Casimir Effect on the Lattice: U (1) Gauge Theory in Two Spatial Dimensions

Total Page:16

File Type:pdf, Size:1020Kb

Casimir Effect on the Lattice: U (1) Gauge Theory in Two Spatial Dimensions Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions M. N. Chernodub,1, 2, 3 V. A. Goy,4, 2 and A. V. Molochkov2 1Laboratoire de Math´ematiques et Physique Th´eoriqueUMR 7350, Universit´ede Tours, 37200 France 2Soft Matter Physics Laboratory, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia 3Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium 4School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia (Dated: September 8, 2016) We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result. I. INTRODUCTION lattice discretization) described by spatially-anisotropic and space-dependent static permittivities "(x) and per- meabilities µ(x) at zero and finite temperature in theories The influence of the physical objects on zero-point with various gauge groups. (vacuum) fluctuations is generally known as the Casimir The structure of the paper is as follows. In Sect. II effect [1{3]. The simplest example of the Casimir effect is we review the implementation of the Casimir boundary a modification of the vacuum energy of electromagnetic conditions for ideal conductors and propose its natural field by closely-spaced and perfectly-conducting parallel counterpart in the lattice gauge theory. We also discuss plates which leads to attraction of the plates to each a simple lattice implementation of materials character- other. If the objects are made of real materials, then their ized by static permittivity " and permeability µ. Sec- intrinsic physical properties affect the energy of zero- tion III is devoted to discussion of the Casimir problem point fluctuations in accordance with the Lifshitz the- in (2+1) dimensional Abelian gauge theory. We discuss ory [4]. Generally, the Casimir forces depend on permit- geometrical setup, describe relevant observables, derive tivity, permeability, conductivity of the material which, the effect analytically in the continuum spacetime and in general, are complex functions of the electromagnetic rederive it again in the Euclidean lattice spacetime. The wave frequency. A calculation of the Casimir energy, in latter formula turns out to be crucial for precise compari- general, is quite involved. son { done in Section IV { of the results of our numerical Even in the case of perfect conductors the analytical simulations with the theoretical prediction in perfectly calculation of the Casimir forces may be a challenge if the conducting limit. In Sect. IV we calculate zero-point elec- objects are not flat. These forces may be either attractive tromagnetic fields around dielectric wires, study Casimir or repulsive depending on geometrical shape of the con- energy, make various scaling checks and discuss subtleties ductors. There are various numerical tools to compute of determination of Casimir energy in continuum based Casimir interactions [5] including worldline Monte-Carlo on the lattice results. Finally, we calculate numerically methods [6, 7]. the dependence of the Casimir energy on static permit- In our paper we would like to join investigation of tivity " of the wires. The last section is devoted to our the Casimir physics using Monte-Carlo methods of lat- conclusions. tice gauge theories that are usually applied to nonpertur- bative studies in particle physics. A similar philosophy arXiv:1609.02323v1 [hep-lat] 8 Sep 2016 albeit with different technical implementations has al- II. THE METHOD ready been successfully used to study the Casimir forces between ideal conductors in Refs. [8{10]. A. Casimir boundary conditions in continuum In order to illustrate our method we compute the Casimir interaction between two parallel wires in an 1. Abelian gauge theory in (3+1) dimensions Abelian gauge model in two spatial dimensions in ther- modynamic equilibrium. We calculate the zero-point en- The Casimir effect is best probed by perfectly con- ergy for the wires described by a finite static permittivity ducting metallic surfaces of fixed geometrical shapes. In (dielectric constant). We extrapolate our numerical re- (3+1) dimensions a perfectly conducting surface im- sults to the limit of ideal conductors and demonstrating poses the following (Casimir) boundary conditionsS on the feasibility of the method by confronting our findings electromagnetic field Aµ: with known analytical results. We notice that our ap- proach can be easily generalized to study the Casimir en- B (x) = 0 ; E (x) = 0 ; (1) ? ergy for materials of various shapes (consistent with the x k x 2S 2S 2 where B (x) is the magnetic field normal to the surface that the Casimir condition (8) is reduced to the single ? at the point x and E (x) is electric field which is tan- constraint E2(x) = 0 or to gential to the surface atk the point x. The ideal metallic F 02(x) = 0 ; (9) surface imposes three conditions on electromagnetic field as it restricts one magnetic component B and two elec- where x belongs to the world surface of the wire. Equa- ? tric components E . tion (9) implies that the component of the electric field k For a flat static surface perpendicular to the third axis tangential to the wire should vanish at each point of the x3, conditions (1) take the simple form: wire. E (x) = E (x) = B (x) = 0 ; x ; (2) 1 2 3 2 S B. Casimir boundaries in lattice gauge theory which can identically be rewritten in terms of the field- strength tensor 1. Lattice Abelian gauge theory: Action F = @ A @ A ; (3) µν µ ν − ν µ as follows: In order to set up a lattice reformulation of the Casimir boundary conditions (5) and (8) let us first consider a F 01(x) = F 02(x) = F 12(x) = 0 ; x : (4) simplest possible case given by a compact U(1) gauge 2 S model (compact electrodynamics) on the lattice. In general, the Casimir conditions (1) can also be The action of the compact electrodynamics is formu- rewritten in the Lorentz-invariant form, lated in D-dimensional Euclidean spacetime: µν X nν Fe (x) = 0 (in D=3+1) ; (5) S[θ] = β (1 cos θ ) ; (10) − P 1 P where nµ is a vector tangential to the world-volume of the metallic surface at the point x and the tilde means where β is the lattice coupling constant (to be defined the duality operation: below). The sum in Eq. (10) goes over all elementary plaquettes P of the lattice. Each plaquette P is defined µν 1 µναβ by the position of one of the corners of the plaquette Fe = Fαβ (in D=3+1) : (6) 2 x = (x1; : : : ; xD) and by the directions of two orthogonal vectors µ < ν in the plaquette plane, P = x; µν with For a flat static (x1; x2) surface the normal vector is di- µ, ν = 1;:::D. The plaquette angle θ isf constructedg rected along the third direction, nµ = δµ3 and the bound- P from the elementary link angles θ ( π; +π) which ary conditions for the gauge field (5) are indeed reduced x,µ 2 − to constraints (2) and (4). belong to the perimeter @P of the plaquette P : θ = θ + θ θ θ : (11) Px,µν x,µ x+^µ,ν − x+^ν,µ − x,ν 2. Abelian gauge theory in (2+1) dimensions The partition function of the model is as follows: Z S[θ] = θ e− ; (12) In 2+1 dimensions the Casimir effect is formulated as Z D an interaction between metallic wires in two dimensional spatial volume. The world-surface of a wire is a two- where dimensional surface as one dimension comes from the spa- Z Y Z π θ dθl ; (13) tial dimension of the wire and another dimension comes D ≡ π from the time coordinate. Moreover, in 2+1 dimensions l − the dual object to the field strength tensor (6) is a vector: is the integration measure over the lattice gauge field θl. The action (10) is invariant under the 2π shifts of the µ 1 µαβ Fe = Fαβ (in 2+1) : (7) plaquette variable, 2 θP θP + 2πn ; n Z : (14) Therefore boundary condition (5) reduces in (2 + 1) di- ! 2 mensions to the following constraint: Therefore the 2π-shifted values of the plaquette strength tensor are physically equivalent to each other indicating µ nµFe (x) = 0 (in 2+1) : (8) that the Abelian group is a compact manifold. The angular variable θxµ has a sense of a \latticized" For a straight static wire parallel to the x2 axis, the Abelian gauge field Aµ, θxµ = aAµ(x), where a is the normal vector nµ is directed along the x1 coordinate, so lattice spacing (i.e., the length of the elementary link of the lattice). In continuum limit a 0 the plaquette variable (11) reduces, for finite values! of the gauge field Aµ, to the field strength tensor (3) 1 A two-dimensional surface has a three-dimensional world-volume which include two spatial coordinates and one time coordinate. 2 θPx,µν = a Fµν (x) ; (15) 3 4 where higher O(a ) corrections are not shown. equivalent to the requirement cos θPx,µν = 1 at the cor- Substituting Eq. (15) into Eq. (10), expanding over a responding plaquettes hence Eq. (18). and keeping the leading term only, we get the action of The relations from Eq.
Recommended publications
  • Effective Field Theories, Reductionism and Scientific Explanation Stephan
    To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics.
    [Show full text]
  • Hamiltonian Dynamics of Yang-Mills Fields on a Lattice
    DUKE-TH-92-40 Hamiltonian Dynamics of Yang-Mills Fields on a Lattice T.S. Bir´o Institut f¨ur Theoretische Physik, Justus-Liebig-Universit¨at, D-6300 Giessen, Germany C. Gong and B. M¨uller Department of Physics, Duke University, Durham, NC 27708 A. Trayanov NCSC, Research Triangle Park, NC 27709 (Dated: July 2, 2018) Abstract We review recent results from studies of the dynamics of classical Yang-Mills fields on a lattice. We discuss the numerical techniques employed in solving the classical lattice Yang-Mills equations in real time, and present results exhibiting the universal chaotic behavior of nonabelian gauge theories. The complete spectrum of Lyapunov exponents is determined for the gauge group SU(2). We survey results obtained for the SU(3) gauge theory and other nonlinear field theories. We also discuss the relevance of these results to the problem of thermalization in gauge theories. arXiv:nucl-th/9306002v2 6 Jun 2005 1 I. INTRODUCTION Knowledge of the microscopic mechanisms responsible for the local equilibration of energy and momentum carried by nonabelian gauge fields is important for our understanding of non-equilibrium processes occurring in the very early universe and in relativistic nuclear collisions. Prime examples for such processes are baryogenesis during the electroweak phase transition, the creation of primordial fluctuations in the density of galaxies in cosmology, and the formation of a quark-gluon plasma in heavy-ion collisions. Whereas transport and equilibration processes have been extensively investigated in the framework of perturbative quantum field theory, rigorous non-perturbative studies of non- abelian gauge theories have been limited to systems at thermal equilibrium.
    [Show full text]
  • Two-Dimensional N=(2, 2) Lattice Gauge Theories with Matter in Higher
    Preprint typeset in JHEP style - HYPER VERSION DESY-14-030 Two-dimensional N = (2, 2) Lattice Gauge Theories with Matter in Higher Representations Anosh Joseph John von Neumann Institute for Computing NIC, Platanenallee 6, 15738 Zeuthen, GERMANY Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, GERMANY E-mail: [email protected] Abstract: We construct two-dimensional N = (2, 2) supersymmetric gauge theories on a Euclidean spacetime lattice with matter in the two-index symmetric and anti-symmetric representations of SU(Nc) color group. These lattice theories preserve a subset of the su- percharges exact at finite lattice spacing. The method of topological twisting is used to construct such theories in the continuum and then the geometric discretization scheme is used to formulate them on the lattice. The lattice theories obtained this way are gauge- invariant, free from fermion doubling problem and exact supersymmetric at finite lattice spacing. We hope that these lattice constructions further motivate the nonperturbative ex- plorations of models inspired by technicolor, orbifolding and orientifolding in string theories and the Corrigan-Ramond limit. arXiv:1403.4390v2 [hep-lat] 18 Jun 2014 Keywords: Field Theories in Lower Dimensions, Lattice Quantum Field Theory, Supersymmetric Gauge Theory, Extended Supersymmetry. Contents 1. Introduction 1 2. N = (2, 2) Theories with Adjoint Matter 3 3. N = (2, 2) Theories with Two-index Matter 4 4. Lattice Theories 6 5. Fine Tuning and Simulation on the Lattice 9 6. Discussion and Comments 11 1. Introduction Supersymmetric Yang-Mills (SYM) theories are interesting classes of theories by them- selves. They also serve as starting points for constructions of many phenomenologically relevant models.
    [Show full text]
  • QUANTUM INFORMATION METHODS for LATTICE GAUGE THEORIES EREZ ZOHAR A
    Next Steps in Quantum Science for HEP, Fermilab, September 2018 QUANTUM INFORMATION METHODS FOR LATTICE GAUGE THEORIES EREZ ZOHAR a Theory Group, Max Planck Institute of Quantum Optics (MPQ) Max Planck – Harvard Quantum Optics Research Center (MPHQ) Based on works with (in alphabetical order): Julian Bender (MPQ) Michele Burrello (MPQ Copenhagen) J. Ignacio Cirac (MPQ) Patrick Emonts (MPQ) Alessandro Farace (MPQ) Benni Reznik (TAU) Thorsten Wahl (MPQ Oxford) Gauge Theories are challenging: • Involve non-perturbative physics • Confinement of quarks hadronic spectrum • Exotic phases of QCD (color superconductivity, quark-gluon plasma) Gauge Theories are challenging: • Involve non-perturbative physics • Confinement of quarks hadronic spectrum • Exotic phases of QCD (color superconductivity, quark-gluon plasma) Hard to treat experimentally (strong forces) Gauge Theories are challenging: • Involve non-perturbative physics • Confinement of quarks hadronic spectrum • Exotic phases of QCD (color superconductivity, quark-gluon plasma) Hard to treat experimentally (strong forces) Hard to treat analytically (non perturbative) Gauge Theories are challenging: • Involve non-perturbative physics • Confinement of quarks hadronic spectrum • Exotic phases of QCD (color superconductivity, quark-gluon plasma) Hard to treat experimentally (strong forces) Hard to treat analytically (non perturbative) Lattice Gauge Theory (Wilson, Kogut-Susskind…) Gauge Theories are challenging: • Involve non-perturbative physics • Confinement of quarks hadronic
    [Show full text]
  • The 1/N Expansion for Lattice Gauge Theories
    The 1/N expansion for lattice gauge theories Sourav Chatterjee Sourav Chatterjee The 1/N expansion for lattice gauge theories Yang–Mills theories ◮ Maxwell’s equations are a set of four equations that describe the behavior of an electromagnetic field. ◮ Hermann Weyl showed that these four equations are actually the Euler–Lagrange equations for an elegant minimization problem. ◮ In modern parlance, Maxwell’s equations minimize the Yang–Mills functional for the gauge group U(1). ◮ Physicists later realized that two of the other three fundamental forces of nature — the weak force and the strong force — can also be modeled by similar equations: one needs to simply change the group U(1) to some other group (SU(3) for the strong force, SU(2) for the weak force). This led to the formulation of the Standard Model. ◮ Equations obtained by minimizing Yang–Mills functionals over the space of connections of a principal bundle. Sourav Chatterjee The 1/N expansion for lattice gauge theories Connection form ◮ A quantum YM theory starts with a compact Lie group, called the gauge group. ◮ In this talk, the gauge group is SO(N). ◮ Recall that the Lie algebra so(N) of the Lie group SO(N) is the set of all N × N skew-symmetric matrices. ◮ An SO(N) connection form on Rd is a smooth map from Rd into so(N)d . ◮ If A is a SO(N) connection form, its value A(x) at a point x is a d-tuple (A1(x),..., Ad (x)) of skew-symmetric matrices. ◮ d In the language of differential forms, A = j=1 Aj dxj .
    [Show full text]
  • Lectures on Effective Field Theories
    Adam Falkowski Lectures on Effective Field Theories Version of September 21, 2020 Abstract Effective field theories (EFTs) are widely used in particle physics and well beyond. The basic idea is to approximate a physical system by integrating out the degrees of freedom that are not relevant in a given experimental setting. These are traded for a set of effective interactions between the remaining degrees of freedom. In these lectures I review the concept, techniques, and applications of the EFT framework. The 1st lecture gives an overview of the EFT landscape. I will review the philosophy, basic techniques, and applications of EFTs. A few prominent examples, such as the Fermi theory, the Euler-Heisenberg Lagrangian, and the SMEFT, are presented to illustrate some salient features of the EFT. In the 2nd lecture I discuss quantitatively the procedure of integrating out heavy particles in a quantum field theory. An explicit example of the tree- and one-loop level matching between an EFT and its UV completion will be discussed in all gory details. The 3rd lecture is devoted to path integral methods of calculating effective Lagrangians. Finally, in the 4th lecture I discuss the EFT approach to constraining new physics beyond the Standard Model (SM). To this end, the so- called SM EFT is introduced, where the SM Lagrangian is extended by a set of non- renormalizable interactions representing the effects of new heavy particles. 1 Contents 1 Illustrated philosophy of EFT3 1.1 Introduction..................................3 1.2 Scaling and power counting.........................6 1.3 Illustration #1: Fermi theory........................8 1.4 Illustration #2: Euler-Heisenberg Lagrangian..............
    [Show full text]
  • Gauge Theories in Particle Physics
    GRADUATE STUDENT SERIES IN PHYSICS Series Editor: Professor Douglas F Brewer, MA, DPhil Emeritus Professor of Experimental Physics, University of Sussex GAUGE THEORIES IN PARTICLE PHYSICS A PRACTICAL INTRODUCTION THIRD EDITION Volume 1 From Relativistic Quantum Mechanics to QED IAN J R AITCHISON Department of Physics University of Oxford ANTHONY J G HEY Department of Electronics and Computer Science University of Southampton CONTENTS Preface to the Third Edition xiii PART 1 INTRODUCTORY SURVEY, ELECTROMAGNETISM AS A GAUGE THEORY, AND RELATIVISTIC QUANTUM MECHANICS 1 Quarks and Leptons 3 1.1 The Standard Model 3 1.2 Levels of structure: from atoms to quarks 5 1.2.1 Atoms ---> nucleus 5 1.2.2 Nuclei -+ nucleons 8 1.2.3 . Nucleons ---> quarks 12 1.3 The generations and flavours of quarks and leptons 18 1.3.1 Lepton flavour 18 1.3.2 Quark flavour 21 2 Partiele Interactions in the Standard Model 28 2.1 Introduction 28 2.2 The Yukawa theory of force as virtual quantum exchange 30 2.3 The one-quantum exchange amplitude 34 2.4 Electromagnetic interactions 35 2.5 Weak interactions 37 2.6 Strong interactions 40 2.7 Gravitational interactions 44 2.8 Summary 48 Problems 49 3 Eleetrornagnetism as a Gauge Theory 53 3.1 Introduction 53 3.2 The Maxwell equations: current conservation 54 3.3 The Maxwell equations: Lorentz covariance and gauge invariance 56 3.4 Gauge invariance (and covariance) in quantum mechanics 60 3.5 The argument reversed: the gauge principle 63 3.6 Comments an the gauge principle in electromagnetism 67 Problems 73 viii CONTENTS 4
    [Show full text]
  • Lectures on N = 2 Gauge Theory
    Preprint typeset in JHEP style - HYPER VERSION Lectures on N = 2 gauge theory Davide Gaiotto Abstract: In a series of four lectures I will review classic results and recent developments in four dimensional N = 2 supersymmetric gauge theory. Lecture 1 and 2 review the standard lore: some basic definitions and the Seiberg-Witten description of the low energy dynamics of various gauge theories. In Lecture 3 we review the six-dimensional engineering approach, which allows one to define a very large class of N = 2 field theories and determine their low energy effective Lagrangian, their S-duality properties and much more. Lecture 4 will focus on properties of extended objects, such as line operators and surface operators. Contents I Lecture 1 1 1. Seiberg-Witten solution of pure SU(2) gauge theory 5 2. Solution of SU(N) gauge theory 7 II Lecture 2 8 3. Nf = 1 SU(2) 10 4. Solution of SU(N) gauge theory with fundamental flavors 11 4.1 Linear quivers of unitary gauge groups 12 Field theories with N = 2 supersymmetry in four dimensions are a beautiful theoretical playground: this amount of supersymmetry allows many exact computations, but does not fix the Lagrangian uniquely. Rather, one can write down a large variety of asymptotically free N = 2 supersymmetric Lagrangians. In this lectures we will not include a review of supersymmetric field theory. We will not give a systematic derivation of the Lagrangian for N = 2 field theories either. We will simply describe whatever facts we need to know at the beginning of each lecture.
    [Show full text]
  • Representation Theory As Gauge Theory
    Representation theory Quantum Field Theory Gauge Theory Representation Theory as Gauge Theory David Ben-Zvi University of Texas at Austin Clay Research Conference Oxford, September 2016 Representation theory Quantum Field Theory Gauge Theory Themes I. Harmonic analysis as the exploitation of symmetry1 II. Commutative algebra signals geometry III. Topology provides commutativity IV. Gauge theory bridges topology and representation theory 1Mackey, Bull. AMS 1980 Representation theory Quantum Field Theory Gauge Theory Themes I. Harmonic analysis as the exploitation of symmetry1 II. Commutative algebra signals geometry III. Topology provides commutativity IV. Gauge theory bridges topology and representation theory 1Mackey, Bull. AMS 1980 Representation theory Quantum Field Theory Gauge Theory Themes I. Harmonic analysis as the exploitation of symmetry1 II. Commutative algebra signals geometry III. Topology provides commutativity IV. Gauge theory bridges topology and representation theory 1Mackey, Bull. AMS 1980 Representation theory Quantum Field Theory Gauge Theory Themes I. Harmonic analysis as the exploitation of symmetry1 II. Commutative algebra signals geometry III. Topology provides commutativity IV. Gauge theory bridges topology and representation theory 1Mackey, Bull. AMS 1980 Representation theory Quantum Field Theory Gauge Theory Outline Representation theory Quantum Field Theory Gauge Theory Representation theory Quantum Field Theory Gauge Theory Fourier Series G = U(1) acts on S1, hence on L2(S1): Fourier series 2 1 [M 2πinθ L (S ) ' Ce n2Z joint eigenspaces of rotation operators See last slide for all image credits Representation theory Quantum Field Theory Gauge Theory The dual Basic object in representation theory: describe the dual of a group G: Gb = f irreducible (unitary) representations of Gg e.g.
    [Show full text]
  • Symmetries in Quantum Field Theory and Quantum Gravity
    Symmetries in Quantum Field Theory and Quantum Gravity Daniel Harlowa and Hirosi Oogurib;c aCenter for Theoretical Physics Massachusetts Institute of Technology, Cambridge, MA 02139, USA bWalter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena, CA 91125, USA cKavli Institute for the Physics and Mathematics of the Universe (WPI) University of Tokyo, Kashiwa, 277-8583, Japan E-mail: [email protected], [email protected] Abstract: In this paper we use the AdS/CFT correspondence to refine and then es- tablish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dual would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any \long-range" bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irre- ducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the \convex hull condition" of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary.
    [Show full text]
  • Wave Equations Greiner Greiner Quantum Mechanics Mechanics I an Introduction 3Rd Edition (In Preparation)
    W Greiner RELATIVISTIC QUANTUM MECHANICS Wave Equations Greiner Greiner Quantum Mechanics Mechanics I An Introduction 3rd Edition (in preparation) Greiner Greiner Quantum Theory Mechanics II Special Chapters (in preparation) (in preparation) Greiner Greiner· Muller Electrodynamics Quantum Mechanics (in preparation) Symmetries 2nd Edition Greiner· Neise . StOcker Greiner Thermodynamics Relativistic Quantum Mechanics and Statistical Mechanics Wave Equations Greiner· Reinhardt Field Quantization (in preparation) Greiner . Reinhardt Quantum Electrodynamics 2nd Edition Greiner· Schafer Quantum Chromodynamics Greiner· Maruhn Nuclear Models (in preparation) Greiner· MUller Gauge Theory of Weak Interactions Walter Greiner RELATIVISTIC QUANTUM MECHANICS Wave Equations With a Foreword by D. A. Bromley With 62 Figures, and 89 Worked Examples and Exercises Springer Professor Dr. Walter Greiner Institut fiir Theoretische Physik der Johann Wolfgang Goethe-Universitat Frankfurt Postfach 111932 D-60054 Frankfurt am Main Germany Street address: Robert-Mayer-Strasse 8-\ 0 D-60325 Frankfurt am Main Germany ISBN 978-3-540-99535-7 ISBN 978-3-642-88082-7 (eBook) DOl 10.1007/978-3-642-88082-7 Title of the original German edition: Theoretische Physik, Band 6: Relativistische Quantenmechanik, 2., iiberarbeitete und erweiterte Auflage 1987 © Verlag Harri Deutsch, Thun 1981 1st Edition 1990 3rd printing 1995 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer­ Verlag.
    [Show full text]
  • Modularity and Vacua in N = 1* Supersymmetric Gauge Theory Antoine Bourget
    Modularity and vacua in N = 1* supersymmetric gauge theory Antoine Bourget To cite this version: Antoine Bourget. Modularity and vacua in N = 1* supersymmetric gauge theory. Physics [physics]. Université Paris sciences et lettres, 2016. English. NNT : 2016PSLEE011. tel-01427599 HAL Id: tel-01427599 https://tel.archives-ouvertes.fr/tel-01427599 Submitted on 5 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’ÉCOLE NORMALE SUPÉRIEURE Spécialité : Physique École doctorale : Physique en Île-de-France réalisée au Laboratoire de Physique Théorique de l’ENS présentée par Antoine BOURGET pour obtenir le grade de : DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE Sujet de la thèse : Vides et Modularité dans les théories de jauge supersymétriques = 1∗ N soutenue le 01/07/2016 devant le jury composé de : M. Ofer Aharony Rapporteur M. Costas Bachas Examinateur M. Amihay Hanany Rapporteur Mme Michela Petrini Examinateur M. Henning Samtleben Examinateur M. S. Prem Kumar Examinateur M. Jan Troost Directeur de thèse Résumé Nous explorons la structure des vides dans une déformation massive de la théorie de Yang-Mills maximalement supersymétrique en quatre dimensions. Sur un espace-temps topologiquement trivial, la théorie des orbites nilpotentes dans les algèbres de Lie rend possible le calcul exact de l’indice de Witten.
    [Show full text]