Dandelion Taraxacum Officinale

Total Page:16

File Type:pdf, Size:1020Kb

Dandelion Taraxacum Officinale Dandelion Taraxacum officinale DESCRIPTION: Dandelion is a hardy perennial with a thick, fleshy taproot and no stem. Leaves grow in a rosette from the crown. They are long, narrow, irregularly lobed, and lance shaped. The lobed tips are often opposite each other and pointing toward the crown. Leaves are often purple at the base and emit a milky latex when broken. The deep golden yellow flowers are borne in heads on long hollow stalks. Blossoms soon mature into spherical clusters of whitish fruits, like white puffballs, composed of parachute-like seeds. Seeds are carried by wind. Type of plant: broadleaf Life cycle: Perennial Growth habit: Bunch type Aggressiveness (1-10 scale; 7 10=most aggressive): Leaf attachment whorled Leaf color: Dark green Flower description: Deep yellow, with only one flower per seed stalk Seed description: Spherical clusters that appear as white puffballs. The seed resembles a parachute Reproduces by: Seed, rootstock U.S. states found in: Throughout the U.S. Countries found in: Mexico, South and Central America, Africa, Europe, Asia Golf course areas found in: Tees, fairways, roughs, low maintenance areas MONITORING: Begin scouting when average air temperatures reach 55 F (13 C) IPM Planning Guide 1 Dandelion Taraxacum officinale MANAGEMENT STRATEGIES: Always check labels to determine turfgrass sensitivity to herbicides. For updated management information, see North Carolina State’s “Pest control for Professional Turfgrass Managers” Follow resistance management guidelines by rotating products as outlined in Weed Science Society of America’s Herbicide Site of Action Classification List Always consult the most recent version of all product labels before use. TIMING/ TYPE PRACTICE THRESHOLD Cultural N/A Encourage healthy turf, mow regularly Biological Label signal Active ingredient (example) word Pre-emerge: most effective when Caution post-emerge Atrazine Chemical (restricted use) herbicides are Isoxaben (Gallery) Caution also part of the program Metribuzin (Sencor) Caution Simazine (Simazine) Caution 2,4-D (Barrage) Caution Caution or Warning, Dicamba (Banvel) depending on formulation Post-emerge: Caution to Danger, mecoprop (MCPP) depending on formulation Triclopyr plus clopyralid mixture Danger (Confront) IPM Planning Guide 2 .
Recommended publications
  • List of Vascular Plants Endemic to Britain, Ireland and the Channel Islands 2020
    British & Irish Botany 2(3): 169-189, 2020 List of vascular plants endemic to Britain, Ireland and the Channel Islands 2020 Timothy C.G. Rich Cardiff, U.K. Corresponding author: Tim Rich: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract A list of 804 plants endemic to Britain, Ireland and the Channel Islands is broken down by country. There are 659 taxa endemic to Britain, 20 to Ireland and three to the Channel Islands. There are 25 endemic sexual species and 26 sexual subspecies, the remainder are mostly critical apomictic taxa. Fifteen endemics (2%) are certainly or probably extinct in the wild. Keywords: England; Northern Ireland; Republic of Ireland; Scotland; Wales. Introduction This note provides a list of vascular plants endemic to Britain, Ireland and the Channel Islands, updating the lists in Rich et al. (1999), Dines (2008), Stroh et al. (2014) and Wyse Jackson et al. (2016). The list includes endemics of subspecific rank or above, but excludes infraspecific taxa of lower rank and hybrids (for the latter, see Stace et al., 2015). There are, of course, different taxonomic views on some of the taxa included. Nomenclature, taxonomic rank and endemic status follows Stace (2019), except for Hieracium (Sell & Murrell, 2006; McCosh & Rich, 2018), Ranunculus auricomus group (A. C. Leslie in Sell & Murrell, 2018), Rubus (Edees & Newton, 1988; Newton & Randall, 2004; Kurtto & Weber, 2009; Kurtto et al. 2010, and recent papers), Taraxacum (Dudman & Richards, 1997; Kirschner & Štepànek, 1998 and recent papers) and Ulmus (Sell & Murrell, 2018). Ulmus is included with some reservations, as many taxa are largely vegetative clones which may occasionally reproduce sexually and hence may not merit species status (cf.
    [Show full text]
  • Identifying Key Components of Interaction Networks Involving Greater Sage Grouse
    Identifying Key Components of Interaction Networks Involving Greater Sage Grouse Sarah Barlow and Bruce Pavlik Conservation Department Red Butte Garden and Arboretum Salt Lake City, Utah 84105 Vegetation Forb seed Pollinators collections GSG Insects (chick diet) Chick Survivorship Linked to Vegetation Structure and Food Resource Abundance Gregg and Crawford 2009 J. Wildlife Man. 73:904-913 Astragalus geyeri Microsteris gracilis (Phacelia gracilis) https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Microsteris_gracilis_1776.JPG/220px-Microsteris_gracilis_1776.JPG Agoseris heterophylla Achillea millefolium Taraxacum officinale Bransford, W.D. & Dophia http://www.americansouthwest.net/ Literature Survey: Forbs and Insects as Essential Foods Reference Field Site Insect Foods Forb Foods Achillea, Agoseris, Astragalus, Pennington et al. 2016 Review 41 invert taxa, Coleoptera, Hymenoptera, Lactuca, Orthoptera Taraxacum, Trifolium, Lepidium Greg and Crawford 2009 NW Nevada Lepidoptera larvae especially strong Microsteris gracilis relation to SB "productive forbs" not at Thompson et al. 2006 Wyoming > 3<11 cm Hymenoptera, Ants, Coleoptera expense of sagebrush cover Drut, Crawford, Gregg 1994 Oregon Scarabs, Tenebrionids, ants w/ high occurrence Drut, Pyle and Crawford June beetles most preferred on all sites, Agoseris, Astragalus, Crepis, 1994 Oregon then Microsteris Tenebrionids and ants (by mass & freq) Trifolium (by mass & freq) Orthoptera, Coleoptera, Hymenoptera (by Peterson 1970 Montana vol & freq) Taraxacum, Tragopogon, Lactuca (by
    [Show full text]
  • Inflorescence Development and Floral Organogenesis in Taraxacum Kok
    plants Article Inflorescence Development and Floral Organogenesis in Taraxacum kok-saghyz Carolina Schuchovski 1 , Tea Meulia 2, Bruno Francisco Sant’Anna-Santos 3 and Jonathan Fresnedo-Ramírez 4,* 1 Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Rua dos Funcionários, 1540 CEP 80035-050 Curitiba, Brazil; [email protected] 2 Molecular and Cellular Imaging Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; [email protected] 3 Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico, Jardim das Américas, C.P. 19031, 81531-980 Curitiba, Brazil; [email protected] 4 Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA * Correspondence: [email protected]; Tel.: +1-330-263-3822 Received: 13 August 2020; Accepted: 22 September 2020; Published: 24 September 2020 Abstract: Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK has demonstrated TK’s potential in industrial applications as a relevant natural rubber and latex-producing alternative crop. However, many aspects of its biology have been neglected in published studies. For example, floral development is still poorly characterized. TK inflorescences were studied by scanning electron microscopy. Nine stages of early inflorescence development are proposed, and floral micromorphology is detailed. Individual flower primordia development starts at the periphery and proceeds centripetally in the newly-formed inflorescence meristem.
    [Show full text]
  • DANDELION Taraxacum Officinale ERADICATE
    OAK OPENINGS REGION BEST MANAGEMENT PRACTICES DANDELION Taraxacum officinale ERADICATE This Best Management Practice (BMP) document provides guidance for managing Dandelion in the Oak Openings Region of Northwest Ohio and Southeast Michigan. This BMP was developed by the Green Ribbon Initiative and its partners and uses available research and local experience to recommend environmentally safe control practices. INTRODUCTION AND IMPACTS— Dandelion (Taraxacum officinale) HABITAT—Dandelion prefers full sun and moist, loamy soil but can is native to Eurasia and was likely introduced to North America many grow anywhere with 3.5-110” inches of annual precipitation, an an- times. The earliest record of Dandelion in North America comes from nual mean temperature of 40-80°F, and light. It is tolerant of salt, 1672, but it may have arrived earlier. It has been used in medicine, pollutants, thin soils, and high elevations. In the OOR Dandelion has food and beverages, and stock feed. Dandelion is now widespread been found on sand dunes, in and at the top of floodplains, near across the planet, including OH and MI. vernal pools and ponds, and along roads, ditches, and streams. While the Midwest Invasive Species Information Net- IDENTIFICATION—Habit: Perennial herb. work (MISIN) has no specific reports of Dandelion in or within 5 miles of the Oak Openings Region (OOR, green line), the USDA Plants Database reports Dan- D A delion in all 7 counties of the OOR and most neighboring counties (black stripes). Dan- delion is ubiquitous in the OOR. It has demonstrated the ability to establish and MI spread in healthy and disturbed habitats of OH T © Lynn Sosnoskie © Steven Baskauf © Chris Evans the OOR and both the wet nutrient rich soils of wet prairies and floodplains as well Leaves: Highly variable in shape, color and hairiness in response to as sandy dunes and oak savannas.
    [Show full text]
  • Apomixis in Taraxacum an Embryological and Genetic Study Promotor: Professor Dr
    Apomixis in Taraxacum an embryological and genetic study promotor: Professor dr. R.F.Hoekstra , hoogleraar in de genetica, met bijzondere aandacht voor de populatie- en kwantitatieve genetica co-promotoren: Dr. P.J.va n Dijk, senior onderzoeker bijhe t Nederlands Instituut voor Oecologisch Onderzoek, Centrum voor Terrestrische Oecologie (NIOO- CTO) te Heteren, en Dr. J.H.d e Jong, universitair hoofddocent bijhe t Departement Plantenwetenschappen, Wageningen Universiteit promotiecommissie: Prof. Dr. S.C. de Vries Wageningen Universiteit Prof. Dr.J.L .va n Went Wageningen Universiteit Prof. Dr.J.M.M . van Damme NIOO-CTO Heteren Peter van Baarlen Apomixis in Taraxacum an embryological and genetic study Apomixie in Taraxacum een embryologische en genetische studie Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op dinsdag 11 September 2001 des namiddags te vier uur in de Aula Baarlen, Peter van Apomixis in Taraxacum / Peter van Baarlen Thesis Wageningen University. - With references - With summary in Dutch Subject headings: apomixis/diplospory/embryology/polyploidy Typeset in ll-14pt Book Antiqua ISBN 98-5808-473-6. UNO' ^o\3c?2 STELLINGEN 1. - Het verstoren van de paring van homologe chromosomen tijdens de eerste meiotische profase, parthenogenetische eicel ontwikkeling en autonome endosperm ontwikkeling in apomictische paardebloemen is te verklaren door aan te nemen dat bepaalde chromosoom-specifieke eiwitten verschillen van hun "sexuele" analogen. dit proefschrift 2. - Het grote evolutionaire succes van paardebloemen kan verklaard worden door hun vermenging van de voordelen van sexuele en asexuele reproductie. dit proefschrift 3.
    [Show full text]
  • Plant Motifs on Jewish Ossuaries and Sarcophagi in Palestine in the Late Second Temple Period: Their Identification, Sociology and Significance
    PLANT MOTIFS ON JEWISH OSSUARIES AND SARCOPHAGI IN PALESTINE IN THE LATE SECOND TEMPLE PERIOD: THEIR IDENTIFICATION, SOCIOLOGY AND SIGNIFICANCE A paper submitted to the University of Manchester as part of the Degree of Master of Arts in the Faculty of Humanities 2005 by Cynthia M. Crewe ([email protected]) Biblical Studies Melilah 2009/1, p.1 Cynthia M. Crewe CONTENTS Abbreviations ..............................................................................................................................................4 INTRODUCTION ......................................................................................................................................5 CHAPTER 1 Plant Species 1. Phoenix dactylifera (Date palm) ....................................................................................................6 2. Olea europea (Olive) .....................................................................................................................11 3. Lilium candidum (Madonna lily) ................................................................................................17 4. Acanthus sp. ..................................................................................................................................20 5. Pinus halepensis (Aleppo/Jerusalem pine) .................................................................................24 6. Hedera helix (Ivy) .........................................................................................................................26 7. Vitis vinifera
    [Show full text]
  • Genetic Dissection of Apomixis in Dandelions Identifies a Dominant
    G C A T T A C G G C A T genes Article Genetic Dissection of Apomixis in Dandelions Identifies a Dominant Parthenogenesis Locus and Highlights the Complexity of Autonomous Endosperm Formation Peter J. Van Dijk 1,*, Rik Op den Camp 1 and Stephen E. Schauer 2 1 Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands; [email protected] 2 Keygene Inc., Rockville, MD 20850, USA; [email protected] * Correspondence: [email protected]; Tel.: +31-317-466-866 Received: 20 July 2020; Accepted: 18 August 2020; Published: 20 August 2020 Abstract: Apomixis in the common dandelion (Taraxacum officinale) consists of three developmental components: diplospory (apomeiosis), parthenogenesis, and autonomous endosperm development. The genetic basis of diplospory, which is inherited as a single dominant factor, has been previously elucidated. To uncover the genetic basis of the remaining components, a cross between a diploid sexual seed parent and a triploid apomictic pollen donor was made. The resulting 95 triploid progeny plants were genotyped with co-dominant simple-sequence repeat (SSR) markers and phenotyped for apomixis as a whole and for the individual apomixis components using Nomarski Differential Interference Contrast (DIC) microscopy of cleared ovules and seed flow cytometry. From this, a new SSR marker allele was discovered that was closely linked to parthenogenesis and unlinked to diplospory. The segregation of apomixis as a whole does not differ significantly from a three-locus model, with diplospory and parthenogenesis segregating as unlinked dominant loci. Autonomous endosperm is regularly present without parthenogenesis, suggesting that the parthenogenesis locus does not also control endosperm formation.
    [Show full text]
  • The Dandy Dandelion
    THE DANDY DANDELION DANDELION (Taraxacum officianale), also known as lion’s tooth, blow-ball, cankerwort… “a tap-rooted perennial from a basal rosette of leaves. Yellow flowers are produced on leafless stalks”. (Source: Weeds of the Northeast, R. Uva, J. Neal and J. DiTomaso). Otherwise known as the almost universal poster-child for the word “weed”… And striking terror, fury and/or tears for gardeners and proud lawn-keepers everywhere. The common dandelion is native to Europe but has spread pretty much worldwide via its wind-blown seeds, including all of Pennsylvania. Its bright yellow flowers are among the earliest harbingers of Spring, popping up quite merrily in yards, meadows and fields, and parks across the state, and even in the cracks of sidewalks and roadways. This saucy little bloom is very self-confident, opportunistic and tough – she has staying power, needing only 2cm of soil in which to germinate her seeds, and her seeds can be produced without pollination, so she is also extremely independent! While lawn enthusiasts everywhere may be quick to grab for the Round-Up to spray death these bright little marvels, or to reach for that funky pronged garden tool to dig them out by the roots, perhaps I may be suffered to ask…WAIT!!?!? Consider also this: This is one underestimated plant! Nearly all of the plant parts are edible at different stages of growth and can be (and are) utilized for their highly nutritious elements, including their detoxifying greens in salads and vegetable dishes. Their slightly bitter flavors add an intriguing contrast to the relative sweet- ness of these everyday dishes.
    [Show full text]
  • FSC Nettlecombe Court Nature Review 2014
    FSC Nettlecombe Court Nature Review 2014 Compiled by: Sam Tuddenham Nettlecombe Court- Nature Review 2014 Introduction The purpose of this report is to review and share the number of different species that are present in the grounds of Nettlecombe Court. A significant proportion of this data has been generated by FSC course tutors and course attendees studying at Nettlecombe court on a variety of courses. Some of the data has been collected for the primary purpose of species monitoring for nationwide conservation charities e.g. The Big Butterfly Count and Bee Walk Survey Scheme. Other species have just been noted by members or staff when out in the grounds. These records are as accurate as possible however we accept that there may be species missing. Nettlecombe Court Nettlecombe Court Field Centre of the Field Studies Council sits just inside the eastern border of Exmoor national park, North-West of Taunton (Map 1). The house grid reference is 51o07’52.23”N, 32o05’8.65”W and this report only documents wildlife within the grounds of the house (see Map 2). The estate is around 60 hectares and there is a large variety of environment types: Dry semi- improved neutral grassland, bare ground, woodland (large, small, man –made and natural), bracken dominated hills, ornamental shrubs (lawns/ domestic gardens) and streams. These will all provide different habitats, enabling the rich diversity of wildlife found at Nettlecombe Court. Nettlecombe court has possessed a meteorological station for a number of years and so a summary of “MET” data has been included in this report.
    [Show full text]
  • HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S
    HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S. ARMY CORPS OF ENGINEERS, COLD REGIONS RESEARCH AND ENGINEERING LABORATORY (CRREL) - 2013 Ratings Lichvar, R.W. 2016. The National Wetland Plant List: 2016 wetland ratings. User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region. Scientific Name Common Name Hawaii Status South Pacific Agrostis canina FACU Velvet Bent Islands Status Agrostis capillaris UPL Colonial Bent Abelmoschus moschatus FAC Musk Okra Agrostis exarata FACW Spiked Bent Abildgaardia ovata FACW Flat-Spike Sedge Agrostis hyemalis FAC Winter Bent Abrus precatorius FAC UPL Rosary-Pea Agrostis sandwicensis FACU Hawaii Bent Abutilon auritum FACU Asian Agrostis stolonifera FACU Spreading Bent Indian-Mallow Ailanthus altissima FACU Tree-of-Heaven Abutilon indicum FAC FACU Monkeybush Aira caryophyllea FACU Common Acacia confusa FACU Small Philippine Silver-Hair Grass Wattle Albizia lebbeck FACU Woman's-Tongue Acaena exigua OBL Liliwai Aleurites moluccanus FACU Indian-Walnut Acalypha amentacea FACU Alocasia cucullata FACU Chinese Taro Match-Me-If-You-Can Alocasia macrorrhizos FAC Giant Taro Acalypha poiretii UPL Poiret's Alpinia purpurata FACU Red-Ginger Copperleaf Alpinia zerumbet FACU Shellplant Acanthocereus tetragonus UPL Triangle Cactus Alternanthera ficoidea FACU Sanguinaria Achillea millefolium UPL Common Yarrow Alternanthera sessilis FAC FACW Sessile Joyweed Achyranthes
    [Show full text]
  • Dandelion Root Extract Induces Intracellular Ca Increases In
    International Journal of Molecular Sciences Article Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells Andrea Gerbino 1,* ID , Daniela Russo 2, Matilde Colella 1 ID , Giuseppe Procino 1 ID , Maria Svelto 1, Luigi Milella 2 ID and Monica Carmosino 2,* 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; [email protected] (M.C.); [email protected] (G.P.); [email protected] (M.S.) 2 Department of Sciences, University of Basilicata, 85100 Potenza, Italy; [email protected] (D.R.); [email protected] (L.M.) * Correspondence: [email protected] (A.G.); [email protected] (M.C.); Tel.: +39-080-544-3334 (A.G.); +39-335-6302642 (M.C.) Received: 6 March 2018; Accepted: 4 April 2018; Published: 7 April 2018 Abstract: Dandelion (Taraxacum officinale Weber ex F.H.Wigg.) has been used for centuries as an ethnomedical remedy. Nonetheless, the extensive use of different kinds of dandelion extracts and preparations is based on empirical findings. Some of the tissue-specific effects reported for diverse dandelion extracts may result from their action on intracellular signaling cascades. Therefore, the aim of this study was to evaluate the effects of an ethanolic dandelion root extract (DRE) on Ca2+ signaling in human embryonic kidney (HEK) 293 cells. The cytotoxicity of increasing doses of crude DRE was determined by the Calcein viability assay. Fura-2 and the fluorescence resonance energy transfer (FRET)-based probe ERD1 were used to measure cytoplasmic and intraluminal endoplasmic reticulum (ER) Ca2+ levels, respectively. Furthermore, a green fluorescent protein (GFP)-based probe was used to monitor phospholipase C (PLC) activation (pleckstrin homology [PH]–PLCδ–GFP).
    [Show full text]
  • Nutrient Composition of Dandelions and Its Potential As Human Food
    American Journal of Biochemistry and Biotechnology, 2012, 8 (2), 118-127 ISSN: 1553-3468 © 2012 A.E. Ghaly et al ., This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajbbsp.2012.118.127 Published Online 8 (2) 2012 (http://www.thescipub.com/ajbb.toc) Nutrient Composition of Dandelions and its Potential as Human Food 1Abdel E. Ghaly, 2Nesreen Mahmoud and 1Deepika Dave 1Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia, Canada 2Department of Agricultural Engineering, Faculty of Agriculture, Cario University, Gizza, Egypt Received 2012-04-15; Revised 2012-05-27; Accepted 2012-06-10 ABSTRACT Two thirds of the world’s populations are suffering from protein malnutrition and about 36 million people die every year due to hunger. Expansion of present agriculture practices into marginal land is not expected to solve the problem of increasing the food supply. New methods of feeding the ever increasing world population must be developed. The aim of the study was to evaluate the usefulness of the dandelion leaves as a source of supplemen- tal protein. Protein was extracted from the dandelion leaves by blending them after pH and moisture adjustment, squeezing the resultant pulp through filter press and coagulating the filtrate with acid and heat. The effects of pH, moisture content, pressure and temperature on the extractability and quality of protein were investigated. A mass balance was performed on dry matter and protein contents during the extraction steps. Proximate analysis was performed on the extracted leaf protein and the amino acid profile of the protein curd was determined.
    [Show full text]