Tidal Heating in Multilayered Terrestrial Exoplanets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i, -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
The Spitzer Search for the Transits of HARPS Low-Mass Planets II
A&A 601, A117 (2017) Astronomy DOI: 10.1051/0004-6361/201629270 & c ESO 2017 Astrophysics The Spitzer search for the transits of HARPS low-mass planets II. Null results for 19 planets? M. Gillon1, B.-O. Demory2; 3, C. Lovis4, D. Deming5, D. Ehrenreich4, G. Lo Curto6, M. Mayor4, F. Pepe4, D. Queloz3; 4, S. Seager7, D. Ségransan4, and S. Udry4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium e-mail: [email protected] 2 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK 4 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85478 Garching bei München, Germany 7 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA Received 8 July 2016 / Accepted 15 December 2016 ABSTRACT Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD -
Doctor of Philosophy
Study of Sun-like G Stars and Their Exoplanets Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mr. SHASHANKA R. GURUMATH May, 2019 ABSTRACT By employing exoplanetary physical and orbital characteristics, aim of this study is to understand the genesis, dynamics, chemical abundance and magnetic field structure of Sun-like G stars and relationship with their planets. With reasonable constraints on selection of exoplanetary physical characteristics, and by making corrections for stellar rate of mass loss, a power law relationship between initial stellar mass and their exo- planetary mass is obtained that suggests massive stars harbor massive planets. Such a power law relationship is exploited to estimate the initial mass (1.060±0.006) M of the Sun for possible solution of “Faint young Sun paradox” which indeed indicates slightly higher mass compared to present mass. Another unsolved puzzle of solar system is angular momentum problem, viz., compare to Sun most of the angular momentum is concentrated in the solar system planets. By analyzing the exoplanetary data, this study shows that orbital angular momentum of Solar system planets is higher compared to orbital angular momentum of exoplanets. This study also supports the results of Nice and Grand Tack models that propose the idea of outward migration of Jovian planets during early history of Solar system formation. Furthermore, we have examined the influence of stellar metallicity on the host stars mass and exoplanetary physical and orbital characteristics that shows a non-linear relationship. Another important result is most of the planets in single planetary stellar systems are captured from the space and/or inward migration of planets might have played a dominant role in the final architecture of single planetary stellar systems. -
Quantization of Planetary Systems and Its Dependency on Stellar Rotation Jean-Paul A
Quantization of Planetary Systems and its Dependency on Stellar Rotation Jean-Paul A. Zoghbi∗ ABSTRACT With the discovery of now more than 500 exoplanets, we present a statistical analysis of the planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the structure of planetary orbits, i.e. planetary angular momentum and orbital periods are ‘quantized’ in integer or half-integer multiples with respect to the parent stars’ rotation period. The Solar System is first shown to exhibit quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443 exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a discrete half-integer relationship with orbital ranks n=0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining these results by pure chance is p<0.024. We discuss various mechanisms that could justify this planetary quantization, such as the hybrid gravitational instability models of planet formation, along with possible physical mechanisms such as inner discs magnetospheric truncation, tidal dissipation, and resonance trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge naturally from the formation processes of planetary systems and that this orbital quantization is highly dependent on the parent stars rotation periods. Key words: planetary systems: formation – star: rotation – solar system: formation 1. INTRODUCTION The discovery of now more than 500 exoplanets has provided the opportunity to study the various properties of planetary systems and has considerably advanced our understanding of planetary formation processes. -
UPPSALA UNIVERSITY Detection and Characterization of Transiting
UPPSALA UNIVERSITY Department of Physics and Astronomy Division of Astronomy and Space Physics Bachelor of Science degree in Physics Detection and characterization of transiting exoplanet TrES-5 b Roger Kalliomäki Supervisor: Eric Stempels Subject Reader: Nikolai Piskunov June 05, 2015 1 Abstract The field of exoplanetary science is growing rapidly and more than fifteen hundred exoplanets have been confirmed to this day. Most of these planets have been found through the detection of planetary transits and to use this method for finding extrasolar planets was the main focus of the project. From the beginning the goal and purpose for the thesis work was twofold: To learn how to use the Westerlund telescope for detecting and characterizing transiting extrasolar planets. Thereafter trying to detect and confirm a transiting planet which earlier only had been detected with radial velocity measurements. Unfortunately bad weather postponed the initial observations to the point that the latter part hade to be canceled. Instead a more theoretical alternative was chosen. A study on the probabilities for RV planets to transit, based on of the paper “A Posteriori Transit Probabilities” (2013) by Stevens and Gaudi. Observations where performed at two nights in March which resulted in one detected planetary transit. Using the obtained data from the observation certain properties of the planetary system was calculated and compared with the work of Mandushev et al. The results were surprisingly comparable and expected to be even more similar if one would add the effect of limb darkening. Forskningen om extrasolära planetsystem växer otroligt snabbt och hittills har mer än femtonhundra exoplaneter blivit bekräftade. -
Evidence for Enhanced Chromospheric Ca II H and K Emission in Stars with Close-In Extrasolar Planets
A&A 540, A82 (2012) Astronomy DOI: 10.1051/0004-6361/201118247 & c ESO 2012 Astrophysics Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets T. Krejcovᡠ1 and J. Budaj2 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 61137 Brno, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic e-mail: [email protected] Received 11 October 2011 / Accepted 13 February 2012 ABSTRACT Context. The planet-star interaction is manifested in many ways. It has been found that a close-in exoplanet causes small but mea- surable variability in the cores of a few lines in the spectra of several stars, which corresponds to the orbital period of the exoplanet. Stars with and without exoplanets may have different properties. Aims. The main goal of our study is to search for the influence that exoplanets might have on atmospheres of their host stars. Unlike the previous studies, we do not study changes in the spectrum of a host star or differences between stars with and without exoplanets. We aim to study a large number of stars with exoplanets and the current level of their chromospheric activity and to look for a possible correlation with the exoplanetary properties. Methods. To analyse the chromospheric activity of stars, we exploited our own and publicly available archival spectra, measured the equivalent widths of the cores of Ca II H and K lines, and used them to trace their activity. Subsequently, we searched for their dependence on the orbital parameters and the mass of the exoplanet. -
Cal. Legacy Survey I
The Astrophysical Journal Supplement Series, 255:8 (67pp), 2021 July https://doi.org/10.3847/1538-4365/abe23c © 2021. The American Astronomical Society. All rights reserved. The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal1 , Benjamin J. Fulton1,2 , Lea A. Hirsch3 , Howard T. Isaacson4 , Andrew W. Howard1 , Cayla M. Dedrick1,5 , Ilya A. Sherstyuk1, Sarah C. Blunt1,18 , Erik A. Petigura6 , Heather A. Knutson7 , Aida Behmard7,18 , Ashley Chontos8,18 , Justin R. Crepp9 , Ian J. M. Crossfield10, Paul A. Dalba11,19 , Debra A. Fischer12 , Gregory W. Henry13 , Stephen R. Kane11 , Molly Kosiarek14,18 , Geoffrey W. Marcy4 , Ryan A. Rubenzahl1,18 , Lauren M. Weiss8 , and Jason T. Wright15,16,17 1 Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2 IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4 Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5 Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 6 Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 7 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 8 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, -
The Occurrence and Mass Distribution of Close-In Super-Earths, Neptunes, and Jupiters
The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters Andrew W. Howard,1,2∗ Geoffrey W. Marcy,1 John Asher Johnson,3 Debra A. Fischer,4 Jason T. Wright,5 Howard Isaacson,1 Jeff A. Valenti,6 Jay Anderson,6 Doug N. C. Lin,7,8 Shigeru Ida9 1Department of Astronomy, University of California, Berkeley, CA 94720, USA 2Townes Fellow, Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA 3Department of Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 4Department of Astronomy, Yale University, New Haven, CT 06511, USA 5Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA 6Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA 7UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA 8Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China 9Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan ∗To whom correspondence should be addressed; E-mail: [email protected]. Do Not Distribute. To appear in Science. Submitted 8 July 2010, accepted 27 September 2010, published29October2010. 1 The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and or- bital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days) based on precise Doppler measurements of 166 Sun- like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power law mass distribution fitted to ourmea- surements, df/dlogM =0.39M−0.48,predictsthat23%ofstarsharboraclose-in Earth-mass planet (ranging from 0.5 to 2.0 Earth-masses). -
Photometry Using Mid-Sized Nanosatellites
Feasibility-Study for Space-Based Transit Photometry using Mid-sized Nanosatellites by Rachel Bowens-Rubin Submitted to the Department of Earth, Atmospheric, and Planetary Science in partial fulfillment of the requirements for the degree of Masters of Science in Earth, Atmospheric, and Planetary Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 @ Massachusetts Institute of Technology 2012. All rights reserved. A uthor .. ............... ................ Department of Earth, Atmospheric, and Planetary Science May 18, 2012 C ertified by .................. ........ ........................... Sara Seager Professor, Departments of Physics and EAPS Thesis Supervisor VIZ ~ Accepted by.......,.... Robert D. van der Hilst Schulumberger Professor of Geosciences and Head, Department of Earth, Atmospheric, and Planetary Science 2 Feasibility-Study for Space-Based Transit Photometry using Mid-sized Nanosatellites by Rachel Bowens-Rubin Submitted to the Department of Earth, Atmospheric, and Planetary Science on May 18, 2012, in partial fulfillment of the requirements for the degree of Masters of Science in Earth, Atmospheric, and Planetary Science Abstract The photometric precision needed to measure a transit of small planets cannot be achieved by taking observations from the ground, so observations must be made from space. Mid-sized nanosatellites can provide a low-cost option for building an optical system to take these observations. The potential of using nanosatellites of varying sizes to perform transit measurements was evaluated using a theoretical noise budget, simulated exoplanet-transit data, and case studies to determine the expected results of a radial velocity followup mission and transit survey mission. Optical systems on larger mid-sized nanosatellites (such as ESPA satellites) have greater potential than smaller mid-sized nanosatellites (such as CubeSats) to detect smaller planets, detect planets around dimmer stars, and discover more transits in RV followup missions.