Pack Ice Thickness Measurements in Nares Strait Collected with Helicopter-Borne Electromagnetic-Laser Sensors During August 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paleocene Alkaline Volcanism in the Nares Strait Region Related to Strike-Slip Tectonics
Paleocene Alkaline Volcanism in the Nares Strait Region Related to Strike-slip Tectonics Solveig Estrada & Detlef Damaske Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany ([email protected]) The tectonic development of the North Atlantic, the Labrador Sea/Baffin Bay and the Eurasian Basin of Arctic Ocean led to relative movements between the Greenland Plate and the North American Plate. There has been a debate for many years, whether the Nares Strait between northwest Greenland and Ellesmere Island marks an ancient plate boundary in terms of a left-lateral transform fault (Wegener Fault) or whether there was no movement between Greenland and Ellesmere Island at all. New data were acquired during joint German-Canadian geological field work on northeast Ellesmere Island 1998-2000 (Mayr 2008), followed in 2001 by a geoscience cruise in Nares Strait (Tessensohn et al. 2006). Indications for sinistral strike-slip movements followed by compressive tectonics were found at the western margin of northern Nares Strait (Saalmann et al. 2005). Paleogene basins on Judge Daly Promontory, northeast Ellesmere Island, are bounded by a complex pattern of strike-slip and thrust faults. The clastic sediments in the basins are rich in volcanogenic material. Volcanic pebbles within the Cape Back basin near Nares Strait are derived from lava flows and ignimbrites of a continental rift-related, strongly differentiated, highly incompatible element enriched, alkaline volcanic suite (Estrada et al. 2009). 40Ar/39Ar amphibole and alkali feldspar ages indicate that volcanism was active around 61–58 Ma and was probably contemporaneous with sedimentation within the Paleogene pull-apart basins on Judge Daly Promontory formed by sinistral strike-slip tectonics parallel to the present-day Nares Strait. -
Chapter 8 Polar Bear Harvesting in Baffin Bay and Kane Basin: a Summary of Historical Harvest and Harvest Reporting, 1993 to 2014
Chapter 8 SWG Final Report CHAPTER 8 POLAR BEAR HARVESTING IN BAFFIN BAY AND KANE BASIN: A SUMMARY OF HISTORICAL HARVEST AND HARVEST REPORTING, 1993 TO 2014 KEY FINDINGS Both Canada (Nunavut) and Greenland harvest from the shared subpopulations of polar • bears in Baffin Bay and Kane Basin. During 1993-2005 (i.e., before quotas were introduced in Greenland) the combined • annual harvest averaged 165 polar bears (range: 120-268) from the Baffin Bay subpopulation and 12 polar bears (range: 6-26) from Kane Basin (for several of the years, harvest reported from Kane Basin was based on an estimate). During 2006-2014 the combined annual harvest averaged 161 (range: 138-176) from • Baffin Bay and 6 (range: 3-9) polar bears from Kane Basin. Total harvest peaked between 2002 and 2005 coinciding with several events in harvest • reporting and harvest management in both Canada and Greenland. In Baffin Bay the sex ratio of the combined harvest has remained around 2:1 (male: • females) with an annual mean of 35% females amongst independent bears. In Kane Basin the sex composition of the combined harvest was 33% females overall for • the period 1993-2014. The estimated composition of the harvest since the introduction of a quota in Greenland is 44% female but the factual basis for estimation of the sex ratio in the harvest is weak. In Greenland the vast majority of bears are harvested between January and June in Baffin • Bay and Kane Basin whereas in Nunavut ca. 40% of the harvest in Baffin Bay is in the summer to fall (August – November) while bears are on or near shore. -
Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait
Polarforschung 74 (1-3), 129 – 160, 2004 (erschienen 2006) In Search of the Wegener Fault: Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait by J. Christopher Harrison1 Abstract: A total of 28 geological-geophysical markers are identified that lich der Bache Peninsula und Linksseitenverschiebungen am Judge-Daly- relate to the question of strike slip motions along and bordering Nares Strait. Störungssystem (70 km) und schließlich die S-, später SW-gerichtete Eight of the twelve markers, located within the Phanerozoic orogen of Kompression des Sverdrup-Beckens (100 + 35 km). Die spätere Deformation Kennedy Channel – Robeson Channel region, permit between 65 and 75 km wird auf die Rotation (entgegen dem Uhrzeigersinn) und ausweichende West- of sinistral offset on the Judge Daly Fault System (JDFS). In contrast, eight of drift eines semi-rigiden nördlichen Ellesmere-Blocks während der Kollision nine markers located in Kane Basin, Smith Sound and northern Baffin Bay mit der Grönlandplatte zurückgeführt. indicate no lateral displacement at all. Especially convincing is evidence, presented by DAMASKE & OAKEY (2006), that at least one basic dyke of Neoproterozoic age extends across Smith Sound from Inglefield Land to inshore eastern Ellesmere Island without any recognizable strike slip offset. INTRODUCTION These results confirm that no major sinistral fault exists in southern Nares Strait. It is apparent to both earth scientists and the general public To account for the absence of a Wegener Fault in most parts of Nares Strait, that the shape of both coastlines and continental margins of the present paper would locate the late Paleocene-Eocene Greenland plate boundary on an interconnected system of faults that are 1) traced through western Greenland and eastern Arctic Canada provide for a Jones Sound in the south, 2) lie between the Eurekan Orogen and the Precam- satisfactory restoration of the opposing lands. -
ARCTIC Exploration the SEARCH for FRANKLIN
CATALOGUE THREE HUNDRED TWENTY-EIGHT ARCTIC EXPLORATION & THE SeaRCH FOR FRANKLIN WILLIAM REESE COMPANY 409 Temple Street New Haven, CT 06511 (203) 789-8081 A Note This catalogue is devoted to Arctic exploration, the search for the Northwest Passage, and the later search for Sir John Franklin. It features many volumes from a distinguished private collection recently purchased by us, and only a few of the items here have appeared in previous catalogues. Notable works are the famous Drage account of 1749, many of the works of naturalist/explorer Sir John Richardson, many of the accounts of Franklin search expeditions from the 1850s, a lovely set of Parry’s voyages, a large number of the Admiralty “Blue Books” related to the search for Franklin, and many other classic narratives. This is one of 75 copies of this catalogue specially printed in color. Available on request or via our website are our recent catalogues: 320 Manuscripts & Archives, 322 Forty Years a Bookseller, 323 For Readers of All Ages: Recent Acquisitions in Americana, 324 American Military History, 326 Travellers & the American Scene, and 327 World Travel & Voyages; Bulletins 36 American Views & Cartography, 37 Flat: Single Sig- nificant Sheets, 38 Images of the American West, and 39 Manuscripts; e-lists (only available on our website) The Annex Flat Files: An Illustrated Americana Miscellany, Here a Map, There a Map, Everywhere a Map..., and Original Works of Art, and many more topical lists. Some of our catalogues, as well as some recent topical lists, are now posted on the internet at www.reeseco.com. -
Canadian Arctic Tide Measurement Techniques and Results
International Hydrographie Review, Monaco, LXIII (2), July 1986 CANADIAN ARCTIC TIDE MEASUREMENT TECHNIQUES AND RESULTS by B.J. TAIT, S.T. GRANT, D. St.-JACQUES and F. STEPHENSON (*) ABSTRACT About 10 years ago the Canadian Hydrographic Service recognized the need for a planned approach to completing tide and current surveys of the Canadian Arctic Archipelago in order to meet the requirements of marine shipping and construction industries as well as the needs of environmental studies related to resource development. Therefore, a program of tidal surveys was begun which has resulted in a data base of tidal records covering most of the Archipelago. In this paper the problems faced by tidal surveyors and others working in the harsh Arctic environment are described and the variety of equipment and techniques developed for short, medium and long-term deployments are reported. The tidal characteris tics throughout the Archipelago, determined primarily from these surveys, are briefly summarized. It was also recognized that there would be a need for real time tidal data by engineers, surveyors and mariners. Since the existing permanent tide gauges in the Arctic do not have this capability, a project was started in the early 1980’s to develop and construct a new permanent gauging system. The first of these gauges was constructed during the summer of 1985 and is described. INTRODUCTION The Canadian Arctic Archipelago shown in Figure 1 is a large group of islands north of the mainland of Canada bounded on the west by the Beaufort Sea, on the north by the Arctic Ocean and on the east by Davis Strait, Baffin Bay and Greenland and split through the middle by Parry Channel which constitutes most of the famous North West Passage. -
Fall Ice Drift in Nares Strait, As Observed by Sideways-Looking
ARCTIC VOL. 32. NO. 4 (DEC. 1979). P. 283-307 Fall Ice Drift in Nares Strait, as Observedby Sideways-Looking Airborne Radar MOIRA DUNBAR’ ABSTRACT. From Sideways-Looking Airborne Radar (SLAR) imagery of sea ice obtained on three flights during the week of 19 to 26 Oct. 1976 it is possible to track floes throughout Nares Strait over periods of days and, on one occasion, hours. The dataare interpreted in the lightof available information on ice drift, winds, and currents. The results are believed to give a fairly typical picture of ice drift characteristics in periods of northerly air flow, which is the dominant pattern in this area. The suitability of the method for acquiring drift information in other areas is also demonstrated. RfiSUMk Des clichés SLAR de glace de mer, pris lors de trois vols, pendant la semaine du 19 au 26 octobre 1976, permettaient de suivre de près des glaces flottantes dans la détroit de Nares pendant des jours et des heures à une occasion. Certainement les résultats donnent une image typique correcte des proprietts de la dérive des glaces pendant les périodes où le vent du Nord souffle, ce qui est le cas génèralement dans cette région. C’était un bon exemple de crtdibilité de la mbthode à appliquer dans l’autres régions pour acquérir de l’information sur la dèrive des glaces. Traduit par Alain de Vendegies, Aquitaine Co. of Canada Ltd. INTRODUCTION The imagery on which this study is based was obtained by a Canadian Forces Argus aircraft as part of a joint CanadianlUK exercise designed primarily to provide top and bottom profiles of ice in the Arctic Ocean. -
September 2009 Regional Sea Ice Outlooks: July Report Community
September 2009 Regional Sea Ice Outlooks: July Report Community Contributions 1 Table of Contents Hajo Eicken, Chris Petrich, and Mette Kaufman 3–6 Oleg Pokrovsky 7–9 Don Perovich 10 Charles Fowler, Sheldon Drobot, and James Maslanik 11–15 Jinlun Zhang 16–17 Preben Gudmandsen, Ron Kwok, Andreas Muenchow, Roger Samelson, and Jeremy Wilkinson 18–20 Stephen Howell and Claude Duguay 21–22 Sebastian Gerland and Harvey Goodwin 23–26 2 September 2009 Regional Sea Ice Outlook: July Report A regional perspective on ice evolution in the Pacific Arctic sector (SIZONet project) Submitted By: Hajo Eicken, Chris Petrich, and Mette Kaufman on behalf of the Seasonal Ice Zone Observing Network (SIZONet) Contact information Hajo Eicken: [email protected] Chris Petrich: [email protected] Mette Kaufman: [email protected] SIZONet: http://www.sizonet.org With support from the National Science Foundation’s Arctic Observing Network Program and the Alaska Ocean Observing System. (1) Region of interest: Bering-Chukchi-Beaufort Seas (2) Ice development and status in early July 2009 Ice extent: • Passive microwave data (SSM/I) distributed by the National Snow and Ice Data Center (NSIDC) indicate above-normal ice extent in the Bering Sea for April 2009 (Figure 1). Starting in early May, vigorous and early melt resulted in rapid northward retreat of the ice edge to below normal extent in June and early July (Figure 2). Ice thickness and ice characteristics: • Eastern Chukchi/Western Beaufort Sea: End-of-winter ice thickness distribution as presented in our June Report, i.e., much less multiyear ice of thickness comparable to previous years (3.6 m total level ice thickness mode) and first-year ice thicknesses comparable to or thicker than past years (1.7 m total level ice thickness mode with thicker deformed ice). -
Ice Regime and Ice Transport in Nares Strait
Ice Regime and Ice Transport in Nares Strait MOIRA DUNBAR1 ABSTRACT. In order to assess the part played by ice export through the Canadian Arctic Archipelago in the heat budget of the Arctic Ocean, one of the factors that must be known is the length of time per year that the channels are sealed by fast ice. To establish this for Nares Strait a series of flights was undertaken through the winters of 1970-71 and 1971-72. The resulting observations, combined with a search of historical records, suggest that the dateof consolidation of ice in this channel tends to be late. A tentative calculation of annual export leads to the conclusion that the contribution of the Canadian channels may be greater than has been supposed. RfiSUMe. Rdgime et transport des glacesdans le ddtroit de Nares.Pour Bvaluer la part que jouel’exportation des glaces51 travers les chenaux arctiques dans lebilan thermique de l’océan Arctique, l‘un des facteurs qu’il faut connaître est la longueur de la pBriode annuelle pendantlaquelle les chenaux sont bloquBs par la glace fixBe. Pour le constater dans le d6troit de Nares, nous avons entrepris une sBrie d‘envolks pendant les hivers de 1970-1971 et 1971-1972. Nos observations, jointes à une recherche de données historiques, nous suggèrent que la datede consolidation de la glace dans ce chenal tend B être tardive. Un essai de calcul de l’exportation annuelle nous amène 51 conclure que la contribution des chenaux canadienspourrait êtreplus grande qu’on ne l’avait supposé. INTRODUCTION Estimates of ice transport out of the Arctic Ocean are quite varied, which is not surprising in view of the fact that they are based on a number of other factors, all of which are imperfectly known. -
The Nares 2001 Geoscience Project: an Introduction
Polarforschung 74 (1-3), 1 – 7, 2004 (erschienen 2006) The Nares 2001 Geoscience Project: An Introduction by Ian D. Reid1, H. Ruth Jackson2 and Franz Tessensohn3 Abstract: Nares Strait forms a rather straight set of narrow marine channels Onshore geological evidence, however, implied that no more between Greenland and the Canadian Arctic Islands. Since 1982, the Nares than 25 km of offset had taken place (MAY R & DE VRIES 1982), Strait dilemma forms a classical case of conflict between plate tectonics and regional geology without obvious solution. Plate tectonics postulated a sinis- and this discrepancy has given rise to a long-standing contro- tral continental transform through the strait, whereas regional geological versy. The situation is complicated by the fact that in addition mapping results could not find evidence for the required offsets. Between to the postulated Wegener Fault two more important tectonic 1982 and 2000 new data were gathered in northern Baffin Bay and on either side of the Strait, yet the Strait itself had still not been investigated. We report boundaries are mapped to lie under the waters of the northern on an expedition carried out in 2001 in the previously unexplored water co- part of Nares Strait (Fig. 1). The question: Did Greenland drift vered area. In spite of the difficult ice conditions, we gathered new marine, along Nares Strait? has been argued for more than 90 years, aeromagnetic and geological data relevant to the problem. The results are AWES presented in this volume together with compilations of the related geological and was the subject of a major symposium in 1980 (D & and geophysical data bases. -
The Holocene History of Nares Strait Transition from Glacial Bay to Arctic-Atlantic Throughflow
THE CHANGING ARCTIC OCEAN | SpECIAL ISSUE ON THE IntERNATIONAL POLAR YEAr (2007–2009) THE HOLOCENE HISTORY OF NARES STRAIT Transition from Glacial Bay to Arctic-Atlantic Throughflow BY AnnE E. JEnnINGS, CHRISTINA SHELDON, THOMAS M. CRONIN, PIERRE FRANCUS, JOSEPH StONER, AND JOHN AnDREWS Moderate Resolution Imaging Spectroradiometer (MODIS) image from August 2002 shows the summer thaw around Ellesmere Island, Canada (west), and Northwest Greenland (east). As summer progresses, the snow retreats from the coastlines, exposing the bare, rocky ground, and seasonal sea ice melts in fjords and inlets. Between the two landmasses, Nares Strait joins the Arctic Ocean (north) to Baffin Bay (south). From http://visibleearth.nasa.gov/view_rec.php?id=3975 26 Oceanography | Vol.24, No.3 ABSTRACT. Retreat of glacier ice from Nares Strait and other straits in the Nares Strait and the subsequent evolu- Canadian Arctic Archipelago after the end of the last Ice Age initiated an important tion of Holocene environments. In connection between the Arctic and the North Atlantic Oceans, allowing development August 2003, the scientific party aboard of modern ocean circulation in Baffin Bay and the Labrador Sea. As low-salinity, USCGC Healy collected a sediment nutrient-rich Arctic Water began to enter Baffin Bay, it contributed to the Baffin and core, HLY03-05GC, from Hall Basin, Labrador currents flowing southward. This enhanced freshwater inflow must have northern Nares Strait, as part of a study influenced the sea ice regime and likely is responsible for poor -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMT UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE HOME ONLY LONG ENOUGH: ARCTIC EXPLORER ROBERT E. PEARY, AMERICAN SCIENCE, NATIONALISM, AND PHILANTHROPY, 1886-1908 A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy By KELLY L. LANKFORD Norman, Oklahoma 2003 UMI Number: 3082960 UMI UMI Microform 3082960 Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Titie 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 c Copyright by KELLY LARA LANKFORD 2003 All Rights Reserved. -
Publications in Biological Oceanography, No
National Museums National Museum of Canada of Natural Sciences Ottawa 1971 Publications in Biological Oceanography, No. 3 The Marine Molluscs of Arctic Canada Elizabeth Macpherson CALIFORNIA OF SCIK NCCS ACADEMY |] JAH ' 7 1972 LIBRARY Publications en oceanographie biologique, no 3 Musees nationaux Musee national des du Canada Sciences naturelles 1. Belcher Islands 2. Evans Strait 3. Fisher Strait 4. Southampton Island 5. Roes Welcome Sound 6. Repulse Bay 7. Frozen Strait 8. Foxe Channel 9. Melville Peninsula 10. Frobisher Bay 11. Cumberland Sound 12. Fury and Hecia Strait 13. Boothia Peninsula 14. Prince Regent Inlet 15. Admiralty Inlet 16. Eclipse Sound 17. Lancaster Sound 18. Barrow Strait 19. Viscount Melville Sound 20. Wellington Channel 21. Penny Strait 22. Crozier Channel 23. Prince Patrick Island 24. Jones Sound 25. Borden Island 26. Wilkins Strait 27. Prince Gustaf Adolf Sea 28. Ellef Ringnes Island 29. Eureka Sound 30. Nansen Sound 31. Smith Sound 32. Kane Basin 33. Kennedy Channel 34. Hall Basin 35. Lincoln Sea 36. Chantrey Inlet 37. James Ross Strait 38. M'Clure Strait 39. Dease Strait 40. Melville Sound 41. Bathurst Inlet 42. Coronation Gulf 43. Dolphin and Union Strait 44. Darnley Bay 45. Prince of Wales Strait 46. Franklin Bay 47. Liverpool Bay 48. Mackenzie Bay 49. Herschel Island Map 1 Geographical Distribution of Recorded Specimens CANADA DEPARTMENT OF ENERGY, MINES AND RESOURCES CANADASURVEYS AND MAPPING BRANCH A. Southeast region C. North region B. Northeast region D. Northwest region Digitized by tlie Internet Archive in 2011 with funding from California Academy of Sciences Library http://www.archive.org/details/publicationsinbi31nati The Marine Molluscs of Arctic Canada Prosobranch Gastropods, Chitons and Scaphopods National Museum of Natural Sciences Musee national des sciences naturelles Publications in Biological Publications d'oceanographie Oceanography, No.