Mouse Pcyt1b Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Pcyt1b Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Pcyt1b Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Pcyt1b conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Pcyt1b gene (NCBI Reference Sequence: NM_211138 ; Ensembl: ENSMUSG00000035246 ) is located on Mouse chromosome X. 8 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 8 (Transcript: ENSMUST00000045898). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Pcyt1b gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-102H18 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous null mice reduced fertility, abnormal ovaries with absent corpora lutea and follicles, benign ovarian tumors, seminiferous tubule degeneration, and reduced spermatogenesis. Exon 2 starts from about 10.66% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 26608 bp, and the size of intron 2 for 3'-loxP site insertion: 4373 bp. The size of effective cKO region: ~600 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 8 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Pcyt1b Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7100bp) | A(27.52% 1954) | C(22.27% 1581) | T(29.42% 2089) | G(20.79% 1476) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chrX + 93698836 93701835 3000 browser details YourSeq 108 465 2800 3000 92.2% chr2 - 71267298 71371465 104168 browser details YourSeq 89 465 647 3000 76.6% chr12 + 103120407 103120605 199 browser details YourSeq 86 460 669 3000 81.2% chr11 - 58104796 58105322 527 browser details YourSeq 85 471 669 3000 76.1% chr4 + 88022687 88023103 417 browser details YourSeq 84 468 651 3000 73.6% chr13 + 42765409 42765575 167 browser details YourSeq 82 462 663 3000 71.0% chr2 + 91369509 91369711 203 browser details YourSeq 81 431 596 3000 84.5% chr7 + 26319916 26320162 247 browser details YourSeq 78 271 597 3000 67.7% chr19 - 14427799 14427969 171 browser details YourSeq 73 431 596 3000 86.9% chr7 + 26957450 26957696 247 browser details YourSeq 71 460 598 3000 91.0% chr18 - 61062630 61063074 445 browser details YourSeq 70 465 610 3000 84.2% chr4 - 42346735 42346874 140 browser details YourSeq 70 465 610 3000 84.2% chr4 - 41994520 41994659 140 browser details YourSeq 70 463 653 3000 71.5% chr2 - 107698388 107698542 155 browser details YourSeq 68 465 610 3000 83.8% chr4 - 41836257 41836396 140 browser details YourSeq 68 466 601 3000 78.8% chr2 - 74871799 74871932 134 browser details YourSeq 68 449 596 3000 80.7% chr7 + 26848208 26848351 144 browser details YourSeq 67 460 572 3000 79.7% chr17 + 72315384 72315496 113 browser details YourSeq 66 468 581 3000 79.0% chr2 - 35419652 35419765 114 browser details YourSeq 65 465 610 3000 72.5% chr2 - 161815002 161815150 149 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chrX + 93702436 93705435 3000 browser details YourSeq 64 2619 2702 3000 91.1% chr4 + 120753894 120754003 110 browser details YourSeq 63 2633 2712 3000 94.5% chr5 - 50890472 50890814 343 browser details YourSeq 59 2619 2701 3000 91.0% chr11 - 120034635 120034727 93 browser details YourSeq 56 2435 2712 3000 68.8% chr11 - 105676225 105676328 104 browser details YourSeq 56 2617 2705 3000 81.5% chr11 + 78387603 78387684 82 browser details YourSeq 54 2636 2712 3000 95.1% chr3 - 69695366 69695469 104 browser details YourSeq 51 2628 2713 3000 81.7% chr6 + 96338316 96338395 80 browser details YourSeq 51 2628 2690 3000 94.9% chr1 + 129166620 129166716 97 browser details YourSeq 48 2655 2711 3000 94.5% chr14 - 58436816 58436874 59 browser details YourSeq 46 2646 2706 3000 81.2% chr10 + 119949209 119949263 55 browser details YourSeq 46 2626 2693 3000 96.2% chr1 + 141475146 141475218 73 browser details YourSeq 44 2640 2706 3000 92.6% chr14 + 73065574 73065662 89 browser details YourSeq 42 2643 2704 3000 88.7% chr1 + 86623817 86623883 67 browser details YourSeq 41 2624 2688 3000 93.8% chr12 - 10854929 10855003 75 browser details YourSeq 40 2662 2705 3000 97.7% chr1 + 154072353 154072429 77 browser details YourSeq 39 2629 2684 3000 91.4% chr10 - 92383286 92383341 56 browser details YourSeq 39 2626 2674 3000 93.4% chr3 + 151499579 151499641 63 browser details YourSeq 39 2619 2676 3000 74.5% chr13 + 54487063 54487105 43 browser details YourSeq 39 2634 2674 3000 100.0% chr10 + 121070110 121070320 211 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Pcyt1b phosphate cytidylyltransferase 1, choline, beta isoform [ Mus musculus (house mouse) ] Gene ID: 236899, updated on 12-Aug-2019 Gene summary Official Symbol Pcyt1b provided by MGI Official Full Name phosphate cytidylyltransferase 1, choline, beta isoform provided by MGI Primary source MGI:MGI:2147987 See related Ensembl:ENSMUSG00000035246 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as CTTbeta; AW045697 Expression Biased expression in CNS E18 (RPKM 9.3), CNS E14 (RPKM 7.0) and 12 other tissues See more Orthologs human all Genomic context Location: X; X C3 See Pcyt1b in Genome Data Viewer Exon count: 10 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) X NC_000086.7 (93654863..93749951) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) X NC_000086.6 (90900202..90995287) Chromosome X - NC_000086.7 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 3 transcripts Gene: Pcyt1b ENSMUSG00000035246 Description phosphate cytidylyltransferase 1, choline, beta isoform [Source:MGI Symbol;Acc:MGI:2147987] Gene Synonyms CTTbeta Location Chromosome X: 93,654,863-93,749,951 forward strand. GRCm38:CM001013.2 About this gene This gene has 3 transcripts (splice variants), 259 orthologues, 2 paralogues, is a member of 1 Ensembl protein family and is associated with 12 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Pcyt1b-201 ENSMUST00000045898.3 4888 369aa ENSMUSP00000044280.3 Protein coding CCDS30274 Q811Q9 TSL:1 GENCODE basic APPRIS P1 Pcyt1b-202 ENSMUST00000113933.8 4867 339aa ENSMUSP00000109566.2 Protein coding CCDS41061 Q811Q9 TSL:1 GENCODE basic Pcyt1b-203 ENSMUST00000146263.1 350 No protein - lncRNA - - TSL:3 115.09 kb Forward strand 93.66Mb 93.68Mb 93.70Mb 93.72Mb 93.74Mb Genes (Comprehensive set... Pcyt1b-202 >protein coding Pcyt1b-201 >protein coding Pcyt1b-203 >lncRNA Contigs AL589652.13 > Regulatory Build 93.66Mb 93.68Mb 93.70Mb 93.72Mb 93.74Mb Reverse strand 115.09 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding merged Ensembl/Havana Non-Protein Coding RNA gene Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000045898 74.85 kb Forward strand Pcyt1b-201 >protein coding ENSMUSP00000044... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) TIGRFAM Cytidyltransferase-like domain Superfamily SSF52374 Pfam Cytidyltransferase-like domain PANTHER PTHR10739:SF20 PTHR10739 Gene3D Rossmann-like alpha/beta/alpha sandwich fold CDD CTP:phosphocholine cytidylyltransferase domain All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend synonymous variant Scale bar 0 40 80 120 160 200 240 280 320 369 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Zbtb16 Regulates Social Cognitive Behaviors and Neocortical
    Usui et al. Translational Psychiatry (2021) 11:242 https://doi.org/10.1038/s41398-021-01358-y Translational Psychiatry ARTICLE Open Access Zbtb16 regulates social cognitive behaviors and neocortical development Noriyoshi Usui 1,2,3,4, Stefano Berto5,AmiKonishi1, Makoto Kondo1,4, Genevieve Konopka5,HideoMatsuzaki 2,6,7 and Shoichi Shimada1,2,4 Abstract Zinc finger and BTB domain containing 16 (ZBTB16) play the roles in the neural progenitor cell proliferation and neuronal differentiation during development, however, how the function of ZBTB16 is involved in brain function and behaviors unknown. Here we show the deletion of Zbtb16 in mice leads to social impairment, repetitive behaviors, risk- taking behaviors, and cognitive impairment. To elucidate the mechanism underlying the behavioral phenotypes, we conducted histological analyses and observed impairments in thinning of neocortical layer 6 (L6) and a reduction of TBR1+ neurons in Zbtb16 KO mice. Furthermore, we found increased dendritic spines and microglia, as well as developmental defects in oligodendrocytes and neocortical myelination in the prefrontal cortex (PFC) of Zbtb16 KO mice. Using genomics approaches, we identified the Zbtb16 transcriptome that includes genes involved in neocortical maturation such as neurogenesis and myelination, and both autism spectrum disorder (ASD) and schizophrenia (SCZ) pathobiology. Co-expression networks further identified Zbtb16-correlated modules that are unique to ASD or SCZ, respectively. Our study provides insight into the novel roles of ZBTB16 in behaviors and neocortical development related to the disorders. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction identified as a causative mutation for skeletal defects, ZBTB16 (PLZF) encodes a transcription factor, which genital hypoplasia, and mental retardation (SGYMR)6,7.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Single Nucleotide Polymorphisms in PEMT and MTHFR Genes Are Associated with Omega 3 and 6 Fatty Acid Levels in the Red Blood Cells of Children with Obesity
    nutrients Article Single Nucleotide Polymorphisms in PEMT and MTHFR Genes are Associated with Omega 3 and 6 Fatty Acid Levels in the Red Blood Cells of Children with Obesity 1,2, 1,3, 1,3, Vlad Serafim y, Adela Chirita-Emandi y , Nicoleta Andreescu *, Diana-Andreea Tiugan 1,3, Paul Tutac 1,3, Corina Paul 4,5, Iulian Velea 4,5, Alexandra Mihailescu 1, 6 1,7 1,3 Costela Lăcrimioara S, erban , Cristian G. Zimbru , Maria Puiu and Mihai Dinu Niculescu 1,8 1 Centre of Genomic Medicine, Genetics Discipline, “Victor Babes” University of Medicine and Pharmacy, Timisoara 300041, Romania 2 The National Institute of Research and Development for Biological Sciences, Bucharest 060031, Romania 3 “Louis Turcanu” Clinical Emergency Hospital for Children, Timisoara 300011, Romania 4 Paediatrics Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara 300041, Romania 5 2nd Paediatrics Clinic, Clinical Emergency County Hospital, Timisoara 300041, Romania 6 Department of Functional Sciences, ”Victor Babes” University of Medicine and Pharmacy, Timis, oara 300041, Romania 7 Faculty of Automation and Computer Science, Politehnica University of Timisoara, Timisoara 300223, Romania 8 Advanced Nutrigenomics, 130 Rainbow Ct, Cary, NC 27511, USA * Correspondence: [email protected]; Tel.: +40-720-144-276 The two authors contributed equally. y Received: 10 October 2019; Accepted: 25 October 2019; Published: 30 October 2019 Abstract: Polyunsaturated fatty acids (PUFAs) play important roles in health and disease. PUFA levels are influenced by nutrition and genetic factors. The relationship between PUFA composition in red blood cells (RBCs) and genetic variations involved in PUFA metabolism has not been investigated in children with obesity.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
    Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation.
    [Show full text]
  • Using Targeted Resequencing for Identification Of
    Using Targeted Resequencing for Identification of Candidate Genes and SNPs for a QTL Affecting the pH Value of Chicken Meat Xidan Li, Xiaodong Liu, Javad Mahabadyani Nadaf, Elisabeth Le Bihan-Duval, Cécile Berri, Ian Dunn, Richard Talbot, Dirk-Jan de Koning To cite this version: Xidan Li, Xiaodong Liu, Javad Mahabadyani Nadaf, Elisabeth Le Bihan-Duval, Cécile Berri, et al.. Using Targeted Resequencing for Identification of Candidate Genes and SNPs for a QTL Affecting the pH Value of Chicken Meat. G3, Genetics Society of America, 2015, 5 (10), pp.2085 - 2089. 10.1534/g3.115.020552. hal-02632145 HAL Id: hal-02632145 https://hal.inrae.fr/hal-02632145 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License INVESTIGATION Using Targeted Resequencing for Identification of Candidate Genes and SNPs for a QTL Affecting the pH Value of Chicken Meat Xidan Li,* Xiaodong Liu,† Javad Nadaf,‡,§ Elisabeth Le Bihan-Duval,‡ Cécile Berri,‡ Ian Dunn,§ Richard Talbot,§ and Dirk-Jan
    [Show full text]
  • A Temporally Controlled Sequence of X-Chromosome Inactivation and Reactivation Defines Female Mouse in Vitro Germ Cells with Meiotic Potential
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455976; this version posted August 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A temporally controlled sequence of X-chromosome inactivation and reactivation defines female mouse in vitro germ cells with meiotic potential Jacqueline Severino1†, Moritz Bauer1,9†, Tom Mattimoe1, Niccolò Arecco1, Luca Cozzuto1, Patricia Lorden2, Norio Hamada3, Yoshiaki Nosaka4,5,6, So Nagaoka4,5,6, Holger Heyn2, Katsuhiko Hayashi7, Mitinori Saitou4,5,6 and Bernhard Payer1,8* Abstract The early mammalian germ cell lineage is characterized by extensive epigenetic reprogramming, which is required for the maturation into functional eggs and sperm. In particular, the epigenome needs to be reset before parental marks can be established and then transmitted to the next generation. In the female germ line, reactivation of the inactive X- chromosome is one of the most prominent epigenetic reprogramming events, and despite its scale involving an entire chromosome affecting hundreds of genes, very little is known about its kinetics and biological function. Here we investigate X-chromosome inactivation and reactivation dynamics by employing a tailor-made in vitro system to visualize the X-status during differentiation of primordial germ cell-like cells (PGCLCs) from female mouse embryonic stem cells (ESCs). We find that the degree of X-inactivation in PGCLCs is moderate when compared to somatic cells and characterized by a large number of genes escaping full inactivation.
    [Show full text]
  • SARS-Cov-2 Infected Pediatric Cerebral Cortical Neurons: Transcriptomic Analysis and Potential Role of Toll-Like Receptors in Pathogenesis
    International Journal of Molecular Sciences Article SARS-CoV-2 Infected Pediatric Cerebral Cortical Neurons: Transcriptomic Analysis and Potential Role of Toll-like Receptors in Pathogenesis Agnese Gugliandolo 1 , Luigi Chiricosta 1 , Valeria Calcaterra 2,3,† , Mara Biasin 4 , Gioia Cappelletti 4 , Stephana Carelli 5 , Gianvincenzo Zuccotti 2,4, Maria Antonietta Avanzini 6 , Placido Bramanti 1, Gloria Pelizzo 4,7 and Emanuela Mazzon 1,*,† 1 IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; [email protected] (A.G.); [email protected] (L.C.); [email protected] (P.B.) 2 Department of Pediatrics, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy; [email protected] (V.C.); [email protected] (G.Z.) 3 Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy 4 Department of Biomedical and Clinical Sciences–L. Sacco, University of Milan, 20157 Milan, Italy; [email protected] (M.B.); [email protected] (G.C.); [email protected] (G.P.) 5 Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy; [email protected] 6 Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; [email protected] 7 Pediatric Surgery Unit, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy Citation: Gugliandolo, A.; Chiricosta, * Correspondence: [email protected] L.; Calcaterra, V.; Biasin, M.; † These authors contribute equally to the paper as senior author. Cappelletti, G.; Carelli, S.; Zuccotti, G.; Avanzini, M.A.; Bramanti, P.; Abstract: Different mechanisms were proposed as responsible for COVID-19 neurological symptoms Pelizzo, G.; et al.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 is online at: average * The Journal of Immunology published online 20 March 2013 from submission to initial decision 4 weeks from acceptance to publication Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke, Man Liu, Gur Yaari, Ashraf M. Khalil, Mary M. Tomayko, Mark J. Shlomchik, David G. Schatz and Steven H. Kleinstein J Immunol http://www.jimmunol.org/content/early/2013/03/20/jimmun ol.1202547 Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/03/20/jimmunol.120254 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. Published March 20, 2013, doi:10.4049/jimmunol.1202547 The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G.
    [Show full text]
  • Functional Significance of the Sex Chromosomes During
    REPRODUCTIONREVIEW Functional significance of the sex chromosomes during spermatogenesis Yueh-Chiang Hu1 and Satoshi H Namekawa1,2 1Division of Developmental Biology and 2Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA Correspondence should be addressed to Y-C Hu; Email: [email protected] or to S H Namekawa; Email: [email protected] Abstract Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution. Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/ R265/suppl/DC1. Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/ R265/suppl/DC2. Reproduction (2015) 149 R265–R277 Introduction (meiotic), spermatids (postmeiotic; spermiogenic), and spermatozoa (sperm) (Fig.
    [Show full text]