Red Cell Biology & its Disorders SUPPLEMENTARY APPENDIX NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms Naiara Santana-Codina,1,* Sebastian Gableske,1,* Maria Quiles del Rey,1 Beata Małachowska,2,3 Mark P. Jedrychowski,1,4 Douglas E. Biancur,1 Paul J. Schmidt,5 Mark D. Fleming,5 Wojciech Fendler,1,2 J. Wade Harper,4,# Alec C. Kimmelman6,# and Joseph D. Mancias1 1Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; 2De- partment of Biostatistics and Translational Medicine, Medical University of Lodz, Poland; 3Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland; 4Department of Cell Biology, Harvard Medical School, Boston, MA, USA; 5Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA and 6Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA * These authors contributed equally to this work ©2019 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2018.204123 Received: August 10, 2018. Accepted: January 9, 2019. Pre-published: January 10, 2019. Correspondence: JOSEPH D. MANCIAS -
[email protected] SUPPLEMENTARY INFORMATION SUPPLEMENTAL EXPERIMENTAL PROCEDURES Cell culture. Cells were cultured in a humidified incubator at 37°C and 5% carbon dioxide (CO2). HEK-293T and K562 cell lines were obtained from the American Type Culture Collection (ATCC, Manassas, Virginia) and tested for mycoplasma contamination by PCR. Cells were grown in DMEM (HEK-293T, Life Technologies, 11965) or IMDM (K562, Thermo Fisher 12440053) with 10% FBS and 1% Pen/Strep (Life Technologies 15140).