Comparative Genomics of Protoploid Saccharomycetaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heat Resistance of Vegetative Cells and Asci of Two Zygosac- Charomyces Yeasts in Broths at Different Water Activity Values
835 Journal of Food Protection, Vol. 50, No. 10, Pages 835-841 (October 1987) Copyright1 International Association of Milk, Food and Environmental Sanitarians Heat Resistance of Vegetative Cells and Asci of Two Zygosac- charomyces Yeasts in Broths at Different Water Activity Values MARCO F. G. JERMINI1 and WILHELM SCHMIDT-LORENZ* Food Microbiology Laboratory, Department of Food Science, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland Downloaded from http://meridian.allenpress.com/jfp/article-pdf/50/10/835/1651027/0362-028x-50_10_835.pdf by guest on 01 October 2021 (Received for publication February 2, 1987) ABSTRACT solutions of sucrose or in sucrose-glucose mixtures at re duced a (19). Since the influence of lyophilization on The heat resistance of vegetative cells and asci of two os- w motolerant yeasts (Zygosaccharomyces rouxii and Z. bailii) was heat resistance has not yet been investigated, great cau tion is needed in evaluating those results. investigated in two different broths of aw 0.963 and 0.858, re spectively. The highest heat resistance was observed with asci Corry (12) demonstrated that the heat resistance of of Z. bailii LMZ 108, showing a decimal reduction time CD- Saccharomyces rouxii at 65°C, pH 6.5 and aw 0.95 was value) at 60°C and aw 0.858 of 14.9 min. Asci of Z. rouxii at the highest levels in solutions of sucrose, less in sor v LMZ 100 were less heat resistant (D60=c- alue at aw 0.858 = 3.5 bitol and least in solutions of glucose, fructose and min). The heat resistance (D-values) of asci at aw 0.963 proved glycerol. -
Saccharomyces Eubayanus, the Missing Link to Lager Beer Yeasts
MICROBE PROFILE Sampaio, Microbiology 2018;164:1069–1071 DOI 10.1099/mic.0.000677 Microbe Profile: Saccharomyces eubayanus, the missing link to lager beer yeasts Jose Paulo Sampaio* Graphical abstract Ecology and phylogeny of Saccharomyces eubayanus. (a) The ecological niche of S. eubayanus in the Southern Hemisphere – Nothofagus spp. (southern beech) and sugar-rich fructifications (stromata) of its fungal biotrophic parasite Cyttaria spp., that can attain the size of golf balls. (b) Schematic representation of the phylogenetic position of S. eubayanus within the genus Saccharomyces based on whole-genome sequences. Occurrence in natural environments (wild) or participation in different human-driven fermentations is highlighted, together with the thermotolerant or cold-tolerant nature of each species and the origins of S. pastorianus, the lager beer hybrid. Abstract Saccharomyces eubayanus was described less than 10 years ago and its discovery settled the long-lasting debate on the origins of the cold-tolerant yeast responsible for lager beer fermentation. The largest share of the genetic diversity of S. eubayanus is located in South America, and strains of this species have not yet been found in Europe. One or more hybridization events between S. eubayanus and S. cerevisiae ale beer strains gave rise to S. pastorianus, the allopolyploid yeasts responsible for lager beer production worldwide. The identification of the missing progenitor of lager yeast opened new avenues for brewing yeast research. It allowed not only the selective breeding of new lager strains, but revealed also a wild yeast with interesting brewing abilities so that a beer solely fermented by S. eubayanus is currently on the market. -
Saccharomyces Cerevisiae Var. Diastaticus and Advanced Techniques for Its Detection Aimee L
The Devil in the Details: Saccharomyces cerevisiae var. Diastaticus and Advanced Techniques for its Detection Aimee L. Garlit, PhD Dogfish Head Craft Brewery Monday June 5, 2017 Saccharomyces cerevisiae var. Diastaticus • First described by Andrews and Gilliland in 1952 • Originally named Saccharomyces diastaticus, later re-classified as a variant of S. cerevisiae • Named for diastatic properties (ability to cleave dextrin) • Also observed to produce phenolic aromas and flavors • Similar cell morphology to Gilliland, RB. Saccharomyces diastaticus Belgian strains – a starch-fermenting yeast. J. Inst. Brew. Vol. 72. 1966. A yeast by any other name… • Not always a contaminant • Can be used intentionally for a dry Belgian ale • Use caution when using attenuative Belgian strains Diastaticus contamination can wreak havoc • Ability to ferment dextrins leads to superattenuation • If attenuation does not finish in fermenter -> exploding packages • Contaminated beer will usually be out of spec for ABV (high), AE (low) and have phenolic aromas and flavors • Impossible to blend off out- of-spec beer unless pasteurizing An ever more common issue • Several product recalls and recoveries associated with this organism • Left Hand recall – nitro Milk Stout bottles • Bell’s Winter White – discussed at CBC 2017 • Dogfish encountered in late 2016. Suspicious colonies and puzzling sequencing data • Namaste White, a Belgian witbier • Observed growth on LCSM late in propagation • Sent for sequencing and received: Let’s keep an eye on it… • Canceled harvest -
Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult. -
Candida Albicans from Wikipedia, the Free Encyclopedia
Candida albicans From Wikipedia, the free encyclopedia Candida albicans is a type of yeast that is a common member of the human gut flora. It does not proliferate outside the human body.[4] It is Candida albicans detected in the gastrointestinal tract and mouth in 40-60% of healthy adults.[5][6] It is usually a commensal organism, but can become pathogenic in immunocompromised individuals under a variety of conditions.[6][7] It is one of the few species of the Candida genus that causes the human infection candidiasis, which results from an overgrowth of the fungus.[6][7] Candidiasis is for example often observed in HIV-infected patients.[8] C. albicans is the most common fungal species isolated from biofilms either formed on (permanent) implanted medical devices or on human Candida albicans visualised using [9][10] tissue. C. albicans, together with C. tropicalis, C. parapsilosis scanning electron microscopy. Note the and C. glabrata, is responsible for 50–90% of all cases of candidiasis in abundant hypal mass. humans.[7][11][12] A mortality rate of 40% has been reported for patients with systemic candidiasis due to C. albicans.[13] Estimates Scientific classification range from 2800 to 11200 deaths caused annually in the USA due to C. Kingdom: Fungi albicans causes candidiasis.[14] Division: Ascomycota C. albicans is commonly used as a model organism for biology. It is generally referred to as a dimorphic fungus since it grows both as yeast Class: Saccharomycetes and filamentous cells. However it has several different morphological Order: Saccharomycetales phenotypes. C. albicans was for a long time considered an obligate diploid organism without a haploid stage. -
(Vles) in the Yeast Debaryomyces Hansenii
toxins Article New Cytoplasmic Virus-Like Elements (VLEs) in the Yeast Debaryomyces hansenii Xymena Połomska 1,* ,Cécile Neuvéglise 2, Joanna Zyzak 3, Barbara Zarowska˙ 1, Serge Casaregola 4 and Zbigniew Lazar 1 1 Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences (WUELS), 50-375 Wroclaw, Poland; [email protected] (B.Z.);˙ [email protected] (Z.L.) 2 SPO, INRAE, Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France; [email protected] 3 Department of Microbiology, Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; [email protected] 4 INRAE, AgroParisTech, Micalis Institute, CIRM-Levures, Université Paris-Saclay, 78350 Jouy-en-Josas, France; [email protected] * Correspondence: [email protected]; Tel.: +48-71-3207-791 Abstract: Yeasts can have additional genetic information in the form of cytoplasmic linear dsDNA molecules called virus-like elements (VLEs). Some of them encode killer toxins. The aim of this work was to investigate the prevalence of such elements in D. hansenii killer yeast deposited in culture collections as well as in strains freshly isolated from blue cheeses. Possible benefits to the host from harboring such VLEs were analyzed. VLEs occurred frequently among fresh D. hansenii isolates (15/60 strains), as opposed to strains obtained from culture collections (0/75 strains). Eight new different systems were identified: four composed of two elements and four of three elements. Full sequences of three new VLE systems obtained by NGS revealed extremely high conservation Citation: Połomska, X.; Neuvéglise, among the largest molecules in these systems except for one ORF, probably encoding a protein C.; Zyzak, J.; Zarowska,˙ B.; resembling immunity determinant to killer toxins of VLE origin in other yeast species. -
Yeasts and Yeast-Like Fungi As an Element of Purity Assessment of Surface Waters
Polish J. of Environ. Stud. Vol. 20, No. 2 (2011), 267-274 Original Research Yeasts and Yeast-Like Fungi as an Element of Purity Assessment of Surface Waters Anna Biedunkiewicz*, Ewelina Baranowska Chair of Mycology, University of Warmia and Mazury, Oczapowskiego 1A, 10-957 Olsztyn, Poland Received: 2 August 2010 Accepted: 9 November 2010 Abstract The aim of our study was to determine species biodiversity of yeasts and yeast-like fungi in the stratum of surface water of Lake Tyrsko, as well as to evaluate the condition of waters of that lake based on the iso- lated species of fungi. The study was carried out from June 2007 to June 2008. The isolation and determination of the number of fungal colonies were conducted with the use of the membrane filter method. Fungal diagnostics were con- ducted based on the morphological and biochemical characteristics of the fungi. These characteristics were additionally used for taxonomic identification. In the course of the study we isolated 56 species of yeasts and yeast-like fungi belonging to 26 genera, with the predominating genus being Kluyveromyces (13 species), followed by less frequent genera: Candida (8 species), and Debaryomyces (7 species). The highest number of isolates were obtained in the spring (51), fewer in the summer (36), and the lowest in autumn (15). Species indicatory of the self-purifying process of the water examined were frequently isolated (Debaryomyces hansenii, Pichia membranifaciens). Results obtained in the study confirm suggestions of other authors that yeasts and yeast-like fungi may be useful as indicatory organisms showing the extent and character of water contamination and as bioindicators of sanitary and hygienic evaluation of water. -
Lachancea Thermotolerans Applications in Wine Technology
fermentation Review Lachancea thermotolerans Applications in Wine Technology Antonio Morata 1,* ID , Iris Loira 1 ID , Wendu Tesfaye 1, María Antonia Bañuelos 2, Carmen González 1 and José Antonio Suárez Lepe 1 1 Department of Chemistry and Food Technology, ETSIAAB, Technical University of Madrid, 28040 Madrid, Spain; [email protected] (I.L.); [email protected] (W.T.); [email protected] (C.G.); [email protected] (J.A.S.L.) 2 Department of Biotechnology-Plant Biology, ETSIAAB, Technical University of Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected] Received: 20 June 2018; Accepted: 6 July 2018; Published: 11 July 2018 Abstract: Lachancea (kluyveromyces) thermotolerans is a ubiquitous yeast that can be naturally found in grapes but also in other habitats as soil, insects and plants, extensively distributed around the world. In a 3-day culture, it shows spherical to ellipsoidal morphology appearing in single, paired cells or short clusters. It is a teleomorph yeast with 1–4 spherical ascospores and it is characterized by a low production of volatile acidity that helps to control global acetic acid levels in mixed or sequential inoculations with either S. cerevisiae or other non-Saccharomyces species. It has a medium fermentative power, so it must be used in sequential or mixed inoculations with S. cerevisiae to get dry wines. It shows a high production of lactic acid able to affect strongly wine pH, sometimes decreasing wine pH by 0.5 units or more during fermentation. Most of the acidification is produced at the beginning of fermentation facilitating the effect in sequential fermentations because it is more competitive at low alcoholic degree. -
Hbc16 Program.Indb
TABLE OF CONTENTS SPEAKERS Welcome __________________________________________________________________________________ 4–5 Conference Sponsors ______________________________________________________________________ 6–7 Who’s Who _____________________________________________________________________________11 –13 Commemorative Beer _______________________________________________________________________ 15 Conference Map _______________________________________________________________________ 18–19 Craft Beer Kick-Off party _______________________________________________________________ 22–23 Social Events ___________________________________________________________________________ 30–31 Author Book Signings _______________________________________________________________________ 38 Seminar Schedule _________________________________________________________________________ 46 Conference Overview __________________________________________________________________ 84–92 Speakers ____________________________________________________________________________ 93–124 2016 National Homebrew Competition _______________________________________________ 134–144 Advertiser Index ____________________________________________________________________ 146–147 The American Homebrewers Association® (AHA) is committed to promoting the community of homebrewers and empowering homebrewers to make the best beers in the world. The American Homebrewers Association has worked on behalf of the homebrewing community since 1978 and celebrates a membership of more than 46,000 -
Evaluation of Zygosaccharomyces Bailii to Metabolize Residual Sugar Present in Partially-Fermented Red Wines
Fermentation 2015, 1, 3-12; doi:10.3390/fermentation1010003 OPEN ACCESS fermentation ISSN 2311-5637 www.mdpi.com/journal/fermentation Article Evaluation of Zygosaccharomyces bailii to Metabolize Residual Sugar Present in Partially-Fermented Red Wines Jesse M. Zuehlke *, Bradford C. Childs and Charles G. Edwards School of Food Science, Washington State University, Pullman, WA 99164-6376, USA; E-Mails: [email protected] (B.C.C.); [email protected] (C.G.E.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-240-899-4449. Academic Editor: Ronnie G. Willaert Received: 3 February 2015 / Accepted: 17 March 2015 / Published: 26 March 2015 Abstract: An alternative approach to remove residual sugar from red wines using strains of Zygosaccharomyces bailli was studied. Fructose (40 or 60 g/L) and alcohol (13%, 15%, or 17% v/v) were added to a Cabernet Sauvignon wine before inoculation of Z. bailii B2, B6, or W3, or Saccharomyces cerevisiae EC1118. Most yeasts maintained populations ≥106 cfu/mL up to 100 days—the exceptions being W3 and EC1118, which declined to ≤30 cfu/mL in 17% alcohol wines beyond day 75. Wines containing 40 g/L fructose and 13% alcohol achieved dryness (<2 g/L), except those inoculated with B6. At 15% alcohol, B6, W3, and EC1118 consumed large levels of fructose (>80% of the 40 g/L; >50% of the 60 g/L) but limited amounts from wines containing 17% alcohol. Volatile acidities were higher in wines inoculated with strains of Z. bailli compared to S. cerevisiae (0.88 and 0.75 g/L, respectively). -
Glucose Respiration and Fermentation in Zygosaccharomyces Bailii and Saccharomyces Cerevisiae Express Different Sensitivity Patterns to Ethanol and Acetic Acid
Letters in Applied Microbiology 1997, 25, 249–253 Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid L. Fernandes1,M.Coˆrte-Real1, V. Loureiro2, M.C. Loureiro-Dias3 and C. Lea˜o1 1Departamento de Biologia, Universidade do Minho, Braga, 2Laborato´rio de Microbiologia, Departamento de Botaˆnica e Engenharia Biolo´gica, Instituto Superior de Agronomia, Tapada da Ajuda, Lisboa, and 3Laborato´rio de Microbiologia, Instituto Gulbenkian de Cieˆncia, Oeiras, Portugal 1115/96: received 26 April 1996 and revised 17 March 1997 and accepted 19 March 1997 L. FERNANDES, M. COˆ RTE-REAL, V. LOUREIRO, M.C. LOUREIRO-DIAS AND C. LEA˜ O. 1997. In the yeast Zygosaccharomyces bailii ISA 1307, respiration and fermentation of glucose were exponentially inhibited by ethanol, both processes displaying similar sensitivity to the alcohol. Moreover, the degree of inhibition on fermentation was of the same magnitude as that reported for Saccharomyces cerevisiae. Acetic acid also inhibited these two metabolic processes in Z. bailii, with the kinetics of inhibition again being exponential. However, inhibition of fermentation was much less pronounced than in S. cerevisiae. The values estimated with Z. bailii for the minimum inhibitory concentration of acetic acid ranged from 100 to 240 mmol l−1 total acetic acid compared with values of near zero reported for S. cerevisiae. The inhibitory effects of acetic acid on Z. bailii were not significantly potentiated by ethanol. INTRODUCTION acids such as acetic acid, etc.) (Thomas and Davenport 1985 ; Malfeito-Ferreira et al. 1990 ; Loureiro and Malfeito-Ferreira Zygosaccharomyces bailii is considered to be one of the most 1993). -
Downloaded from NCBI Genbank Or Sequence
Lind and Pollard Microbiome (2021) 9:58 https://doi.org/10.1186/s40168-021-01015-y METHODOLOGY Open Access Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing Abigail L. Lind1 and Katherine S. Pollard1,2,3,4,5* Abstract Background: Microbial eukaryotes are found alongside bacteria and archaea in natural microbial systems, including host-associated microbiomes. While microbial eukaryotes are critical to these communities, they are challenging to study with shotgun sequencing techniques and are therefore often excluded. Results: Here, we present EukDetect, a bioinformatics method to identify eukaryotes in shotgun metagenomic sequencing data. Our approach uses a database of 521,824 universal marker genes from 241 conserved gene families, which we curated from 3713 fungal, protist, non-vertebrate metazoan, and non-streptophyte archaeplastida genomes and transcriptomes. EukDetect has a broad taxonomic coverage of microbial eukaryotes, performs well on low-abundance and closely related species, and is resilient against bacterial contamination in eukaryotic genomes. Using EukDetect, we describe the spatial distribution of eukaryotes along the human gastrointestinal tract, showing that fungi and protists are present in the lumen and mucosa throughout the large intestine. We discover that there is a succession of eukaryotes that colonize the human gut during the first years of life, mirroring patterns of developmental succession observed in gut bacteria. By comparing DNA and RNA sequencing of paired samples from human stool, we find that many eukaryotes continue active transcription after passage through the gut, though some do not, suggesting they are dormant or nonviable. We analyze metagenomic data from the Baltic Sea and find that eukaryotes differ across locations and salinity gradients.