads were destroyed tree on Guam, but was listed by the IUCN 7 including in India10 and Indonesia11. The by an outbreak of the scale . It is difficult as endangered in 2006 following attacks continuous removal of plant sap by the to control in cultivation because of high by three insect pests, of which this scale scale depletes cycads of carbohydrates4,9.
    [Show full text]
  • Survival of the Cycad Aulacaspis Scale in Northern Florida During Sub-Freezing Weather
    furcata) (FDACS/DPI, 2002). These thrips are foliage feeders North American Plant Protection Organization’s Phytosanitary causing galling and leaf curl, which is cosmetic and has not Alert System been associated with plant decline. This feeding damage is http://www.pestalert.org only to new foliage and appears to be seasonal. This pest is be- coming established in urban areas causing concern to home- Literature Cited owners and commercial landscapers due to leaf damage. Control is difficult due to protection by leaf galls. Howev- Edwards, G. B. 2002. Pest Alert, Holopothrips sp., an Introduced Thrips Pest er, systemic insecticides are providing some control. No bio- of Trumpet Tree. March 2002. <http://doacs.state.fl.us/~pi/enpp/ ento/images/paholo-pothrips3.02.gif>. controls have been found. FDACS/DPI. 2002. TRI-OLOGY. Mar.-Apr. 2002. Fla. Dept. Agr. Cons. Serv./ Div. Plant Ind. Newsletter, vol. 41, no. 2. <http://doacs.state.fl.us/~pi/ Resources for New Insect Pest Information enpp/02-mar-apr.html>. Howard, F. W., A. Hamon, G. S. Hodges, C. M. Mannion, and J. Wofford. 2002. Lobate Lac Scale, Paratachardina lobata lobata (Chamberlin) (Hemip- The following are some web sites and list serves for addi- tera: Sternorrhyncha: Coccoidea: Kerriidae). Univ. of Fla. Cir., EENY- tional information on new insects pests in Florida. 276. <http://edis.ifas.ufl.edu/IN471>. Hoy, M. A., A. Hamon, and R. Nguyen. 2003. Pink Hibiscus Mealybug, Ma- University of Florida Pest Alert conellicoccus hirsutus (Green) (Insecta: Homoptera: Pseudococcidae). http://extlab7.entnem.ufl.edu/PestAlert/ Univ. of Fla. Cir., EENY-29. <http://creatures.ifas.ufl.edu/orn/mealybug/ mealybug.htm>.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    EVALUATION OF Rhyzobius lophanthae (BLAISDELL) AND Cryptolaemus montrouzieri MULSANT (COLEOPTERA: COCCINELLIDAE) AS PREDATORS OF Aulacaspis yasumatsui TAKAGI (HEMIPTERA: DIASPIDIDAE) By GRETA THORSON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2009 1 © 2009 Greta Thorson 2 To my family for their constant support and encouragement, as well as past and present colleagues and mentors who helped inspire me along the way 3 ACKNOWLEDGMENTS I thank my family for their enthusiasm in helping me collect insects and willingness to store countless specimens in their freezers over the years. I’d especially like to thank my major professor and committee members for lending their experience and encouragement. I’d like to also thank my past mentors who inspired me to pursue entomology as a profession. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 LIST OF ABBREVIATIONS........................................................................................................10 ABSTRACT...................................................................................................................................11
    [Show full text]
  • Report and Recommendations on Cycad Aulacaspis Scale, Aulacaspis Yasumatsui Takagi (Hemiptera: Diaspididae)
    IUCN/SSC Cycad Specialist Group – Subgroup on Invasive Pests Report and Recommendations on Cycad Aulacaspis Scale, Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae) 18 September 2005 Subgroup Members (Affiliated Institution & Location) • William Tang, Subgroup Leader (USDA-APHIS-PPQ, Miami, FL, USA) • Dr. John Donaldson, CSG Chair (South African National Biodiversity Institute & Kirstenbosch National Botanical Garden, Cape Town, South Africa) • Jody Haynes (Montgomery Botanical Center, Miami, FL, USA)1 • Dr. Irene Terry (Department of Biology, University of Utah, Salt Lake City, UT, USA) Consultants • Dr. Anne Brooke (Guam National Wildlife Refuge, Dededo, Guam) • Michael Davenport (Fairchild Tropical Botanic Garden, Miami, FL, USA) • Dr. Thomas Marler (College of Natural & Applied Sciences - AES, University of Guam, Mangilao, Guam) • Christine Wiese (Montgomery Botanical Center, Miami, FL, USA) Introduction The IUCN/SSC Cycad Specialist Group – Subgroup on Invasive Pests was formed in June 2005 to address the emerging threat to wild cycad populations from the artificial spread of insect pests and pathogens of cycads. Recently, an aggressive pest on cycads, the cycad aulacaspis scale (CAS)— Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae)—has spread through human activity and commerce to the point where two species of cycads face imminent extinction in the wild. Given its mission of cycad conservation, we believe the CSG should clearly focus its attention on mitigating the impact of CAS on wild cycad populations and cultivated cycad collections of conservation importance (e.g., Montgomery Botanical Center). The control of CAS in home gardens, commercial nurseries, and city landscapes is outside the scope of this report and is a topic covered in various online resources (see www.montgomerybotanical.org/Pages/CASlinks.htm).
    [Show full text]
  • Risks from Unknown Quarantine Organisms Posed by The
    Recommendation of a Pathway Approach for Regulation of Plants for Planting A Concept Paper from the IUFRO Unit on Alien Invasive Species and International Trade* Issue: A Pathway Approach Is Needed Many forest pests have been introduced into new locations on plants for planting. Mounting scientific evidence suggests that the current pest-by-pest regulatory approach and reliance on inspection to detect pests is untenable in today’s global marketplace. Much recent experience demonstrates the need to curtail the introduction of plant pests that are present in an exporting territory but not yet known to science. Therefore, the forest entomology and pathology science community recommends a pathway approach to regulating nursery stock, similar to that adopted for wood packaging material (WPM). Best management practices effective at preventing known pests will significantly reduce the risk of introducing unknown pests as well. Introduction and Scope There are three problems with the current phytosanitary regulatory approach: 1) It relies on inspection, but the volume of world trade has expanded far beyond inspection capacity. 2) It focuses on addressing the risks associated with known quarantine organisms, but most pests introduced on plants for planting are previously unknown or unpredictably aggressive pests. 3) Article VI.2 of the IPPC prohibits requiring phytosanitary measures against unregulated pests. The limitations of current measures were accepted long ago to prevent the misuse of phytosanitary concerns as artificial barriers to trade. In the ensuing years, however, it has become evident that WPM and plants for planting routinely provide pathways for unanticipated pests. With the adoption of ISPM-15 (FAO, 2002), the exchange of known and unknown pests via WPM has been significantly reduced.
    [Show full text]
  • Invasive Alien Species in Protected Areas
    INVASIVE ALIEN SPECIES AND PROTECTED AREAS A SCOPING REPORT Produced for the World Bank as a contribution to the Global Invasive Species Programme (GISP) March 2007 PART I SCOPING THE SCALE AND NATURE OF INVASIVE ALIEN SPECIES THREATS TO PROTECTED AREAS, IMPEDIMENTS TO IAS MANAGEMENT AND MEANS TO ADDRESS THOSE IMPEDIMENTS. Produced by Maj De Poorter (Invasive Species Specialist Group of the Species Survival Commission of IUCN - The World Conservation Union) with additional material by Syama Pagad (Invasive Species Specialist Group of the Species Survival Commission of IUCN - The World Conservation Union) and Mohammed Irfan Ullah (Ashoka Trust for Research in Ecology and the Environment, Bangalore, India, [email protected]) Disclaimer: the designation of geographical entities in this report does not imply the expression of any opinion whatsoever on the part of IUCN, ISSG, GISP (or its Partners) or the World Bank, concerning the legal status of any country, territory or area, or of its authorities, or concerning the delineation of its frontiers or boundaries. 1 CONTENTS ACKNOWLEDGEMENTS...........................................................................................4 EXECUTIVE SUMMARY ...........................................................................................6 GLOSSARY ..................................................................................................................9 1 INTRODUCTION ...................................................................................................12 1.1 Invasive alien
    [Show full text]
  • Rhyzobius Lophanthae Introduced Against Asian
    ABSTRACT Too Little and Too Late???? Asian Cycad Scale (ACS) Chronology Asian cycad scale (ACS), Aulacaspis yasumatsui, was 1972 – Aulacaspis yasumatsui described in Thailand first detected in Tumon, Guam in December 2003 in front Rhyzobius lophanthae introduced against Asian 1996 – ACS detected in Florida of a hotel where Cycas revoluta, an introduced ornamental 1998 – ACS detected in Hawaii cycad and Cycas micronesica, an indigenous cycad were cycad scale, Aulacaspis yasumatsui, on Guam 2003 – ACS detected on cycads used for landscaping in Guam’s planted. The scale is believed to have been imported from Tumon Bay hotel district Hawaii in 1998 on ornamental cycads. The scale currently R.H. Miller1, A. Moore1, R.N. Muniappan1, A.P. Brooke2 and T.E. Marler1. 2004 – ACS spreads to Cycas revoluta and C. micronesica infests introduced and indigenous cycads on about two 1CNAS-AES, University of Guam, Mangilao, Guam (fadang) throughout Guam thirds of Guam’s 354 square kilometers. Severe 2Guam National Wildlife Refuge, Dededo, Guam 2005 – Ryzobius lophanthae and Coccobius fulvus released on infestations have been observed to kill both species within Guam; Plans made to preserve C. micronesica germplasm from a few months. We fear that C. micronesica may be Guam on the nearby island of Tinian threatened with extinction should the scale spread to the few other Micronesian islands that harbor it. Rhyzobius lophanthae, a coccinellid introduced to Asian Cycad Scale Management Hawaii in 1894 for other scale insects, was imported from Biological Control Agents on Guam Maui to Guam in November 2004 and released on C. Rhyzobius lophanthae micronesica at the Guam National Wildlife Refuge at • Introduced in Hawaii in 1894; Guam ??? 1930s Ritidian point in February 2005.
    [Show full text]
  • References, Sources, Links
    History of Diaspididae Evolution of Nomenclature for Diaspids 1. 1758: Linnaeus assigned 17 species of “Coccus” (the nominal genus of the Coccoidea) in his Systema Naturae: 3 of his species are still recognized as Diaspids (aonidum,ulmi, and salicis). 2. 1828 (circa) Costa proposes 3 subdivisions including Diaspis. 3. 1833, Bouche describes the Genus Aspidiotus 4. 1868 to 1870: Targioni-Tozzetti. 5. 1877: The Signoret Catalogue was the first compilation of the first century of post-Linnaeus systematics of scale insects. It listed 9 genera consisting of 73 species of the diaspididae. 6. 1903: Fernaldi Catalogue listed 35 genera with 420 species. 7. 1966: Borschenius Catalogue listed 335 genera with 1890 species. 8. 1983: 390 genera with 2200 species. 9. 2004: Homptera alone comprised of 32,000 known species. Of these, 2390 species are Diaspididae and 1982 species of Pseudococcidae as reported on Scalenet at the Systematic Entomology Lab. CREDITS & REFERENCES • G. Ferris Armored Scales of North America, (1937) • “A Dictionary of Entomology” Gordh & Headrick • World Crop Pests: Armored Scale Insects, Volume 4A and 4B 1990. • Scalenet (http://198.77.169.79/scalenet/scalenet.htm) • Latest nomenclature changes are cited by Scalenet. • Crop Protection Compendium Diaspididae Distinct sexual dimorphism Immatures: – Nymphs (mobile, but later stages sessile and may develop exuviae). – Pupa & Prepupa (sessile under exuviae, Males Only). Adults – Male (always mobile). – Legs. – 2 pairs of Wing. – Divided head, thorax, and abdomen. – Elongated genital organ (long style & penal sheath). – Female (sessile under exuviae). – Legless (vestigial legs may be present) & Wingless. – Flattened sac-like form (head/thorax/abdomen fused). – Pygidium present (Conchaspids also have exuvia with legs present).
    [Show full text]
  • Cycad Aulacaspis Scale
    CycadCycad AulacaspisAulacaspis ScaleScale InvasiveInvasive PestPest withwith ExtinctionExtinction Potential!Potential! Photo: Anne Brooke, Guam National Wildlife Refuge Jody Haynes Montgomery Botanical Center, 11901 Old Cutler Road, Miami, FL 33156 USA [email protected] GeneralGeneral CycadCycad InformationInformation OrderOrder:: CycadalesCycadales FamiliesFamilies:: BoweniaceaeBoweniaceae,, Cycadaceae,Cycadaceae, Stangeriaceae,Stangeriaceae, ZamiaceaeZamiaceae ExtantExtant speciesspecies:: 302302 currentlycurrently recognizedrecognized Photo: Dennis Stevenson DistributionDistribution:: PantropicalPantropical ConservationConservation statusstatus:: CycadsCycads representrepresent oneone ofof thethe mostmost threatenedthreatened plantplant groupsgroups worldwide;worldwide; >50%>50% listedlisted asas threatenedthreatened oror endangeredendangered Photo: Tom Broome Photo: Mark Bonta AulacaspisAulacaspis yasumatsuiyasumatsui TakagiTakagi OrderOrder:: Hemiptera/HomopteraHemiptera/Homoptera FamilyFamily:: DiaspididaeDiaspididae CommonCommon namesnames:: OfficialOfficial cycadcycad aulacaspisaulacaspis scalescale (CAS)(CAS) OtherOther AsianAsian cycadcycad scale,scale, ThaiThai scale,scale, snowsnow scalescale NativeNative distributiondistribution:: AndamanAndaman IslandsIslands toto Vietnam,Vietnam, W. Tang, USDA-APHIS-PPQ includingincluding ThailandThailand andand probablyprobably Cambodia,Cambodia, Laos,Laos, peninsularpeninsular Malaysia,Malaysia, Myanmar,Myanmar, southernmostsouthernmost China,China, andand possiblypossibly
    [Show full text]
  • The Biology and Ecology of Armored Scales
    Copyright 1975. All rights resenetl THE BIOLOGY AND ECOLOGY +6080 OF ARMORED SCALES 1,2 John W. Beardsley Jr. and Roberto H. Gonzalez Department of Entomology, University of Hawaii. Honolulu. Hawaii 96822 and Plant Production and Protection Division. Food and Agriculture Organization. Rome. Italy The armored scales (Family Diaspididae) constitute one of the most successful groups of plant-parasitic arthropods and include some of the most damaging and refractory pests of perennial crops and ornamentals. The Diaspididae is the largest and most specialized of the dozen or so currently recognized families which compose the superfamily Coccoidea. A recent world catalog (19) lists 338 valid genera and approximately 1700 species of armored scales. Although the diaspidids have been more intensively studied than any other group of coccids, probably no more than half of the existing forms have been recognized and named. Armored scales occur virtually everywhere perennial vascular plants are found, although a few of the most isolated oceanic islands (e.g. the Hawaiian group) apparently have no endemic representatives and are populated entirely by recent adventives. In general. the greatest numbers and diversity of genera and species occur in the tropics. subtropics. and warmer portions of the temperate zones. With the exclusion of the so-called palm scales (Phoenicococcus. Halimococcus. and their allies) which most coccid taxonomists now place elsewhere (19. 26. 99). the armored scale insects are a biologically and morphologically distinct and Access provided by CNRS-Multi-Site on 03/25/16. For personal use only. Annu. Rev. Entomol. 1975.20:47-73. Downloaded from www.annualreviews.org homogenous group.
    [Show full text]
  • Department of the Interior
    Vol. 79 Wednesday, No. 190 October 1, 2014 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for 21 Species and Proposed Threatened Status for 2 Species in Guam and the Commonwealth of the Northern Mariana Islands; Proposed Rule VerDate Sep<11>2014 17:56 Sep 30, 2014 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\01OCP2.SGM 01OCP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 59364 Federal Register / Vol. 79, No. 190 / Wednesday, October 1, 2014 / Proposed Rules DEPARTMENT OF THE INTERIOR ES–2014–0038; Division of Policy and butterfly (Hypolimnas octocula Directives Management; U.S. Fish & mariannensis; NCN), the Mariana Fish and Wildlife Service Wildlife Headquarters, MS: BPHC, 5275 wandering butterfly (Vagrans egistina; Leesburg Pike, Falls Church, VA 22041– NCN), the Rota blue damselfly (Ischnura 50 CFR Part 17 3803. luta; NCN), the fragile tree snail [Docket No. FWS–R1–ES–2014–0038: We request that you send comments (Samoana fragilis; akaleha), the Guam 4500030113] only by the methods described above. tree snail (Partula radiolata; akaleha), We will post all comments on http:// the humped tree snail (Partula gibba; www.regulations.gov. This generally akaleha), and Langford’s tree snail RIN 1018–BA13 means that we will post any personal (Partula langfordi; akaleha)). Two plant species (Cycas micronesica (fadang) and Endangered and Threatened Wildlife information you provide us (see Public Tabernaemontana rotensis (NCN)) are and Plants; Proposed Endangered Comments below for more information). proposed for listing as threatened Status for 21 Species and Proposed FOR FURTHER INFORMATION CONTACT: species.
    [Show full text]
  • New Scale Insect (Hemiptera: Coccomorpha) Records for The
    DOI:http://dx.doi.org/10.16969/teb.16125 Türk. entomol. bült., 2015, 5(2): 59-68 ISSN 2146-975X Original article (Orijinal araştırma) New scale insect (Hemiptera: Coccomorpha) records for the Turkish Republic of Northern Cyprus Kuzey Kıbrıs Türk Cumhuriyeti için yeni kayıt coccoid (Hemiptera: Coccomorpha) türleri Selma ÜLGENTÜRK*1 M. Bora KAYDAN2 Sema ŞİŞMAN HOCALİ3 Summary Surveys of scale insects were carried out on infested fruits and ornamental plants in the Turkish Republic of North Cyprus during July 2013. Nine scale insect species were determined, four of which are new records for the Turkish Republic of Northern Cyprus fauna. The new records include: Anophococcus formicicola (Newstead) (Acanthococcidae), Aulacaspis yasumatsui Takagi (Diaspididae), Parasaissetia nigra (Nietner) (Coccidae), and Phenacoccus maderiensis (Green) (Pseudococcidae). Keywords: Invasive species, Planococcus ficus, Ceroplastes floridensis, Coccus hesperidum. Özet Bu çalışmada Kuzey Kıbrıs Türk Cumhuriyeti'ne Temmuz 2013 yılında sürveyler düzenlenmiş ve coccoidler ile bulaşık meyve ve süs bitkilerinin farklı organları örneklenmiştir. Çalışma sonucunda Anophococcus formicicola (Newstead) (Acanthococcidae), Aulacaspis yasumatsui Takagi (Diaspididae), Parasaissetia nigra (Nietner) (Coccidae) ve Phenacoccus maderiensis (Green) (Pseudococcidae) türleri ülke için yeni kayıt olmak üzere dokuz coccoid türü belirlenmiştir. Anahtar sözcükler: İstilacı türler, Planococcus ficus, Ceroplastes floridensis, Coccus hesperidum 1 Ankara University, Agriculture Faculty, Plant
    [Show full text]