Modularity and Vacua in N = 1* Supersymmetric Gauge Theory Antoine Bourget
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effective Field Theories, Reductionism and Scientific Explanation Stephan
To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics. -
Casimir Effect on the Lattice: U (1) Gauge Theory in Two Spatial Dimensions
Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions M. N. Chernodub,1, 2, 3 V. A. Goy,4, 2 and A. V. Molochkov2 1Laboratoire de Math´ematiques et Physique Th´eoriqueUMR 7350, Universit´ede Tours, 37200 France 2Soft Matter Physics Laboratory, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia 3Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium 4School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia (Dated: September 8, 2016) We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result. I. INTRODUCTION lattice discretization) described by spatially-anisotropic and space-dependent static permittivities "(x) and per- meabilities µ(x) at zero and finite temperature in theories The influence of the physical objects on zero-point with various gauge groups. (vacuum) fluctuations is generally known as the Casimir The structure of the paper is as follows. In Sect. II effect [1{3]. The simplest example of the Casimir effect is we review the implementation of the Casimir boundary a modification of the vacuum energy of electromagnetic conditions for ideal conductors and propose its natural field by closely-spaced and perfectly-conducting parallel counterpart in the lattice gauge theory. -
Lectures on D-Branes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable. -
EA-1092; Environmental Assessment and FONSI for Decontamination and Dismantlement June 1995
EA-1092; Environmental Assessment and FONSI for Decontamination and Dismantlement June 1995 TABLE OF CONTENTS 1.0 PURPOSE AND NEED FOR AGENCY ACTION 2.0 PROPOSED ACTION AND ALTERNATIVES 3.0 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 4.0 AGENCIES, ORGANIZATIONS, AND PERSONS CONSULTED 5.0 REFERENCES 6.0 LIST OF ACRONYMS AND ABBREVIATION 7.0 GLOSSARY LIST OF APPENDICES Appendix A - Letter, Dated September 12, 1991,^ Florida Department of State Division of Historical Resources Appendix B - 1990 Base Year Pinellas County Transportation Appendix C Reference Tables from the Nonnuclear Consolidation Environmental Assessment, June 1993, Finding of No Significant Impact, September 1993 Appendix D - Letter, Dated July 25, 1991, United States Department of Interior Fish and Wildlife Service LIST OF FIGURES Figure 1-1: Pinellas Plant Location Figure 1-2:Pinellas Plant Layout Figure 3-1:Pinellas Plant Areas Leased by DOE and Common Use Areas Figure 3-2:Solid Waste Management Units LIST OF TABLES Table 3-1. Pinellas Plant Building Summary Table 3-2. Calendar Years 1992, 1993, and 1994 Nonradiological Air Emissions Table 3-3. Discharge Standards and Average Concentrations for the Pinellas Plant Liquid Effluent Table 3-4. Tritium Released To PCSS In 1991, 1992, 1993, and 1994 Table 3-5. Waste Management Storage Capabilities (Hazardous Waste Operating Permit No. HO52-228925) (Hazardous Waste Operating Permit No. HO52-228925) Table 3-6. Baseline Traffic by Link at Pinellas Plant Table 3-7. 1994 CAP88-PC Dose Calculations Table B-1. 1990 Base Year Pinellas County Transportation Table C-1. Estimated Hourly Traffic Volumes and Traffic Noise Levels Along the Access Routes to Pinellas Table C-2. -
Every Nonsingular C Flow on a Closed Manifold of Dimension Greater Than
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 135 (2004) 131–148 www.elsevier.com/locate/topol Every nonsingular C1 flow on a closed manifold of dimension greater than two has a global transverse disk William Basener Department of Mathematics and Statistics, Rochester Institute of Technology, Rochester, NY 14414, USA Received 18 March 2002; received in revised form 27 May 2003 Abstract We prove three results about global cross sections which are disks, henceforth called global transverse disks. First we prove that every nonsingular (fixed point free) C1 flow on a closed (compact, no boundary) connected manifold of dimension greater than 2 has a global transverse disk. Next we prove that for any such flow, if the directed graph Gh has a loop then the flow does not have a closed manifold which is a global cross section. This property of Gh is easy to read off from the first return map for the global transverse disk. Lastly, we give criteria for an “M-cellwise continuous” (a special case of piecewise continuous) map h : D2 → D2 that determines whether h is the first return map for some global transverse disk of some flow ϕ. In such a case, we call ϕ the suspension of h. 2003 Elsevier B.V. All rights reserved. Keywords: Minimal flow; Global cross section; Suspension 1. Introduction Let M be a closed (compact, no boundary) connected n-dimensional manifold and ϕ : R × M → M a nonsingular (fixed point free) flow on M. -
Particle & Nuclear Physics Quantum Field Theory
Particle & Nuclear Physics Quantum Field Theory NOW AVAILABLE New Books & Highlights in 2019-2020 ON WORLDSCINET World Scientific Lecture Notes in Physics - Vol 83 Lectures of Sidney Coleman on Quantum Field Field Theory Theory A Path Integral Approach Foreword by David Kaiser 3rd Edition edited by Bryan Gin-ge Chen (Leiden University, Netherlands), David by Ashok Das (University of Rochester, USA & Institute of Physics, Derbes (University of Chicago, USA), David Griffiths (Reed College, Bhubaneswar, India) USA), Brian Hill (Saint Mary’s College of California, USA), Richard Sohn (Kronos, Inc., Lowell, USA) & Yuan-Sen Ting (Harvard University, “This book is well-written and very readable. The book is a self-consistent USA) introduction to the path integral formalism and no prior knowledge of it is required, although the reader should be familiar with quantum “Sidney Coleman was the master teacher of quantum field theory. All of mechanics. This book is an excellent guide for the reader who wants a us who knew him became his students and disciples. Sidney’s legendary good and detailed introduction to the path integral and most of its important course remains fresh and bracing, because he chose his topics with a sure application in physics. I especially recommend it for graduate students in feel for the essential, and treated them with elegant economy.” theoretical physics and for researchers who want to be introduced to the Frank Wilczek powerful path integral methods.” Nobel Laureate in Physics 2004 Mathematical Reviews 1196pp Dec 2018 -
Lectures on D-Branes
CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. arXiv:hep-th/9806199v2 17 Jan 1999 June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable. -
Scientific Report for the Year 2000
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 2000 Vienna, ESI-Report 2000 March 1, 2001 Supported by Federal Ministry of Education, Science, and Culture, Austria ESI–Report 2000 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 2000 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2001 Honorary President: Walter Thirring, Tel. +43-1-4277-51516. President: Jakob Yngvason: +43-1-4277-51506. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Eva Kissler, Ursula Sagmeister: +43-1-3172047-12, [email protected] Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents General remarks . 2 Winter School in Geometry and Physics . 2 Wolfgang Pauli und die Physik des 20. Jahrhunderts . 3 Summer Session Seminar Sophus Lie . 3 PROGRAMS IN 2000 . 4 Duality, String Theory, and M-theory . 4 Confinement . 5 Representation theory . 7 Algebraic Groups, Invariant Theory, and Applications . 7 Quantum Measurement and Information . 9 CONTINUATION OF PROGRAMS FROM 1999 and earlier . 10 List of Preprints in 2000 . 13 List of seminars and colloquia outside of conferences . -
David Olive: His Life and Work
David Olive his life and work Edward Corrigan Department of Mathematics, University of York, YO10 5DD, UK Peter Goddard Institute for Advanced Study, Princeton, NJ 08540, USA St John's College, Cambridge, CB2 1TP, UK Abstract David Olive, who died in Barton, Cambridgeshire, on 7 November 2012, aged 75, was a theoretical physicist who made seminal contributions to the development of string theory and to our understanding of the structure of quantum field theory. In early work on S-matrix theory, he helped to provide the conceptual framework within which string theory was initially formulated. His work, with Gliozzi and Scherk, on supersymmetry in string theory made possible the whole idea of superstrings, now understood as the natural framework for string theory. Olive's pioneering insights about the duality between electric and magnetic objects in gauge theories were way ahead of their time; it took two decades before his bold and courageous duality conjectures began to be understood. Although somewhat quiet and reserved, he took delight in the company of others, generously sharing his emerging understanding of new ideas with students and colleagues. He was widely influential, not only through the depth and vision of his original work, but also because the clarity, simplicity and elegance of his expositions of new and difficult ideas and theories provided routes into emerging areas of research, both for students and for the theoretical physics community more generally. arXiv:2009.05849v1 [physics.hist-ph] 12 Sep 2020 [A version of section I Biography is to be published in the Biographical Memoirs of Fellows of the Royal Society.] I Biography Childhood David Olive was born on 16 April, 1937, somewhat prematurely, in a nursing home in Staines, near the family home in Scotts Avenue, Sunbury-on-Thames, Surrey. -
Lectures on Effective Field Theories
Adam Falkowski Lectures on Effective Field Theories Version of September 21, 2020 Abstract Effective field theories (EFTs) are widely used in particle physics and well beyond. The basic idea is to approximate a physical system by integrating out the degrees of freedom that are not relevant in a given experimental setting. These are traded for a set of effective interactions between the remaining degrees of freedom. In these lectures I review the concept, techniques, and applications of the EFT framework. The 1st lecture gives an overview of the EFT landscape. I will review the philosophy, basic techniques, and applications of EFTs. A few prominent examples, such as the Fermi theory, the Euler-Heisenberg Lagrangian, and the SMEFT, are presented to illustrate some salient features of the EFT. In the 2nd lecture I discuss quantitatively the procedure of integrating out heavy particles in a quantum field theory. An explicit example of the tree- and one-loop level matching between an EFT and its UV completion will be discussed in all gory details. The 3rd lecture is devoted to path integral methods of calculating effective Lagrangians. Finally, in the 4th lecture I discuss the EFT approach to constraining new physics beyond the Standard Model (SM). To this end, the so- called SM EFT is introduced, where the SM Lagrangian is extended by a set of non- renormalizable interactions representing the effects of new heavy particles. 1 Contents 1 Illustrated philosophy of EFT3 1.1 Introduction..................................3 1.2 Scaling and power counting.........................6 1.3 Illustration #1: Fermi theory........................8 1.4 Illustration #2: Euler-Heisenberg Lagrangian.............. -
Gauge Theories in Particle Physics
GRADUATE STUDENT SERIES IN PHYSICS Series Editor: Professor Douglas F Brewer, MA, DPhil Emeritus Professor of Experimental Physics, University of Sussex GAUGE THEORIES IN PARTICLE PHYSICS A PRACTICAL INTRODUCTION THIRD EDITION Volume 1 From Relativistic Quantum Mechanics to QED IAN J R AITCHISON Department of Physics University of Oxford ANTHONY J G HEY Department of Electronics and Computer Science University of Southampton CONTENTS Preface to the Third Edition xiii PART 1 INTRODUCTORY SURVEY, ELECTROMAGNETISM AS A GAUGE THEORY, AND RELATIVISTIC QUANTUM MECHANICS 1 Quarks and Leptons 3 1.1 The Standard Model 3 1.2 Levels of structure: from atoms to quarks 5 1.2.1 Atoms ---> nucleus 5 1.2.2 Nuclei -+ nucleons 8 1.2.3 . Nucleons ---> quarks 12 1.3 The generations and flavours of quarks and leptons 18 1.3.1 Lepton flavour 18 1.3.2 Quark flavour 21 2 Partiele Interactions in the Standard Model 28 2.1 Introduction 28 2.2 The Yukawa theory of force as virtual quantum exchange 30 2.3 The one-quantum exchange amplitude 34 2.4 Electromagnetic interactions 35 2.5 Weak interactions 37 2.6 Strong interactions 40 2.7 Gravitational interactions 44 2.8 Summary 48 Problems 49 3 Eleetrornagnetism as a Gauge Theory 53 3.1 Introduction 53 3.2 The Maxwell equations: current conservation 54 3.3 The Maxwell equations: Lorentz covariance and gauge invariance 56 3.4 Gauge invariance (and covariance) in quantum mechanics 60 3.5 The argument reversed: the gauge principle 63 3.6 Comments an the gauge principle in electromagnetism 67 Problems 73 viii CONTENTS 4 -
Spotlight on Quantum Black Holes
Physics monitor the results continuing to emerge from them with the declared objectives of charges (magnetic monopoles) do the HERA electron-proton collider at the world's major Laboratories. T.D. not exist. Particle theorists are not so DESY, Hamburg, where the Zeus Lee drew attention to the need for sure, and for a long time magnetic and H1 experiments look deep inside future studies to understand CP monopoles have been tentatively the proton, showing that its gluon violation - the delicate asymmetry included on the theoretical menu. content increases as the momentum between matter and antimatter. The role of these monopoles has fraction decreases. With a large now become crucial. kinematical range now covered, Information from Klaus Monig and Also playing a central role is the these results correlate well with data Clara Matteuzzi idea of supersymmetry. In a quantum from fixed target experiments. theory, basic particles, like quarks The two HERA experiments con and leptons (fermions), interact tinue to see 'rapidity gaps', where through force-carrying particles events pile up in kinematical bands. Spotlight on quantum (bosons) like the photon of electro- Many people have understood this in magnetism, the W and Z of the weak terms of the incoming electron black holes nuclear force and the gluon of the bouncing off a proton constituent in a strong inter-quark force. In super- 'colourless' way ('colour' is for the article theorists are getting symmetry, each fermion has addi quark-gluon force what electric P unusually excited these days as tional boson partners, and vice versa. charge is for the electromagnetic new ideas and different approaches So far, no evidence for super- force).