Notes on Fraxinus Profunda (Oleaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diseases of Trees in the Great Plains
United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here. -
And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-CCo-Chairvhiadi rA. -
Intraspecific Variation in Fraxinus Pennsylvanica Responses To
New Forests (2015) 46:995–1011 DOI 10.1007/s11056-015-9494-4 Intraspecific variation in Fraxinus pennsylvanica responses to emerald ash borer (Agrilus planipennis) 1 1 2 J. L. Koch • D. W. Carey • M. E. Mason • 3 1 T. M. Poland • K. S. Knight Received: 1 December 2014 / Accepted: 10 June 2015 / Published online: 21 June 2015 Ó Springer Science+Business Media Dordrecht (outside the USA) 2015 Abstract The emerald ash borer (EAB; Agrilus planipennis Fairmaire) is a bark and wood boring beetle native to east Asia that was first discovered in North America in 2002. Since then, entire stands of highly susceptible green ash (Fraxinus pennsylvanica Mar- shall) have been killed within a few years of infestation. We have identified a small number of mature green ash trees which have been attacked by EAB, yet survived the peak EAB infestation that resulted in mortality of the rest of the ash cohort. Adult landing and feeding preference bioassays, leaf volatile quantification and EAB egg bioassay experiments were used to characterize potential differences in responses of these select ‘‘lingering’’ green ash trees relative to known EAB susceptible controls. Three selections were identified as being significantly less preferred for adult feeding, but no specific leaf volatile profile was associated with this reduced preference. Egg bioassays identified two ash selections that had significant differences in larval survival and development; one having a higher number of larvae killed by apparent host tree defenses and the other having lower larval weight. Correlation and validation of the bioassay results in replicated plantings to assess EAB resistance in the field is still necessary. -
American Elm Ulmus Americana L
W&M ScholarWorks Reports 9-1-1994 American Elm Ulmus americana L. Gene Silberhorn Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Plant Sciences Commons Recommended Citation Silberhorn, G. (1994) American Elm Ulmus americana L.. Wetland Flora Technical Reports, Wetlands Program, Virginia Institute of Marine Science. Virginia Institute of Marine Science, College of William and Mary. http://dx.doi.org/doi:10.21220/m2-5318-he68 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Wetlands Technical Report Program Wetland Flora No. 94-8 / September 1994 Gene Silberhorn American Elm Ulmus americana L. Growth Habit and Diagnostic Characteristics Habitat American elm is a large tree (up to 100 feet tall), with Once common and abundant in wooded wetlands furrowed, flaky, grayish brown bark when mature. along the Eastern Seaboard and the Midwest, Ameri- Older trees are somewhat vase-like with the branches can elm status as a important canopy component has spreading outward and upward, a feature most been greatly diminished because of the Dutch elm obvious in the winter after leaf-fall. Leaves are simple, disease, a fungus (Ophiostoma ulmii) that clogs the alternately arranged with serrated and occasionally vascular system. Ulmus americana, currently is only doubly serrated margins (toothed, interspersed with an occasional component of palustrine forested smaller teeth). Even on the same branch, leaves are wetlands in the Mid-Atlantic Region. -
Fraxinus Spp. Family: Oleaceae American Ash
Fraxinus spp. Family: Oleaceae American Ash Ash ( Fraxinus sp.) is composed of 40 to 70 species, with 21 in Central and North America and 50 species in Eurasia. All species look alike microscopically. The name fraxinus is the classical Latin name for ash. Fraxinus americana*- American White Ash, Biltmore Ash, Biltmore White Ash, Canadian Ash, Cane Ash, Green Ash, Ground Ash, Mountain Ash, Quebec Ash, Red Ash, Smallseed White Ash, White Ash , White River Ash, White Southern Ash Fraxinus anomala-Dwarf Ash, Singleleaf Ash Fraxinus berlandierana-Berlandier Ash , Mexican Ash Fraxinus caroliniana-Carolina Ash , Florida Ash, Pop Ash, Swamp Ash, Water Ash Fraxinus cuspidata-Flowering Ash, Fragrant Ash Fraxinus dipetala-California Flwoering Ash, California Shrub Ash, Foothill Ash, Flowering Ash, Fringe- flowering Ash, Mountain Ash, Two-petal Ash Fraxinus gooddingii-Goodding Ash Fraxinus greggii-Dogleg Ash, Gregg Ash, Littleleaf Ash Fraxinus latifolia*-Basket Ash, Oregon Ash, Water Ash, White Ash Fraxinus nigra*-American Black Ash, Basket Ash, Black Ash , Brown Ash, Canadian Ash, Hoop Ash, Splinter Ash, Swamp Ash, Water Ash Fraxinus papillosa-Chihuahua Ash Fraxinus pennsylvanica*-Bastard Ash, Black Ash, Blue Ash, Brown Ash, Canadian Ash, Darlington Ash, Gray Ash, Green Ash , Piss Ash, Pumpkin Ash, Red Ash, Rim Ash, River Ash, Soft Ash,Swamp Ash, Water Ash, White Ash Fraxinus profunda*-Pumpkin Ash, Red Ash Fraxinus quadrangulata*-Blue Ash , Virginia Ash Fraxinus texensis-Texas Ash Fraxinus velutina-Arizona Ash, Desert Ash, Leatherleaf Ash, Modesto Ash, Smooth Ash, Toumey Ash, Velvet Ash (* commercial species) Distribution The north temperate regions of the globe. The Tree Ashes are trees or shrubs with large, opposite, pinnately compound leaves, which are shed in the fall. -
The First Genetic Linkage Map for Fraxinus Pennsylvanica and Syntenic Relationships with Four Related Species
Plant Molecular Biology (2019) 99:251–264 https://doi.org/10.1007/s11103-018-0815-9 The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species Di Wu1 · Jennifer Koch2 · Mark Coggeshall3,4 · John Carlson1 Received: 13 August 2018 / Accepted: 15 December 2018 / Published online: 2 January 2019 © Springer Nature B.V. 2019 Abstract Key message The genetic linkage map for green ash (Fraxinus pennsylvanica) contains 1201 DNA markers in 23 linkage groups spanning 2008.87cM. The green ash map shows stronger synteny with coffee than tomato. Abstract Green ash (Fraxinus pennsylvanica) is an outcrossing, diploid (2n = 46) hardwood tree species, native to North America. Native ash species in North America are being threatened by the rapid spread of the emerald ash borer (EAB, Agrilus planipennis), an invasive pest from Asia. Green ash, the most widely distributed ash species, is severely affected by EAB infestation, yet few genomic resources for genetic studies and improvement of green ash are available. In this study, a total of 5712 high quality single nucleotide polymorphisms (SNPs) were discovered using a minimum allele frequency of 1% across the entire genome through genotyping-by-sequencing. We also screened hundreds of genomic- and EST-based microsatellite markers (SSRs) from previous de novo assemblies (Staton et al., PLoS ONE 10:e0145031, 2015; Lane et al., BMC Genom 17:702, 2016). A first genetic linkage map of green ash was constructed from 90 individuals in a full-sib family, combining 2719 SNP and 84 SSR segregating markers among the parental maps. The consensus SNP and SSR map contains a total of 1201 markers in 23 linkage groups spanning 2008.87 cM, at an average inter-marker distance of 1.67 cM with a minimum logarithm of odds of 6 and maximum recombination fraction of 0.40. -
April 18, 2008…
Kansas Insect Newsletter For Agribusinesses, Applicators, Consultants and Extension Personnel Department of Entomology 123 West Waters Hall K-State Research and Extension Manhattan, Kansas 66506 785-532-5891 http://www.entomology.ksu.edu/extension __________________________________________________________________________________________________ May 14, 2015 No. 6 Sugarcane Aphids Brownheaded Ash Sawfly Insect Diagnostic Laboratory Report Sugarcane Aphids Dr. J. P. Michaud in a TV interview with Stacy Campbell about the SCA. To view information on sugarcane aphids go to: https://youtu.be/H2CZlq5tKlc J.P. Michaud HOME Brownheaded Ash Sawfly We continue to receive inquires throughout the state regarding green ash (Fraxinus pennsylvanica) trees being fed upon by populations of the brownheaded ash sawfly, Tomostethus multicinctus. This is a sporadic, early season, defoliating insect pest that appeared in Manhattan, KS in 2013. Populations feed extensively causing noticeable foliar damage and producing lots of frass (sawfly poop). Brownheaded ash sawfly larvae, which resemble caterpillars, are 15 to 20 mm long and yellow-green in color with white and green stripes extending the length of the abdomen or back Figure 1: Larvae of Brownheaded Ash Figure 2: Larvae of Brownheaded Ash Sawfly (Figures 1 and 2). They possess a brown head, and have prolegs on every abdominal segment with no crochets or hairs on the feet, 1 Kansas Insect Newsletter May 14, 2015 No 6 ________________________________________________________________________________________________ which distinguishes them from caterpillars. Brownheaded ash sawfly larvae feed primarily on ash trees (green and white) (Figure 3). Brownheaded ash sawfly pupates in the spring, with adults, which are wasp-like in appearance, emerging and females laying eggs inside leaves. Eggs hatch into larvae that congregate into massive groups at the base of trees (Figures 4 through 6), and feed from May through June. -
Are My Trees Ash?
F-55-04 School of Natural Resources, 2021 Coffey Road, Co lum bus, Ohio 43210 School of Natural Resources, 2021 Coffey Road, Columbus, Ohio 43210 Are My Trees Ash? Kathy L. Smith, Extension Associate, Forestry sh trees are common throughout Ohio’s rural and urban or toothed margins Alandscape. They are an important component of forests (Figure 8), and have throughout the state, with estimates suggesting that there may an oar-shaped fruit be as many as 3.8 billion ash trees growing naturally throughout called a samara (Figure Ohio’s forests. Ash trees are also one of our most frequently 3). White, green, and planted ornamental trees and are found planted in yards and black ash are prevalent along streets throughout most Ohio communities. across the state. Blue Four species of ash are relatively common in Ohio’s for- ash is more common ests — white ash (Fraxinus Americana), green ash (Fraxinus in the western part of pennsylvanica),), black ash (FraxinusFraxinus nigranigra),), and blue ash (FraxinusFraxinus the state. quadrangulata). Most of the numerous cultivars of ash planted Differentiating be- in the urban landscape are derived from these four species. A tween the four species fi fth species, pumpkin ash (Fraxinus profundaprofunda), is native to Ohio of ash that are com- but not commonly found in today’s forested landscape. White monly found in Ohio ash, green ash, black ash, blue ash, and pumpkin ash are all true isn’t easy. However, ashes; they are members of the genus Fraxinus. there are some key There are also a couple of other woody plants that have "ash" characteristics to look in their name, such as mountain ash, wafer ash, and prickly ash, for that will help you but these plants are not true ash. -
Native Vascular Flora of the City of Alexandria, Virginia
Native Vascular Flora City of Alexandria, Virginia Photo by Gary P. Fleming December 2015 Native Vascular Flora of the City of Alexandria, Virginia December 2015 By Roderick H. Simmons City of Alexandria Department of Recreation, Parks, and Cultural Activities, Natural Resources Division 2900-A Business Center Drive Alexandria, Virginia 22314 [email protected] Suggested citation: Simmons, R.H. 2015. Native vascular flora of the City of Alexandria, Virginia. City of Alexandria Department of Recreation, Parks, and Cultural Activities, Alexandria, Virginia. 104 pp. Table of Contents Abstract ............................................................................................................................................ 2 Introduction ...................................................................................................................................... 2 Climate ..................................................................................................................................... 2 Geology and Soils .................................................................................................................... 3 History of Botanical Studies in Alexandria .............................................................................. 5 Methods ............................................................................................................................................ 7 Results and Discussion .................................................................................................................... -
Fraxinus Pennsylvanica Yes 700+ Yes No 0
Status: Development of Mapping Populaons Sco7 E. Schlarbaum, University of Tennessee and Mark V. Coggeshall, University of Missouri Comparative Genomics of Hardwood Tree Species http://www.hardwoodgenomics.org Mapping popula+on development for selected species No. Paternity No. Parent Seedlings DNA Exclusion Seedlings Host Order Species Selected in Hand Collected Complete Established Fagales Northern red oak Quercus rubra Yes 0 Yes Yes 400+ Magnoliales Yellow-poplar Liriodendron tulipifera Yes 550+ Yes No 0 Fabales Honey locust Gleditsia triacanthos Yes 0 Yes No 226+ Sapindales Sugar maple Acer saccharum Yes 1 Yes No 0 Fagales Black walnut Juglans nigra Yes 0 Yes Yes 299 Proteales Sweetgum Liquidambar styraciflua Yes 0 No No 0 Lamiales Green ash Fraxinus pennsylvanica Yes 700+ Yes No 0 Cornales Black gum Nyssa sylva@ca Yes 125+ No No 0 Comparative Genomics of Hardwood Tree Species http://www.hardwoodgenomics.org Honeylocust Seed Collection Isolated population of 12 trees on the Ames Plantation Comparative Genomics of Hardwood Tree Species http://www.hardwoodgenomics.org Honeylocust Mapping Population Start of the 2012 growing season End of the 2012 growing season Comparative Genomics of Hardwood Tree Species http://www.hardwoodgenomics.org Oak Molecular Mapping Plantations Northern Red Oak White Oak Comparative Genomics of Hardwood Tree Species http://www.hardwoodgenomics.org Oak Molecular Mapping Populations Nursery Phase White Oak Tree 1 Overcup Oak Overcup Oak September, 2012 May, 2012 June, 2012 Overcup Oak White Oak White Oak Swamp -
Middle Miocene Palynoflora of the Legnica Lignite Deposit Complex
Acta Palaeobotanica 49(1): 5–133, 2009 Middle Miocene palynofl ora of the Legnica lignite deposit complex, Lower Silesia, Poland ELŻBIETA WOROBIEC W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] Received 18 November 2008; accepted for publication 11 May 2009 ABSTRACT. Palynological analysis of three profi les of the Miocene deposits from Legnica site (east fi eld, 33/56 and 41/52 profi les) and Ruja site (fragment of the Komorniki 97/72 profi le) has been presented. The samples consisted of material from the 2nd Lusatian lignite seam, the Mużaków series, the 1st Henryk lignite seam and grey clays of the Poznań series. The age of the fl ora was defi ned as Badenian (?Late Karpatian – Late Badenian). During the studies a total of 201 taxa from 96 genera (including 195 taxa from 92 genera of pollen and spores) were identifi ed. The systematic part of this work gives descriptions of selected sporomorphs and phytoplankton microfossils. Some informations about botanical affi nity, occurrence in fossil fl oras and in the studied material, as well as about allied recent plants are given in remarks. The results are presented in three pollen diagrams. The taxa have been classifi ed to an appropriate palaeofl oristical element mainly on the basis of the checklist of selected pollen and spores taxa from the Neogene deposits. The dominance of warm-temperate (A1) element and frequency of palaeotropical taxa in various parts of the profi les point to a warm-temperate climate. The results were used for reconstruction of changes in local vegetation during the sedimentation of deposits under study. -
MF3297 Brownheaded Ash Sawfly
Home and Horticultural PESTS Brownheaded Ash Sawfly The brownheaded ash sawfly (Tomostethus multicinctus) is a Although similar to caterpillars in appearance, they can be sporadic insect pest of green ash (Fraxinus pennsylvanica). Early distinguished by the presence of prolegs on each abdominal season defoliation and an abundance of frass (or sawfly “poop”) segment, but there are no crochets or hairs on the feet. may signal the presence of this insect, which is native to the eastern United States. Brownheaded ash sawfly larvae primarily feed on ash trees, leaving shot-hole or pin-hole damage on leaves (Figure 3). As Soon after wasp-like adults emerge in April, females lay eggs they grow, larvae consume leaves and can defoliate trees (Figure inside of leaves. Upon hatching, larvae congregate in a massive 3). By June, fully developed larvae shed the paper-like skin that group at the base of the tree (Figure 1) before moving up to remains attached to the leaf (Figure 4). After migrating to the consume leaves during May and June. Brownheaded ash sawfly base of the tree, they enter the soil and form a protective cocoon. larvae are 15 to 20 mm long and yellow-green with white and Brownheaded ash sawfly overwinter as mature larvae or pre- green stripes extending the length of the abdomen (Figure 2). pupae, residing in silk-lined cells in the top portion of soil at the Figure 1 . Brownheaded ash sawfly larvae congregating at the base of a green ash tree. Figures 2. Brownheaded ash sawfly larvae. Figure 3. Feeding damage caused by brownheaded ash sawfly larvae.