February 2018 Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reptiles and Amphibians of Otago
Society for Research on Amphibians and Reptiles in New Zealand (SRARNZ) presents Reptiles and Amphibians of Otago Otago is a large (31,251 km2) and lightly populated region of the southern South Island of Aotearoa New Zealand, stretching from the eastern coastline west to the Southern Alps. The earliest humans, of East Polynesian origin, arrived about 700 years ago. The largest settlement today is the coastal city of Dunedin (pop. >127,000), which grew from a Scottish influx in the 1800s. The Otago Regional Council administers the region, and tribal authority (mana whenua) rests with the iwi of Ngāi Tahu. Climates in the Otago region (roughly 45°– leiopelmatid frogs survive elsewhere in 47°S) range from changeable, cool- New Zealand. Two species of introduced temperate conditions near the coast to frogs are present, but there are no the near-continental climates (baking hot crocodilians, salamanders, terrestrial summers, freezing winters) of the interior. snakes or turtles. Marine turtles (mainly The region provides varied habitats for leatherback turtles, Dermochelys coriacea) herp species, including sand-dunes, visit the coastal waters of Otago but do grasslands, shrublands, wetlands, forests, not nest here. rock structures and scree slopes, some occupied to at least 1900 m above sea level. Today’s herpetofauna is dominated by lizards (solely geckos and skinks), including about 10 described species. A further 12 or more undescribed taxa are recognised Otago by tag names for conservation purposes, and we follow that approach here. All lizards in Otago are viviparous and long- lived, and remain vulnerable to ongoing habitat loss and predation by introduced mammals. -
Expert Witness Report
Expert Witness Report Report prepared on instructions of: Bleyer Lawyers, Level 1, 550 Lonsdale Street, Melbourne, Vic 3000 Australia Prepared by: Graeme Gillespie B.Sc. Ph.D. 55 Union Street, Northcote, Vic 3070, Australia Curriculum Vitae Attached (Appendix I) I have read the Expert Witness Code of Conduct and agree to be bound by it. Graeme Gillespie 23 February 2010 Qualifications and Experience Please see my curriculum vitae (Appendix I) for my general qualifications and experience. My Ph.D. in zoology focussed specifically on the conservation biology and ecology of frog species in south-eastern Australia. I have 23 years of field and scientific experience studying amphibians and their conservation and management in south- eastern Australia. I have published 24 refereed scientific papers and 38 technical reports on amphibian ecology, conservation and management. I am recognised throughout Australia as an authority on the frog fauna of Victoria, specifically with respect to conservation issues, and I am regularly asked to provide advice on such matters to individuals, government conservation and land management agencies, and non-government organisations. With regard to the Giant Burrowing Frog, I encountered this species on several occasions between 1986 and 1992 while undertaking and supervising pre-logging biodiversity surveys in East Gippsland, Victoria. These records are documented in the Victorian Wildlife Atlas. During this period, I gained knowledge of the species’ habitat associations, breeding biology, some aspects of its behaviour and an appreciation of its conservation status in Victoria (see Opie et al. 1990; Westaway et al.1990; Lobert et al. 1991). Because of my research into amphibian conservation and management, I am highly familiar with the existing literature on the impact of various forest management activities on amphibians and the implications of these activities for amphibian conservation. -
ATTACHMENT 8N Works Approval Application – Desktop Assessment – Supporting Flora and Fauna Information (Golder, 2017) (1777197-020-R-Rev0)
ATTACHMENT 8 Additional Supplementary Information ATTACHMENT 8N Works Approval Application – Desktop Assessment – Supporting Flora and Fauna Information (Golder, 2017) (1777197-020-R-Rev0) July 2017 Reference No. 1777197-015-L-Rev0 DATE 19 July 2017 REFERENCE No. 1777197-020-M-Rev0 TO Sam Mangione Alkina Holdings Pty Ltd CC FROM Jaclyn Ennis-John EMAIL [email protected] WORKS APPROVAL APPLICATION – DESKTOP ASSESSMENT SUPPORTING FLORA AND FAUNA INFORMATION 1.0 INTRODUCTION This technical memorandum presents a desktop summary of publicly available flora and fauna assessment information for the Great Southern Landfill Site. The Great Southern Landfill Site, outside York, Western Australia, was previously referred to as Allawuna Farm Landfill (AFL), and a Works Approval Application (WAA) was prepared by SUEZ and granted by the Department of Environment Regulation (DER) (now the Department of Water and Environmental Regulation, DWER) on 17 March 2016; it was subsequently withdrawn by SUEZ. The WAA by SUEZ is publicly available on the DWER website. 2.0 PUBLICALLY AVAILABLE INFORMATION 2.1 WAA data The supporting works approval application provided the following information related to flora and fauna: Allawuna Landfill Vegetation and Fauna Assessment, ENV Australia Pty Ltd (October, 2012) (provided in Attachment A) 2.2 Summary of Information 2.2.1 Flora Golder (2015) summarised: A comprehensive Level 2 flora investigation of the proposed landfill area was undertaken by ENV Australia (2012) (Appendix K). The proposed landfill footprint differs to that considered in the flora assessment, although not significantly. The results and conclusions contained in the 2012 Vegetation and Fauna Assessment Report remain valid for the proposed landfill. -
Figure 8. Location of Potential Nest Trees As Classified According to Hollow-Score
Bindoon Bypass Fauna Assessment Figure 8. Location of potential nest trees as classified according to hollow-score. See Appendix 11 for four finer scale maps. BAMFORD Consulting Ecologists | 41 Bindoon Bypass Fauna Assessment Figure 9. DBH profile of the potential black-cockatoo nesting trees surveyed. 4.3.1.1 Extrapolation of tree data The VSA areas presented in Table 7 were multiplied by the mean tree densities (Table 11) to estimate the total numbers of each (major) hollow-bearing tree species in the survey area. These values are presented in Table 13. Approximately 18 000 trees may support black-cockatoo nests within the entire survey area. Table 13. The estimated number of potential hollow-bearing trees (± SE) in the survey area. Note that not all VSAs were sampled. Vegetation and Substrate Jarrah Marri Wandoo Total Association > 500mm DBH > 500mm DBH >300mm DBH VSA 3. Marri-Jarrah woodland. 1664 ± 260 1366 ± 327 0 3030 ± 587 VSA 4. Marri-Jarrah woodland with little to no remnant 1702 ± 187 915 ± 46 0 2617 ± 233 understorey (e.g. grazed). VSA 5. Wandoo woodland (with 26 ± 26 1010 ± 616 2497 ± 700 3533 ± 1342 or without understorey). VSA 8. Paddocks with large 4535 ± 3354 3402 ± 1174 916 ± 916 8853 ± 5444 remnant trees. Overall 7927 ± 3827 6693 ± 2163 3413 ± 1616 18033 ± 7606 BAMFORD Consulting Ecologists | 42 Bindoon Bypass Fauna Assessment 4.3.2 Foraging The distribution of foraging habitat is mapped for Carnaby’s Black-Cockatoo and Forest Red-tailed Black-Cockatoo in Figure 10 and Figure 11 respectively (with finer scale maps presented in Appendix 12 and Appendix 13 respectively). -
Maritime Southeast Asia and Oceania Regional Focus
November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November -
Frogs of the Perth Region – Darling Range
FROGS OF THE PERTH REGION Darling Range Eight species of frogs are found commonly along streams and in the many small swamps in the Darling Range east of Perth. All of these species breed during the wetter months between late autumn and early spring. B. Maryan D. Robinson Whooping Frog Crawling Toadlet Heleioporus inornatus Pseudophryne guentheri BUILD: stout round body and short limbs, BUILD: flattened body, small head and short males have black nuptial spine on first finger limbs LENGTH: maximum length 7cm LENGTH: maximum length 3.5cm LOOK FOR: uniformly copper brown back, LOOK FOR: ‘warty’ back mottled with browns flanks may be mottled with white, grey or and grey, belly blotchy with black on white yellow background, crawls BREEDING SEASON: late autumn BREEDING SEASON: winter MALE CALL: ‘whoop whoop whoop’ MALE CALL: short, sharp grating sound B. Maryan D. Robinson Sand Frog Western Spotted Frog Heleioporus psammophilus Heleioporus albopunctatus BUILD: robust body with short limbs, males BUILD: large with a robust build may have black nuptial spine on first finger LENGTH: maximum length 8.5cm LENGTH: maximum length 6cm LOOK FOR: white or yellow spots on LOOK FOR: back brown to dark grey. Pale chocolate brown body coloured bumps on lower flanks BREEDING SEASON: late autumn BREEDING SEASON: late autumn MALE CALL: short, high pitched ‘coo’ MALE CALL: high pitched trilling ‘purr’ D. Robinson D. Robinson Humming Frog Hooting Frog Neobatrachus pelobatoides Heleioporus barycragus BUILD: medium size, flat broad head, robust BUILD: males have massive front arms and with short legs black nuptial spine on first finger LENGTH: maximum length 4.5cm LENGTH: maximum length 9cm LOOK FOR: back patterns with base colour LOOK FOR: greyish to chocolate brown body of green or grey with darker green or brown with scattering of yellow spots on its flanks irregular patterns. -
Spatial Ecology of the Giant Burrowing Frog (Heleioporus Australiacus): Implications for Conservation Prescriptions
University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health January 2008 Spatial ecology of the giant burrowing frog (Heleioporus australiacus): implications for conservation prescriptions Trent D. Penman University of Wollongong, [email protected] F Lemckert M J Mahony Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Penman, Trent D.; Lemckert, F; and Mahony, M J: Spatial ecology of the giant burrowing frog (Heleioporus australiacus): implications for conservation prescriptions 2008, 179-186. https://ro.uow.edu.au/scipapers/724 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Spatial ecology of the giant burrowing frog (Heleioporus australiacus): implications for conservation prescriptions Abstract Management of threatened anurans requires an understanding of a species’ behaviour and habitat requirements in both the breeding and non-breeding environments. The giant burrowing frog (Heleioporus australiacus) is a threatened species in south-eastern Australia. Little is known about its habitat requirements, creating difficulties in vde eloping management strategies for the species.Weradio-tracked 33 individual H. australiacus in order to determine their habitat use and behaviour. Data from 33 frogs followed for between 5 and 599 days show that individuals spend little time near (<15 >m) their breeding sites (mean 4.7 days for males and 6.3 days for females annually). Most time is spent in distinct non- breeding activity areas 20–250m from the breeding sites. -
Special Issue3.7 MB
Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird -
Water Balance of Field-Excavated Aestivating Australian Desert Frogs
3309 The Journal of Experimental Biology 209, 3309-3321 Published by The Company of Biologists 2006 doi:10.1242/jeb.02393 Water balance of field-excavated aestivating Australian desert frogs, the cocoon- forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae) Victoria A. Cartledge1,*, Philip C. Withers1, Kellie A. McMaster1, Graham G. Thompson2 and S. Don Bradshaw1 1Zoology, School of Animal Biology, MO92, University of Western Australia, Crawley, Western Australia 6009, Australia and 2Centre for Ecosystem Management, Edith Cowan University, 100 Joondalup Drive, Joondalup, Western Australia 6027, Australia *Author for correspondence (e-mail: [email protected]) Accepted 19 June 2006 Summary Burrowed aestivating frogs of the cocoon-forming approaching that of the plasma. By contrast, non-cocooned species Neobatrachus aquilonius and the non-cocooning N. aquilonius from the dune swale were fully hydrated, species Notaden nichollsi were excavated in the Gibson although soil moisture levels were not as high as calculated Desert of central Australia. Their hydration state (osmotic to be necessary to maintain water balance. Both pressure of the plasma and urine) was compared to the species had similar plasma arginine vasotocin (AVT) moisture content and water potential of the surrounding concentrations ranging from 9.4 to 164·pg·ml–1, except for soil. The non-cocooning N. nichollsi was consistently found one cocooned N. aquilonius with a higher concentration of in sand dunes. While this sand had favourable water 394·pg·ml–1. For both species, AVT showed no relationship potential properties for buried frogs, the considerable with plasma osmolality over the lower range of plasma spatial and temporal variation in sand moisture meant osmolalities but was appreciably increased at the highest that frogs were not always in positive water balance with osmolality recorded. -
BESS) Detailed Ecology Assessment Tilt Renewables Reference: 509891 Revision: 2 2021-02-22
Latrobe Valley Battery Energy Storage System (BESS) Detailed Ecology assessment Tilt Renewables Reference: 509891 Revision: 2 2021-02-22 Document control record Document prepared by: Aurecon Australasia Pty Ltd ABN 54 005 139 873 Aurecon Centre Level 8, 850 Collins Street Docklands, Melbourne VIC 3008 PO Box 23061 Docklands VIC 8012 Australia T +61 3 9975 3000 F +61 3 9975 3444 E [email protected] W aurecongroup.com A person using Aurecon documents or data accepts the risk of: a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version. b) Using the documents or data for any purpose not agreed to in writing by Aurecon. Document control Report title Detailed Ecology assessment Document code Project number 509891 File path Client Tilt Renewables Client contact Client reference Rev Date Revision Author Reviewer Verifier Approver details/status (if required) 0 2021-01-14 First Draft Justin Sullivan Brett Taylor Brett Taylor Greta Thraves 1 2021-02-04 Revised report to Justin Sullivan Greta Thraves respond to client comments 2 2021-02-22 Revised report to Justin Sullivan Greta Thraves respond to client comments Current revision 2 Approval Author signature Approver signature Name Justin Sullivan Name Greta Thraves Title Senior Consultant Title Manager, Planning and (Ecologist) Environment Project number 509891 File Latrobe Valley BESS – Detailed Ecology Assessment, 2021-02-22 Revision 2 ii Executive summary Aurecon was commissioned by Tilt Renewables (the Proponent) to undertake an ecological assessment to inform the design and planning approvals for a proposed Latrobe Valley Battery Energy Storage System (BESS) at Morwell in eastern Victoria (the Project). -
Two Hundred and Ten Years Looking for the Giant Burrowing Frog
Two hundred and ten years looking for the Giant Burrowing Frog 1 2 Trent Penman , Francis Lemckert and Michael Mahony' 'School of Environmental and Life Sciences, University of Newcastle, N.S.W 2308,Australia 2Biodiversity Systems, Research and Development Division, Forests NSW P.O Box I 00 Beecroft, N.S.W 2119 Australia. Email for corresponding author: [email protected] The giant burrowing frog Heleioporusaustraliacus (Shaw) is a large, morphologically distinctive, but Downloaded fromhttp://meridian.allenpress.com/australian-zoologist/article-pdf/32/4/597/1471522/az_2004_005.pdf by gueston26September2021 cryptic frog found in south eastern Australia. This paper reviews the literature pertaining to the Giant Burrowing Frog. It is a forest dependent species found on the coast and adjacent ranges of south-eastern Australia, with five congeners in south-west Western Australia. The species is listed as vulnerable in NSW and Victoria and under Commonwealth legislation, although there is no obvious cause for a decline nor is it clear how much decline has occurred. Proposed threats to the species survival include forestry operations, habitat destruction, introduced species, pollutants, increased UV and disease.A large gap exists in the species distributional records and H. australiacusmay represent two distinct species, although the evidence for this remains inconclusive. Standard detection methods for frogs do not apply well to the Giant Burrowing Frog and alternative methods are required to provide a more detailed understanding of its ecology and distribution. Key words: review, conservation, Heleioporus, management, amphibian Introduction Despite being one of the first frogs described from The review brings together all known records from various Australia, there has been very little research into museum specimens, the published literature and previous the ecology of the Giant Burrowing Frog Heleioporus collations of habitat requirements. -
ARAZPA Amphibian Action Plan
Appendix 1 to Murray, K., Skerratt, L., Marantelli, G., Berger, L., Hunter, D., Mahony, M. and Hines, H. 2011. Guidelines for minimising disease risks associated with captive breeding, raising and restocking programs for Australian frogs. A report for the Australian Government Department of Sustainability, Environment, Water, Population and Communities. ARAZPA Amphibian Action Plan Compiled by: Graeme Gillespie, Director Wildlife Conservation and Science, Zoos Victoria; Russel Traher, Amphibian TAG Convenor, Curator Healesville Sanctuary Chris Banks, Wildlife Conservation and Science, Zoos Victoria. February 2007 1 1. Background Amphibian species across the world have declined at an alarming rate in recent decades. According to the IUCN at least 122 species have gone extinct since 1980 and nearly one third of the world’s near 6,000 amphibian species are classified as threatened with extinction, placing the entire class at the core of the current biodiversity crisis (IUCN, 2006). Australasia too has experienced significant declines; several Australian species are considered extinct and nearly 25% of the remainder are threatened with extinction, while all four species native to New Zealand are threatened. Conventional causes of biodiversity loss, habitat destruction and invasive species, are playing a major role in these declines. However, emergent disease and climate change are strongly implicated in many declines and extinctions. These factors are now acting globally, rapidly and, most disturbingly, in protected and near pristine areas. Whilst habitat conservation and mitigation of threats in situ are essential, for many taxa the requirement for some sort of ex situ intervention is mounting. In response to this crisis there have been a series of meetings organised by the IUCN (World Conservation Union), WAZA (World Association of Zoos & Aquariums) and CBSG (Conservation Breeding Specialist Group, of the IUCN Species Survival Commission) around the world to discuss how the zoo community can and should respond.